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Abstract: Due to the increased development of the smart grid, it is becoming crucial to have an 
efficient energy management system for a time-of-use (TOU) rate industrial user in Taiwan. In this 
paper, an extension of the direct search method (DSM) is developed to deal with the operating 
schedule of a TOU rate industrial user under the demand bidding mechanism of Taipower. To max-
imize the total incentive obtained from the Taiwan Power Company (TPC, namely Taipower), sev-
eral operational strategies using a battery energy storage system (BESS) are evaluated in the study 
to perform peak shaving and realize energy conservation. The effectiveness of the proposed DSM 
algorithm is validated with the TOU rate industrial user of the TPC. Numerical experiments are 
carried out to provide a favorable indication of whether to invest in a BESS for the renewable en-
ergy-based TOU rate industrial user in order to execute the demand bidding program (DBP). 

Keywords: smart grid; time-of-use; demand bidding program; battery energy storage system; direct 
search method 
 

1. Introduction 
Due to the soaring prices of fossil fuels and the rising awareness of environmental 

protection, renewable energy resources have attracted more and more attention from the 
utility industry. In Taiwan, the development of the hybrid generation system composed 
of different renewable energy sources (RESs) has been rapidly growing, and currently, it 
is widely applied for the time-of-use (TOU) rate industrial users [1]. Despite the benefits 
provided by the RES, the intermittency and unpredictability of renewable power genera-
tion may cause operational issues and waste usable capacity when the installation of the 
RES increases [2]. The power dispatch gap caused by the intermittency of renewable 
power generation can be compensated for by the battery energy storage systems [3]. The 
uncertainties posed by renewable power generation also require the scheduling of addi-
tional generation reserves to compensate for power fluctuations in the RES system [4,5]. 
However, the percentage of the reserve margin of generators in Taiwan has been decreas-
ing year by year, which may result in a high-risk situation for the system. To ensure the 
security and reliability of a power system, a better understanding of the required operat-
ing reserves with larger renewable penetrations is needed [6]. Moreover, in the smart grid 
system, a variety of issues may arise for renewable energy-based TOU rate customers, 
particularly in system operating and planning. Hence, the investigation into energy man-
agement has become very important in recent decades [7,8]. 
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In terms of energy management, it is commonly divided into three aspects: demand 
side management, peak load regulation, and carbon emission reduction. In the last decade, 
studies have focused on load clipping with time-of-use rates [9], real-time pricing [10,11], 
and demand bidding [12]. These topics were proposed either to increase society’s benefit 
from the use of electrical power or reduce the cost of electricity for TOU rate users. The 
TOU rate is usually regarded as a load management strategy to further smooth the de-
mand curve for the utility grid and enable a reduced cost for industrial customers. Re-
cently, a program has been implemented to encourage more TOU rate users to get in-
volved with load management. This program, named “demand bidding”, has been devel-
oped by the Taiwan Power Company (TPC) [13]. For the TPC, the demand bidding pro-
gram (DBP) was designed to make a collaboration between customers and suppliers on 
demand response (DR) to prevent the risks of energy shortage and reduce the operating 
cost of expensive generators [14]. For certain TOU rate users with significant demand for 
electricity, electricity bills account for a substantial proportion of their overall expenses. 
In fact, the electricity bills include the total energy cost, the contract cost for the demand 
capacity, and the penalty bills. In order to minimize the total electricity cost for a TOU rate 
customer, a variety of energy storage technologies, such as a battery energy storage sys-
tem (BESS), refrigeration storage (RS), compressed air energy storage (CAES), etc., have 
been investigated. For TOU rate users, the BESS is one of the most promising technologies 
for reducing electricity expenses [15]. Promising results have been reached in most studies 
in terms of electricity savings [16,17]. Therefore, when and how much power to charge 
and discharge turns out to be a critical problem for maximizing the benefits provided by 
a BESS. Many studies have focused on developing advanced algorithms for the DBP to 
increase the electricity incentives received from the power utility. 

The energy management system plays a crucial role in implementing the DBP for the 
TOU customers in the smart grid. The aim of this study is to evaluate the operating strat-
egy of a BESS in a hybrid generation system for a TOU rate industrial user under the 
demand bidding mechanism of Taipower. Many mathematical programming analysis 
methods and random search optimization techniques were used to solve the extended 
generation scheduling problem, such as multi-pass dynamic programming (MPDP) [15], 
the direct search method (DSM) [18], genetic algorithm (GA) [19], and particle swarm op-
timization [20]. Among them, the DSM method is especially of interest due to its simple 
architecture, high-quality solution, and fast convergence. In this paper, an extension of the 
DSM is developed to solve the optimal generation schedule problem in a TOU system for 
executing the DBP. To deal effectively with the coupling constraints of a system operation 
problem, the three-state dynamic programming (DP) is also incorporated into the DSM to 
augment the direct stochastic search procedure. The developed DSM computation tool 
can be used for addressing the key BESS integration issues. The developed DSM software 
can also be used to maximize the contribution of a RES and a BESS for reducing the elec-
tricity cost for a TOU rate industrial user. Test results are provided to assess the impact 
and economic benefits of the installation of a BESS for executing the DBP. 

