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Abstract: In order to explore the modification effect of carbonization time on nano-MgO-modified
cement soil, unconfined compressive strength tests of nano-MgO-modified cement soil with car-
bonization times of 0 h, 6 h, 1 d, 2 d and 4 d were carried out. A method for normalizing the
stress–strain curve was proposed, and the influence of nano-MgO content and carbonization time
was investigated from the three aspects of compressive strength, peak strain and energy dissipation.
The test results show the following: (1) The compressive strength of the modified cement soil can be
significantly improved by adding 1.0% nano-MgO and after 1 d carbonization. (2) Under the same
nano-MgO content, the peak strain of the modified cement soil after 2 d carbonization reaches the
maximum, which can significantly increase its ductility. However, the nano-MgO content has little
influence on the peak strain of the modified cement soil. (3) Under the same nano-MgO content, the
energy dissipation rate of the modified cement soil after 1 d carbonization reaches the maximum,
which can better resist the damage of external load.

Keywords: cement soil; nano MgO; carbonization process; compressive strength; energy dissipation

1. Introduction

Nowadays, with the rapid development of infrastructure construction, there are fewer
land resources available. In the process of building construction, soft soil foundations with
lower strength are often encountered. Cement and lime [1–4] are often used to improve
the bearing capacity of soft soil foundations to make them meet the needs of different
engineering fields, such as highways, slopes and residential construction [5,6]. However,
soft soil has many undesirable engineering properties, such as high compressibility and
high porosity and obvious thixotropy and creep properties [7], which require a large
amount of cement to solidify the soft soil foundation. Moreover, CO2 produced by cement
production accounts for 5–7% of the total amount of human-generated CO2 [8]. Therefore,
in order to reduce the dosage of cement and CO2 emissions, many scholars have found
suitable materials and methods to further improve cement soil on the basis of adding new
engineering materials as a curing agent [9–12].

Nanomaterials are widely used in the field of construction engineering due to their
characteristics of small particle size, large surface area and good stability. Commonly used
nanomaterials are nano-SiO2 [13–15], nano-clay [16–18] and nano-MgO. Among them,
nano-MgO is mainly made by sintering magnesite at 700 ◦C, while the temperature of
cement in the production process is above 1450 ◦C [19]. Therefore, using nano-MgO to
replace part of cement can also reduce energy consumption [20]. Gao et al. [21,22] explored
through tests that 6% nano-MgO content could significantly increase the compressive
strength and stability of clay, and better improve the shear strength and cohesion of
the modified cement soil. However, it had little influence on the internal friction angle.
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Moradpour et al. [23] found that the compressive strength and flexural strength of cement-
based materials was significantly improved with 1.0% nano-MgO content. In addition,
nano-MgO had expansibility, and the microstructure of nano-MgO-modified cement-based
materials was denser than the ordinary cement-based materials. Wang et al. [24] found
that under the erosion of sulfuric acid solution, the shear strength of modified cement
soil reached the maximum with 0.5% nano-MgO content. Yao et al. [25,26] investigated
through unconfined tests that the addition of nano-MgO could better improve the strength
of cement soil. Moreover, the cohesion of modified cement soil reached the maximum,
with the 1.0% nano MgO content, and the internal microstructure was more compact.
Yuan et al. [27] and Hou et al. [28] found that the addition of nano-MgO would form a large
amount of fluffy and acicular aluminate hydration products inside the cement paste, which
could effectively fill the larger pores inside the cement paste and improve the stability of
the structure.

As CO2 will lead to the corrosion of steel bars, research mainly focuses on the preven-
tion and control measures of the carbonation of concrete [29–31]. However, the corrosion of
steel bars is not considered in solidified soft soil, so CO2 can be injected into solidified soft
soil to improve its engineering performance. Moreover, CO2 could react with hydration
products to consume CO2 and reduce greenhouse gas emission. Yi et al. [32] found that
after carbonization, the unconfined compressive strength of solidified soil with 5% MgO
content was about 200% of that of ordinary cement solidified soil. However, with 10% MgO
content, the increase in strength decreased. Cai et al. [33] found that with the increase in
carbonization time, the number of cracks on the surface of MgO solidified sand gradually
increased. Vandeperre et al. [34] found that MgO generated rankinite after carbonization,
which had a larger volume expansion rate and could fill the pores of the mixture, so as
to improve the strength and toughness of the mixture. Mo et al. [35] found that under
the action of carbonization, the pore size and porosity of MgO-modified cement paste
decreased, while the apparent density and microscopic density increased.

In sum, the research on the mechanical properties of nano-MgO-modified cement
soil has been gradually carried out. However, there are few studies on the mechanical
properties of the modified cement soil by carbonization, which requires further exploration.
In this paper, on the basis of cement soil with 20% mass fraction of cement, the unconfined
compressive strength tests were carried out on the modified cement soil with different
nano-MgO contents and carbonized times. From the angle of strength and ductility, the
influence of carbonization time on the mechanical properties of the nano-MgO-modified
cement soil was investigated.

2. Test Materials and Preparation
2.1. Materials

The materials used throughout the experimental tests include subgrade soil, water,
cement and nano-MgO. The subgrade soil was collected from a coastal area in Shaoxing
city of Zhejiang province, China. The main physical and mechanical indexes are shown in
Table 1. Guyue brand P.C 42.5 composite Portland cement produced by Shaoxing Keqiao
Third Cement Co., Ltd. (Shaoxing City, China) was used as shown in Figure 1a, and the
main physical and mechanical parameters are shown in Table 2. The nano-MgO was a
50 nm spherical MgO produced by Shanghai Macklin Biochemical Technology Co., Ltd
(Shanghai City, China). The appearance was white to light yellow powder, as shown in
Figure 1b, and its physical and mechanical properties are shown in Table 3.

Table 1. The physical indexes of subgrade soil in coastal area of Shaoxing.

Density
(ρ/g·cm−3)

Void Ratio
e

Saturability
(%)

Natural Moisture
Content
w (%)

Liquid Limit
WL (%)

Plastic Limit
WP (%)

Liquidity
Index
IL (%)

Plasticity
Index
IP (%)

1.65 1.64 98 60.00 46.20 26.40 1.70 19.80
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Figure 1. Physical picture of cement and nano MgO. (a) Composite Portland cement; (b) nano-MgO.

Table 2. The physical and mechanical parameters of P.C 42.5 cement.

Fineness(%) Stability Setting Time (min) Flexural Strength (MPa) Compressive Strength (MPa)

0.08 mm 0.045 mm
Qualified

Initial Final 3 d 28 d 3 d 28 d
≤10 ≤30 ≥45 ≤600 ≥2.5 ≥5.5 ≥10.0 ≥42.5

Table 3. The physical and mechanical parameters of nano MgO.

Mean Grain
Size (nm)

Purity
(%)

Melting Point
(◦C)

Boiling Point
(◦C)

Density (20 ◦C)
(g·cm−3)

Specific Surface
Area (m2·g−1)

Refractive
Index (%)

50 99.9 2852 3600 3.580 30–50 1.736

2.2. Test Program

The samples were divided into 25 groups according to different nano-MgO contents
and carbonization times, and the mix proportion of each group of materials is shown
in Table 4. MCS represents nano-MgO-modified cement soil. Unconfined compressive
strength tests were carried out on 25 groups of MCS. In order to reduce the random error
and the discreteness of the test data in the test process, five repeated tests were performed
on each group of samples.

Table 4. The sample mix proportion and carbonation time design.

Group Cement Content (%) Moisture Content (%) Curing Time (d) Nano-MgO Content (%) Carbonization
Time

MCS 20 80 7 0, 0.5, 1.0,
1.5, 2.0

0 h, 6 h, 1 d,
2 d, 4 d

2.3. Sample Preparation

(1) Soil sample preparation. The subgrade soil was soaked in water for 7 days until it
was softened and turned into silt. Next, large particles, stones or other impurities
were removed from the subgrade soil through a sieve with a diameter of 2 mm.

(2) Determination of the moisture content. The subgrade soil was stirred evenly and
stood for 2–3 weeks. Then, a small amount of subgrade soil was taken out to measure
its moisture content.

(3) Sample mixing. Appropriate amounts of subgrade soil, cement and nano-MgO were
weighed according to the experimental mix proportion, and placed into a mixer and
stirred for 5 min.

(4) Unconfined sample preparation. The prepared mixture was poured into a cylindrical
mold with a diameter of 39.1 mm and a height of 80 mm three times. Each time
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the mixture was poured, it was vibrated. The sample was left to stand for 2 h after
completion, and the upper and lower surfaces of the samples were flattened with a
scraper, wrapped with filter paper and placed into water for curing.

(5) Sample curing. The moisture content of the sample was high, so it was difficult to
form; therefore, it needed to soak in water for 3 days before demolding. Then, it was
placed into a standard curing box or carbonization curing box to continue curing. The
curing methods and conditions are shown in Figure 2 and Table 5, and the soaking
and carbonization curing are shown in Figure 3a,b, respectively.
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Figure 2. The relationship between carbonation time and curing age.

Table 5. The maintenance conditions.

Maintenance Method Maintenance Conditions

immersion curing water temperature (20 ◦C ± 2 ◦C)
standard curing temperature (20 ◦C ± 2 ◦C); humidity (95% ± 2%)

carbonization curing temperature (20 ◦C ± 2 ◦C); humidity (95 ± 2%); CO2 concentration (20% ± 3%)
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Figure 3. Maintenance method. (a) Immersion curing; (b) carbonization curing.