In general, the technical novelty and contribution of this paper can be presented as 
follows: 
1. A demand bidding mechanism is designed to make a collaboration between custom-

ers and suppliers on demand response to perform peak shaving and realize energy 
conservation. 

2. An improved DSM incorporated with a three-state DP is proposed to solve the oper-
ating schedule of a TOU rate industrial user under the demand bidding mechanism 
of Taipower. 

3. Several operational strategies of a BESS are evaluated for a TOU rate industrial user 
to maximize the total incentive obtained from the TPC. 

4. Numerical results are provided to assess the impact and economic benefits of the 
installation of a BESS for executing the DBP. The proposed DSM is also efficient and 
suitable for practical applications. 
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The remaining parts of this paper are presented in the following sequences. The 
mathematical formulation of the demand bidding mechanism of Taipower is expressed in 
Section 2. Section 3 describes the extension of the DSM to coordinate the PV/wind, utility 
grid, and battery generation scheduling. Detailed descriptions of the operational strategy 
of the BESS are also provided for executing the DBP. Section 4 presents the simulation 
results and the conclusions are drawn in Section 5. 

2. Problem Formulation and System Modeling 
2.1. Notation 
TOC : Total electricity cost of the TOU rate industrial user (NT$). 

*( )CBL d  : Customer baseline load for the day d* (kW). 
*

max ( )PU d  : Maximum demand during DR-execution time for the day d* (kW). 
*( )bt

DP d  : Load demand in period bt for the day d* (kW). 
*( )BDT d  : DR-execution time (2 h or 4 h) for the day d* (hours). 
*( )ABP d  : Actual load-reduction amount for the day d* (kW). 

( )BDF d  : Total incentive for the day d (NT$/h). 
( , )PEF t d  : Cost of the purchased power at interval t for the day d (NT$/h). 
( )BDC d  : Bidding price during the DR-execution time for the day d (NT$/ kWh). 
( , )PEC t d  : Tariff of the purchased power at interval t for the day d (NT$/kWh). 

d : Index for day intervals (one day). 
D : Total observation days (days). 
t : Index for time intervals (15 min interval). 
T : Number of time intervals (one day). 
j : Index for non-dispatchable units. 
ND : Number of non-dispatchable units in system. 

( , )DP t d  : System load demand at interval t for the day d (kW). 
( , )NDj t dP  : Power of non-dispatchable unit j at interval t for the day d (kW). 
( , )gridP t d  : Power of purchased from utility grid at interval t for the day d (kW). 

max
gridP  : Maximum output power from utility grid (namely, the contract capacity) 

(kW). 

( , )batP t d  : Charging/discharging power of battery storage system at interval t for the 
day d (positive for discharging and negative for charging) (kW). 

max
batP  : Maximum power from the battery storage system (kW). 

( , )SOC t d  : State of charge of the battery at interval t for the day d (kWh). 
minSOC  : Minimum battery state of charge (kWh). 
maxSOC  : Maximum battery state of charge (kWh). 

Bη  : Battery round-trip efficiency. 
t ∆  : Sampling time interval. 
* ( , )WjP t d  : Available power of wind power generation unit j at interval t for the day d 

(kW). 
max

WjP  : Maximum power of wind power generation unit j (kW). 
( )jφ •  : Wind power curve of wind power generation unit j (kW). 

( , )v t d  : Wind speed at interval t for the day d. 

Ijv  : Cut in wind speed for wind power generation unit j. 

Rjv  : Rated wind speed for wind power generation unit j. 

Ojv  : Cut out wind speed for wind power generation unit j. 
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 * ( , )PVjP t d  : Available power of solar power generation unit j at interval t for the day d 
(kW). 

( )jδ •  : Radiation/ambient temperature power curve of solar power generation unit 
j (kW). 

max
PVjP  : Maximum power of solar power generation unit j (kW). 
( , )rS t d  : Intensity of solar radiation at interval t for the day d. 
( , )rT t d  : Ambient temperature at interval t for the day d. 

SD : Minimum intensity of solar radiation. 
SU : Maximum intensity of solar radiation. 

( )virP bt l  : Virtual price at period bt+l (NT$/kWh). 
α : Coefficient of virtual price. 

max
DP / min

DP  : Maximum/minimum load demand during the DR-executing time (kW). 
PLC : Price of peak load periods (NT$/kWh). 
LLC : Price of off-peak load periods (NT$/kWh). 

2.2. Demand Bidding Mechanism of Taipower 
To increase the reliability of the power grid, the DBP is designed to encourage heavy 

electricity consumers to alter their usage pattern and remove the peak demand by giving 
rewards or bonuses. Recently, in many countries, power grid operators have applied the 
DBP in practice. For instance, Southern California Edison (SCE) and Pacific Gas and Elec-
tric Company (PG&E) have carried out DBPs [12,21]. SCE opens the DBP for customers 
with at least one service account with a demand of 200 kW or greater. Customers are able 
to participate in the DBP event from 12 p.m. to 8 p.m. and bid for at least 2 consecutive 
hours to earn bonus or rewards. The minimum bid is required at 30 kWh/hour. The pay-
ment is 50 cents per 1 kWh reduction minus the hourly price of energy. Apart from SCE, 
Mashhad Electric Energy Distribution Company (MEEDC) in Iran also employed the DBP 
[22]. Heavy electricity consumers with a demand of 100 kW can participate in the DBP. In 
the period from 11:00 a.m. to 3:00 p.m., the DBP will last for a minimum of 2 h and a 
maximum of 4 h. In the period of collaboration, the DBP will be less than 200 h. It is nec-
essary for customers to eliminate the power consumption for more than 15% of their 
hourly baseline value. As for the power baseline for customers, it is computed by averag-
ing the maximum load for 2 months before the start of the participation period. The re-
ward provided by MEEDC can be 2500 rial (Iran’s currency) per kWh in constant. 

In Taiwan, with the demand bidding program, TOU rate users are able to determine 
the amount of load for peak shaving and the bidding price for their available time. The 
winning customers are then determined by the TPC according to the system marginal 
cost. The demand bidding mechanisms of Taipower are categorized by economical type, 
reliable type, and aggregated type [13]. In this study, the economical type is of particular 
interest due to the incentive for customers. The general rule of economical type is de-
scribed as follows. Firstly, the TOU rate user can determine which month to conduct DR 
in and how much the monthly minimum capacity for load reduction is in their contact 
with the TPC. Next, the TOU user can decide the duration for DR implementation. Either 
2 h or 4 h in a single day is available as an option. In addition, the entire implementation 
time within a month is not allowed to be more than 36 h. Thirdly, the customer baseline 
load (CBL) is obtained by averaging the power in the DR implementation period in the 
previous five days, except for weekends, off-peak days, holidays, and load-reduction 
days. Eventually, the load reduction can be computed by the difference between the max-
imum demand and CBL within the same period of the DR. If the amount of load reduction 
is less than the minimum contract value (50 kW), it is treated as 0 without a penalty bill. 
Figure 1 gives an explanation and it can be formulated as follows for the load-reduction 
day (d*): 
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d*-1

max
x=d*-5

PU (x)
CBL(d*)=

5

∑
 (1) 

{ }1
max ( *) ( *) , ( *),......, ( *)bt bt bt h

D D DPU d Max P d P d P d+ +=     8      ( *) 2
16    ( *) 4

if BDT d
h

if BDT d
=

=  =
 (2) 

max( *) ( *) ( *)ABP d CBL d PU d= −  (3) 

( *) ,    ( *) 50kW
( *)

0              ,  
ABP d if ABP d

ABP d
else

≥
= 


 (4) 

 
Figure 1. An exemplar figure to show the computation of actual load reduction. 

2.3. Objective Function 
The objective function is formulated as in (5) to minimize the total expenses for a 

TOU rate industrial user. Meanwhile, it is important to satisfy the operational constraints 
of the RES and BESS. Thus, the given scheduling problem can be presented in a mathe-
matical model as follows: 

D T D

PE BD
d=1 t=1 d=1

TOC = Minimize F (t,d) - F (d)∑∑ ∑  (5) 

1
( , ) ( ( , ) ( , ) ) ,    ( , ) 0

( , )

0                                                            , 

( , )PE D bat grid

PE

ND

NDj
j

C t d P t d P t d if P t d
F t d

else

P t d
=

× − − ≥
=





∑  (6) 

( ) ( ) ( ) ,    d load-reduction day
( )

0                               ,  
BD

BD

C d ABP d BDT d if
F d

else

× × ∈
=




 (7) 

2.4. Operational Constraints 
To model the investigated system, mathematical modeling is utilized to mimic the 

operations of generation sources and the BESS. Similar approaches can also be found in 
[23,24] where multiple energy storage units are taken into account and logical variables 
are used to distinguish the charging/discharging operations of each energy storage unit 
to ensure security. In this study, it is noted that the BESS is taken as one energy storage 
unit. The power command for the BESS will be determined from the proposed DP-based 
power dispatch method. Limited by the rated power of a converter, the power command 
of the BESS Pbat > 0 represents discharging, while Pbat < 0 implies charging. On the other 
hand, references [25,26] show that loads could be classified into non-controllable, control-
lable comfort-based loads. However, this paper focuses on the power dispatch problem, 
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the investigated load demand profile is statistical data from TPC customers and is re-
garded as an uncontrollable load. The operational constraints of the hybrid system with a 
RES and BESS are introduced as below. 

2.4.1. System Constraints 
• Power balance constraint 

1

( , ) ( , ) ( , ) ( , )
ND

NDj grid bat D
j

P t d P t d P t d P t d
=

+ + =∑  (8) 

2.4.2. Non-Dispatchable Unit Constraints 
• Wind power curve constraints 

*

max

0 ( , ) ( , )
( , ) ( ( , )) ( , )

( , )

Ij Oj

Wj j Ij Rj

Wj Rj Oj

v t d v or v t d v
P t d v t d v v t d v

P v v t d v

φ

 ≤ >
= ≤ ≤
 ≤ ≤

 (9) 

• Solar radiation/ambient temperature power curve constraints 

*

max

0 ( , )
( , ) ( ( , ), ( , )) ( , )

( , )

r

PVj j r r r

PVj r

S t d SD
P t d S t d T t d SD S t d SU

P S t d SU

δ

 ≤
= ≤ ≤
 ≥

 (10) 

2.4.3. Battery Constraints 
• Limits of charge/discharge power 

max max( , )bat bat batP P t d P− ≤ ≤  (11) 

• Upper and lower limits for state of charge 

min max( , )SOC SOC t d SOC≤ ≤  (12) 

• State of charge for battery storage system 

( 1, ) ( , )        ( , ) 0
( , )  ( 1, ) ( , )             ( , ) 0

bat B bat

bat bat
B

SOC t d P t d t if P t d
SOC t d tSOC t d P t d if P t d

η

η

− − × ×∆ <
= ∆ − − × ≥


 (13) 

2.4.4. Constraints of the Utility Grid 
• Limit of the purchased power 

max0 ( , )grid gridP t d P≤ ≤  (14) 

3. Evaluation of Operating Policy for the TOU Rate Industrial User 
3.1. Development of the DSM Software 

To assess the potential of making a profit from the TPC, the DSM [27] is updated to 
deal with the scheduling problem of a TOU rate industrial user under the demand bidding 
mechanism of Taipower. Similar to other stochastic techniques, the main drawback of the 
conventional DSM is its tendency to be easily trapped in a local optimal solution, particu-
larly when handling generating scheduling problems with a high number of local optima 
and heavy constraints. The solutions obtained from the DSM would rely heavily on the 
parameter selection, such as initial random starting points, values of the initial step size 
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S1, and reduced factor K. The previous work on the DSM approaches used a larger initial 
step size S1 for effective search, and the step size was then successively refined until the 
calculation step was less than the predetermined resolution. Clearly, the DSM with a 
coarse convergence step can enhance the global exploration ability; however, it causes an 
incapability to find nearby extreme points (exploitation problem). By contrast, the DSM 
with a refined convergence step can enhance the local exploitation ability; however, it is 
easily trapped in local minima (exploration problem). Consequently, the standard DSM 
cannot guarantee that the solutions are optimal, or even close to the optimal, due to the 
deficiency in the balance between global exploration and local exploitation. Providing a 
well-balanced mechanism between these abilities is critical to avoid early convergence. 

To elevate the global searching capability, a novel heuristic strategy is proposed to 
employ the stochastic searching mechanism and make good use of the exploration and 
exploitation capabilities. Generally, the initial candidate solutions are usually far from the 
global optimum; hence, a larger calculation step SP may prove beneficial. However, mak-
ing all candidate solutions take the same calculation step SP in a convergence level is un-
reasonable. In the study, to balance the global and local exploration abilities, the selection 
of step size SP for candidates are different. A large calculation step SP enables the DSM to 
explore globally, and a small calculation step SP enables the DSM to explore locally. 
Clearly, the reduced factor K prevents the premature convergence. Generally, as the num-
ber of convergence level increases, the balance of exploration and exploitation abilities is 
enhanced and the solution quality is improved. The proposed DSM algorithm is outlined 
in Figure 2. Typically, the DSM with a high S1 and a low K is recommended. From our 
numerical experience, S1 = 10% of upper limit for BESS and K = 5 are applied in this study. 

 
Figure 2. Flow chart of the proposed direct search method (DSM) approach. 

In this study, the energy stored in the BESS is taken as the state variables and they 
are initialized stochastically. The constraints represented by (8)–(14) will be treated in dif-
ferent ways. The operating constraints (8) and (11)–(13) are handled during the direct 
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search procedure. The available renewable power generation can be obtained from the 
wind speed, solar radiation intensity, and ambient temperature by applying Equations (9) 
and (10). To deal with the power limits of the BESS given in (11) and the limit of purchased 
power from utility grid in (14), the non-negative penalty terms are integrated with the 
electricity cost to penalize the violation of any constraint. In addition, considering the cou-
pling constraints of the power dispatch problem, three-state dynamic programming is 
combined with the DSM to enhance the performances of the direct stochastic search. As 
shown in Figure 3, three states of BESS are defined as follows: 1 implies charge, 0 implies 
idle, and –1 implies discharge. An exemplar trajectory in Figure 3 illustrates the transition 
from one state for a certain time interval to another state for the next time interval. Thus, 
this transition may require charging and discharging of the BESS. In this way, the forward 
dynamic programming can be employed to deal with the power dispatch problem. The 
accumulated electricity cost is evaluated along with each trajectory recursively. Then, the 
path with the least cost will be backtracked at the final stage to obtain the optimum solu-
tion. 

-1

0

1

-1

0

1

-1

0

1

time
t-1

time
t

time
t+1

... ...

SOCmax

SOC(t)+S

SOC(t)-S

SOC(t)

SOCmin

Charge(1)

Idle(0)

Discharge(-1)

 
Figure 3. State transition diagram of the battery energy storage system (BESS) for dynamic pro-
gramming (DP). 

3.2. Assessment of Operational Strategy for Executing the DBP 
To realize the minimum total electricity costs of a TOU rate industrial user, several 

operating strategies of the BESS are evaluated with the DBP to further reduce the peak 
load demand and achieve energy conservation. Given that there is no DBP, it is widely 
recognized that the BESS can store electrical power during the off-peak load periods be-
cause of the low purchasing price of the energy provided by the utility grid. The BESS 
system then discharges randomly in the periods of peak load demand as the high electric-
ity price. In this way, electricity costs can be saved and a penalty bill caused by exceeding 
contracts can also be prevented. However, a more advanced operating strategy is required 
to perform DBP to eliminate the power shortage of the BESS in a DR load-reduction du-
ration. To maximize the total incentive obtained from the TPC on a load-reduction day, 
the best operating strategy for the BESS is to fully discharge at maximum power output 
during the DR-executing time. This mechanism can significantly reduce the electricity 
costs, increasing the economic benefits of energy generated by the BESS. In the study, a 
virtual electricity price is designed during the DR-executing time and the recommended 
value is chosen as follows: 

min

max min

( ) ( )( )
( ) ( )

D D

D D

P PPvir PL bt l bt lbt l
bt l bt l

C
P P

α + +
+

+
−

×
− +

= +   8      ( *) 2
1,2,...,      

16    ( *) 4
if BDT d

l h h
if BDT d

=
= =  =

；  (15) 
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But on a non-load-reduction day, another operating strategy is necessary for increas-
ing the actual load-reduction amount. According to the computation of load reduction, it 
is found that electricity cost savings depend on the degree of CBL. With the larger CBL, 
the TOU customers are prone to earn incentives received from the TPC for DR execution. 
To raise the baseline load by using the BESS, the best operating strategy for the BESS is to 
fully discharge during the peak-load periods except for DR-executing time. The BESS sys-
tem would then stop discharging at the predictive maximum demand period (or some 
higher load periods) of DR implementation during the five days prior to the DR event. 
Although this process may not be an economic policy for current non-load-reduction 
days, it has more potential to decrease electricity costs in the future load-reduction days. 
The aim of the study is to evaluate the dispatch strategy of the BESS for the TOU rate 
industrial user to minimize the system electricity costs. In the study, a virtual electricity 
price is also designed during the DR-executing time and the recommend value is chosen 
as follows: 

min

max min

( ) ( )( ) ( )
( ) ( )

D D

D D

P PPvir PLC bt l bt lbt l
bt

PLC L
l

LC
P bt lP

−
= ×

−
+ +

+
+ +

－－   8      ( *) 2
1,2,...,      

16    ( *) 4
if BDT d

l h h
if BDT d

=
= =  =

；  (16) 

4. Numerical Examples 
A chemical industrial customer of the TPC is used as an example to show the effec-

tiveness and feasibility of the proposed DSM algorithm [27]. The pricing structure of 
three-section TOU rates is considered for the high-voltage customer. The energy costs of 
peak load (10:00–12:00 and 13:00–17:00), medium load (07:30–10:00, 12:00–13:00, and 
17:00–22:30), and light load (00:00–07:30 and 22:30–24:00) periods are 4.67, 2.90, and 1.32 
NT$/kWh, respectively. The contract capacity, namely, the maximum power purchased 
from the utility grid, is assumed to be 350 kW. In the studied case, the DR-execution du-
ration is chosen to be 4 h (13:00–17:00) by the users. The bidding price is assumed to be 10 
NT$/kWh during the DR-executing time. The load forecasting of a typical day in the sum-
mer season is given in Figure 4. The minimum and maximum loads for the study period 
of 24 h are 125 kW and 250 kW, respectively. Figure 5 shows the investigated system con-
sisting of wind farm, solar PV array, BESS, and utility grid. The wind farm includes two 
wind turbine generators (WTGs) and the total capacity of wind power installed is 40 kW. 
The capacity of solar PV models is 37.8 kW. As illustrated in Figure 5, the solar PV mod-
ules and BESS are connected to a step-up transformer via an inverter. The efficiency of the 
inverter is 0.95. Based on Equations (9) and (10), the available power of the RES for a typ-
ical day in summer can be obtained as given in Figure 6. To compensate the depleted and 
surplus power in the system, a BESS with the capacity and power rated at 180 kWh/30 kW 
is simulated. The battery round-trip efficiency is 0.9. In addition, the initial and end of 
SOC are set at 66.67%, and the lower operating limit is set to SOC = 20%. The parameters 
of DSM are selected as: the number of initial solutions NP = 1, the initial calculation step 
S1 = 18 kW, the reduced factor K = 5, and the predetermined resolution ε = 0.01 kW. All 
the computation is performed on a PC Intel(R) Core(TM) i5-4570 CPU, up to 3.2 GHz. 
Several scenarios are taken into account and discussed as follows: 
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Figure 4. Load curve of a typical day in the summer season. 

 
Figure 5. A system diagram of a time-of-use (TOU) rate customer. 

 
Figure 6. Power profiles of PV and wind power generation for a typical day in the summer season. 
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4.1. Performance of the Proposed DSM Algorithm 
A good convergence of the proposed DSM algorithm is presented in Table 1. The 

iteration numbers and electricity costs of different cases of convergence level are com-
pared. The results show that the proposed DSM program is able to achieve an advanta-
geous operation schedule for the TOU industrial customer while satisfying all the con-
straints simultaneously. It is also observed that the total electricity cost is not sensitive to 
the calculation step S. Ignoring the BESS integration, the total electricity cost is about 
NT$12,975.646 in this test case. When the BESS is integrated into this customer system, the 
total electricity charge is reduced to NT$12,544.588. It will save 3.32% of the electricity cost 
within a day. To analyze the influences of the initial values on the final results, several 
random numbers are taken as the initial values in the DSM approach. The corresponding 
results of the 10 trial tests are given in Table 2. The satisfactory solutions can be obtained 
in approximately 0.02 s with the proposed DSM. In fact, several different cases were stud-
ied and the results demonstrated the merit of the proposed algorithm. 

Table 1. Comparison of iterations and total electricity cost (TOC) under various S in the TOU sys-
tem. 

Convergence Iterations TOC (NT$) 
Initialization --- 12,975.646 

S1 = 18 kW 0 12,975.646 
S2 = 3.6 kW 23 12,611.493 
S3 = 0.72 kW 24 12,556.483 

S4 = 0.144 kW 24 12,545.985 
S5 = 0.0288 kW 12 12,544.726 
S6 = 0.00576 kW 7 12,544.588 

Table 2. Results of DSM after ten runs. 

Run Initialization (NT$) TOC (NT$) 
1 31,211,025 12,544.537 
2 27,560,846 12,544.554 
3 22,997,452 12,544.547 
4 27,190,036 12,544.555 
5 25,530,881 12,544.548 
6 25,004,720 12,544.545 
7 24,011,364 12,544.560 
8 24,318,074 12,544.539 
9 20,842,510 12,544.548 

10 27,207,412 12,544.546 

4.2. Prediction of Electricity Cost Savings for Executing the DBP 
To evaluate the economic benefits of the installation of the BESS, the developed DSM 

software is applied and validated as a useful tool for the TOU rate industrial users to pre-
dict the cost savings. Table 3 gives a good indication to help understand the effects of the 
BESS on the total cost savings for executing the DBP. In the previous TOU system, when 
the BESS was excluded in the system, the total electricity cost was NT$12,975.646 in Case 
1. As given in Case 2, a 3.32% reduction in electricity cost is achieved when the TOU sys-
tem includes the BESS. Obviously, the installation of the BESS enables a reduction in the 
electricity cost of 19.49% for executing the DBP in Case 3 when the bidding price is chosen 
to be 10 NT$/kWh. Numerical results certainly provide valuable information and verify 
that the installation of the BESS enables a reduction in the electricity cost in the TOU sys-
tem. Thus, different amounts of the BESS can be added to the original system to evaluate 
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the significant benefits of annual electricity cost savings. In this way, the economic pene-
tration limit of the optimal capacity of the BESS into a given TOU system can be deter-
mined. 

Table 3. Comparison of the electricity cost saved by different simulation scenarios. 

Case BESS 
DBP 

(Load-Reduction 
Day) 

DBP 
(Non-Load-Reduction 

Day) 

TOC 
(NT$) 

Saving 
(%) 

1 Without Without Without 12,975.646 --- 
2 With Without Without 12,544.546 3.32% 
3 With With Without 10,445.745 19.49% 
4 With Without With 12,544.546 3.32% 

4.3. Effects of BESS on the Operating Schedule for Load-Reduction Day 
To demonstrate the performances of integrating the BESS into the TOU system for a 

load-reduction day. Figure 7 shows the energy profiles of the BESS during a typical daily 
load. The optimal power dispatch of the BESS can also be observed from Figure 8. Without 
the DBP (Case 2), the BESS was charged in low load demand periods when the electricity 
price is low (1.32 NT$/kWh). During heavy load demand periods, namely 10:00–12:00 and 
13:00–17:00, the BESS was discharged randomly when the electricity price is high (4.67 
NT$/kWh). However, a more advanced operational strategy of the BESS is necessary to 
curtail the peak demand for the load-reduction day when the DBP is considered (Case 3). 
As shown in Figure 8, it is more cost-effective not to discharge at high system load times 
(11:30–12:00) and keep the maximum power outputs (30 kW) of the BESS during the DR-
executing time (13:00–17:00). As shown in Table 3, it is found that there is a reduction in 
electricity cost of 19.49% for executing the DBP (Case 3). The DSM can be used to test the 
user system in many load conditions under different seasons, summarizing the test results 
to develop expert knowledge for the BESS controller design. The developed DSM software 
is therefore a useful tool for the TOU rate industrial user to maximize the benefits of the 
BESS for reducing the electricity cost of grid dispatch on the load-reduction day. 

 
Figure 7. Electrical energy changes in the BESS (Case 2 and Case 3). 
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Figure 8. Power profiles of the BESS during a typical daily load (Case 2 and Case 3). 

4.4. Effects of BESS on the Operating Schedule for Non-Load-Reduction Day 
To earn more incentive for DR execution, the developed DSM software is also a use-

ful tool for the non-load-reduction day to increase the actual load-reduction amount. To 
show the effects of utilizing the BESS in the TOU system, Figure 9 shows the electrical 
energy changes in the BESS on the non-load-reduction day, and the power outputs are 
shown in Figure 10. Without the DBP (Case 2), it can be seen that the operating strategy 
of the BESS is to discharge randomly during peak load hours (10:00–12:00 and 13:00–17:00) 
for cost savings. When the DBP is considered (Case 4), it is necessary to update the energy 
flow control strategies from the BESS to fully explore the TOU rate customer system ben-
efits. The results show that the maximum power outputs (30 kW) of the BESS is kept for 
peak load duration (10:00–12:00), and the BESS system stops discharging at some higher 
load periods (15:00–15:15 and 16:45–17:00) of DR execution to raise the baseline load. In 
Case 4, the baseline load (CBL) can be raised from 228.0 kW to 257.7 kW by using the BESS. 
This mechanism can significantly reduce the electricity charges in the future load-reduc-
tion day, increasing the economic benefits of energy generated by the BESS. As shown in 
Table 3, it is found that the total electricity cost is NT$12,544.546 in Case 4, that is, identical 
to those obtained in Case 2. The feasibility of the algorithm is confirmed and it is an effec-
tive power dispatch solution for the BESS. 
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Figure 9. Electrical energy changes in the BESS (Case 2 and Case 4). 

 

Figure 10. Power profiles of BESS during a typical daily load (Case 2 and Case 4). 

5. Conclusions 
In a smart grid, it is crucial to have efficient energy management that provides a re-

liable and beneficial scheduling solution for the TOU rate industrial customers. To max-
imize the total incentive obtained from the TPC, an extended DSM was developed to solve 
the scheduling problem of a TOU system under the demand bidding mechanism of 
Taipower. The operations of the BESS was investigated and discussed with the proposed 
DSM software. Several operational strategies of the BESS were also evaluated to curtail 
the peak load demand and achieve energy conservation. The results demonstrated that 
the BESS enables a reduction of the electricity cost of a TOU rate custom system for exe-
cuting the DBP. The proposed strategy is validated as a useful tool to determine the ca-
pacity of the BESS in the TOU system. Numerical experiments were conducted to provide 
valuable information for both operational and planning problems for the TOU rate indus-
trial customers. In real-time application, the proposed DSM can be used to determine the 
optimal operating policy of the next time stage. This function can save on energy costs 
and reduce the risk of the BESS running out of energy in a peak-demand reduction appli-
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cation. In off-line application, the proposed DSM can also be used to evaluate the eco-
nomic benefits of the BESS. The computer program developed is currently being experi-
mentally added to a TOU management system as auxiliary software to support TOU rate 
users. Although this study was based on the TPC rate structure, it can easily be modified 
to satisfy other TOU rate structures. 

Author Contributions: Conceptualization, Chun-Lung Chen; Data curation, Cheng-Ta Tsai and 
Kuen-Huei Lin; Formal analysis, Cheng-Ta Tsai and Yu-Shan Cheng; Funding acquisition, Chun-
Lung Chen; Investiga-tion, Cheng-Ta Tsai and Chun-Lung Chen; Methodology, Cheng-Ta Tsai; Pro-
ject administration, Kuen-Huei Lin; Resources, Yu-Shan Cheng; Software, Cheng-Ta Tsai; Supervi-
sion, Chun-Lung Chen; Validation, Cheng-Ta Tsai and Yu-Shan Cheng; Visualization, Cheng-Ta 
Tsai; Writing – original draft, Cheng-Ta Tsai and Kuen-Huei Lin; Writing – review & editing, Yu-
Shan Cheng and Chun-Lung Chen. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, under 
grants MOST 108-2221-E-019-031. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Chen, F.; Lu, S.M.; Wang, E.; Tseng, K.T. Renewable energy in Taiwan. Renew. Sustain. Energy Rev. 2010, 14, 2029–2038. 
2. Bouzguenda, M.; & Rahman, S. Value analysis of intermittent generation sources from the system operations perspective. IEEE 

Trans. Energy Convers. 1993, 8, 484–490. 
3. Alqunun, K.; Guesmi, T.; Albaker, A.F.; Alturki, M.T. Stochastic Unit Commitment Problem, Incorporating Wind Power and an 

Energy Storage System. Sustainability 2020, 12, 10100. 
4. Su, W.; Wang, J.; Roh, J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. 

Smart Grid 2013, 5, 1876–1883. 
5. Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A Review of Energy 

Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020, 12, 10511. 
6. Chen, C.L. Optimal wind–thermal generating unit commitment. IEEE Trans. Energy Convers. 2008, 23, 273–280. 
7. Ramli, M.A.M.; Bouchekara, H.R.E.H.; Alghamdi, A.S. Efficient Energy Management in a Microgrid with Intermittent Renew-

able Energy and Storage Sources. Sustainability 2019, 11, 3839. 
8. Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient energy management for the internet of things in smart cities. 

IEEE Commun. Mag. 2017, 55, 84–91. 
9. Sundt, S.; Rehdanz, K.; Meyerhoff, J. Consumers’ Willingness to Accept Time-of-Use Tariffs for Shifting Electricity Demand. 

Energies 2020, 13, 1895. 
10. Chen, Z.; Wu, L.; Fu, Y. Real-time price-based demand response management for residential appliances via stochastic optimi-

zation and robust optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. 
11. Yu, Z.; Jia, L.; Murphy-Hoye, M.C.; Pratt, A.; Tong, L. Modeling and stochastic control for home energy management. IEEE 

Trans. Smart Grid 2013, 4, 2244–2255. 
12. Tarasak, P.; Chai, C.C.; Kwok, Y.S.; Oh, S.W. Demand bidding program and its application in hotel energy management. IEEE 

Trans. Smart Grid 2014, 5, 821–828. 
13. Taiwan Power Company, Demand Bidding Measures. Available online: https://dbp.taipower.com.tw/TaiPowerDBP/Por-

tal/proj_data/%E9%9C%80%E9%87%8F%E7%AB%B6%E5%83%B9%E6%8E%AA%E6%96%BDDM.pdf (accessed on 20 Febru-
ary 2020). 

14. Yao, L.; Lim, W.H. Optimal purchase strategy for demand bidding. IEEE Trans. Power Syst. 2017, 33, 2754–2762. 
15. Lee, T.Y. Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind turbine generators: 

A multipass iteration particle swarm optimization approach. IEEE Trans. Energy Convers. 2007, 22, 774–782. 
16. Cheng, Y.S.; Liu, Y.H.; Hesse, H.C.; Naumann, M.; Truong, C.N.; Jossen, A. A pso-optimized fuzzy logic control-based charging 

method for individual household battery storage systems within a community. Energies 2018, 11, 469. 
17. Samuel, O.; Javaid, S.; Javaid, N.; Ahmed, S.H.; Afzal, M.K.; Ishmanov, F. An Efficient Power Scheduling in Smart Homes Using 

Jaya Based Optimization with Time-of-Use and Critical Peak Pricing Schemes. Energies 2018, 11, 3155. 
18. Chen, C.L. Non-convex economic dispatch: A direct search approach. Energy Convers. Manag. 2007, 48, 219–225. 
19. Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 

1996, 11, 83–92. 
20. Selvakumar, A.I.; Thanushkodi, K. A new particle swarm optimization solution to nonconvex economic dispatch problems. 

IEEE Trans. Power Syst. 2007, 22, 42–51. 
21. Demand Bidding Program, Southern California Edison. Available online: https://www.sce.com/sites/default/files/inline-

files/0804_Com.pdf (accessed on 9 March 2021). 



Sustainability 2021, 13, 3576 16 of 16 
 

22. Delavaripour, H.; Khazaee, A.; Ghasempoor, M.; Hooshmandi, H. Reduced peak-time energy use by the demand bidding pro-
gram in Iran. Cired-Open Access Proc. J. 2017, 2017, 1959–1962. 

23. Hosseini, S.M.; Carli, R.; Dotoli, M. Robust optimal energy management of a residential microgrid under uncertainties on de-
mand and renewable power generation. IEEE Trans. Autom. Sci. Eng. 2020, 1–20, doi:10.1109/TASE.2020.2986269. 

24. Sperstad, I.B.; Korpås, M. Energy storage scheduling in distribution systems considering wind and photovoltaic generation 
uncertainties. Energies 2019, 12, 1231. 

25. Carli, R.; Dotoli, M. Decentralized control for residential energy management of a smart users ʼ microgrid with renewable 
energy exchange. IEEE/CAA J. Autom. Sin. 2019, 6, 641–656. 

26. Scarabaggio, P.; Grammatico, S.; Carli, R.; Dotoli, M. Distributed Demand Side Management With Stochastic Wind Power Fore-
casting. IEEE Trans. Control Syst. Technol. 2021, 1–16, doi:10.1109/TCST.2021.3056751. 

27. Lu, T.C.; Huang, C.Y.; Chen, Y.Y.; Chen, C.L.; Lee, T.Y. Efficient Energy Management of a Time-of-Use Rate Industrial User for 
Smart Cities. In Proceedings of the 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, 
Taiwan, 28–30 June 2018; pp. 1–6. 

 


	1. Introduction
	2. Problem Formulation and System Modeling
	2.1. Notation
	2.2. Demand Bidding Mechanism of Taipower
	2.3. Objective Function
	2.4. Operational Constraints
	2.4.1. System Constraints
	2.4.2. Non-Dispatchable Unit Constraints
	2.4.3. Battery Constraints
	2.4.4. Constraints of the Utility Grid


	3. Evaluation of Operating Policy for the TOU Rate Industrial User
	3.1. Development of the DSM Software
	3.2. Assessment of Operational Strategy for Executing the DBP

	4. Numerical Examples
	4.1. Performance of the Proposed DSM Algorithm
	4.2. Prediction of Electricity Cost Savings for Executing the DBP
	4.3. Effects of BESS on the Operating Schedule for Load-Reduction Day
	4.4. Effects of BESS on the Operating Schedule for Non-Load-Reduction Day

	5. Conclusions
	References