2.4. Mechanical Test

TKA-WXY-1F automatic unconfined pressure gauge produced by Nanjing TKA Tech-
nology Co., Ltd. was used in the unconfined compressive strength test. The loading rate
was set to 1 mm/min during the test. According to the GB/T 50123-2019 Geotechnical Test
Standard, when the axial force reaches its peak value, the test can be stopped by performing
another 3–5% axial strain value. In this paper, the test was stopped when the axial strain of
uncarburized MCS reached 10%. The test was stopped when the axial strain of carburized
MCS reached 12%.
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3. Unconfined Data Analysis
3.1. Stress–strain Curve Analysis

The stress–strain curves of MCS with different nano-MgO contents and carbonization
times are shown in Figures 4–8. It can be seen from the figures that the stress–strain curves
of MCS are all softening curves. At the initial stage of loading, the stress of MCS increases
linearly with the increase in strain. As the strain continued to increase, the upward trend
of stress gradually slowed down, and finally, the stress reaches the peak value. At this
point, the strain corresponding to the peak stress is the peak strain of the sample. When the
peak strain occurs, the sample will be destroyed and inclined cracks will appear, and the
force on the sensor will drop sharply, so the stress attenuation rate will increase. With the
increase in strain, the sample will be compressed, and the friction force will be generated
at the inclined cracks, so the stress attenuation rate will decrease. With the continuous
increase in strain, the sample will be further compressed, and the force on the sensor will
not change.
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Figure 4. The stress–strain curve of MCS with 0% nano-MgO content. (a) Carbonization 0 d; (b) carbonization 6 h;
(c) carbonization 1 d; (d) carbonization 2 d; (e) carbonization 4 d.
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Figure 5. The stress–strain curve of MCS with 0.5% nano-MgO content. (a) Carbonization 0 d; (b) carbonization 6 h;
(c) carbonization 1 d; (d) carbonization 2 d; (e) carbonization 4 d.
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Figure 6. The stress–strain curve of MCS with 1.0% nano-MgO content. (a) Carbonization 0 d; (b) carbonization 6 h;
(c) carbonization 1 d; (d) carbonization 2 d; (e) carbonization 4 d.
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Figure 7. The stress–strain curve of MCS with 1.5% nano-MgO content. (a) Carbonization 0 d; (b) carbonization 6 h;
(c) carbonization 1 d; (d) carbonization 2 d; (e) carbonization 4 d.
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Figure 8. The stress–strain curve of MCS with 2.0% nano-MgO content. (a) Carbonization 0 d; (b) carbonization 6 h;
(c) carbonization 1 d; (d) carbonization 2 d; (e) carbonization 4 d.

3.2. Curve Normalization

During the test, five repeated tests were conducted for all the tests designed in Table 4
to reduce the test error. The results of five repeated samples are different, so obtaining a
reasonable standard value from these five results is particularly critical. In this paper, the
deviation of five peak stresses were taken as the research object, and the weight of each
peak stress was calculated. Then, the weight of each peak stress was taken as the weight of
this curve, and the five curves were further normalized to one curve. The normalization
method is as follows:
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1. Determination of the average value of peak stress? σi.

σ =
1
N ∑

i∈[1,N]

σi (1)

where σi is the peak stress of each stress–strain curve of the sample, and N is the
number of repeated tests in this group of samples. In this study, there were five
repeated tests in each group, so N = 5, and i is the serial number of the data in the
sample.

2. Determination of the deviation ∆σi of each peak stress.

∆σi = |σi − σ| (2)

3. Determination of the variance S of the peak stress.

s =
1
N ∑

i∈[1,N]

∆σ2
i (3)

4. Determination of the initial weight pi of each peak stress. In order to ensure that the
initial weight is between [0,1], the maximum value ∆σimax of peak stress deviation is
introduced to calculate the initial weight of each peak stress.

pi =
∆σi

∆σimax + S
(4)

5. Determination of the weight mapping function f (x). In the above equations, the
greater the deviation of the peak value is, the greater the weight of the peak stress
is. Therefore, it is necessary to assign the weight of peak stress, so that the larger
the deviation of the peak stress is, the smaller the weight after assignment is. The
mapping function is shown in Equation (5). As the function decreases monotonously,
the greater the ∆σi is, the smaller the weight after conversion is.

f (x) =
2
π
× arccos(x) (5)

6. Determination of the converted weight mi of each peak stress.

mi = f (pi) (6)

7. Determination of the weighting factor ni of each peak stress.

ni =
mi

∑
i∈[1,N]

mi
(7)

8. Determination of the standard value σ of peak stress.

σ = ∑
i∈[1,N]

σi × ni (8)

Five curves of MCS with 1.0% nano-MgO after 6 h carbonization were taken as
examples and weighted by the above methods. Five test curves and the weighted curves
are shown in Figure 9. It can be seen from the figure that the normalized curve has a good
correlation with the original five test curves.

Five stress–strain curves of MCS with different nano MgO contents and carbonization
times were normalized by the above method. The normalized curve is shown in Figure 10.
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Figure 9. Weighted curve of MCS with 1.0% nano-MgO content after 6 h carbonization.
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Figure 10. The Normalized stress–strain curves of MCS. (a) Carbonization 0 d; (b) carbonization 6 h; (c) carbonization 1 d;
(d) carbonization 2 d; (e) carbonization 4 d.
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4. Discussion
4.1. The Influence of Nano-MgO Content

The maximum value of the normalization curve of each group of samples is taken as
the peak stress of each group of samples. The compressive strength of MCS with different
nano-MgO contents is shown in Figure 11. It can be seen from the figure that under
the same carbonization time, the compressive strength of MCS increases first and then
decreases with the increase in nano-MgO content. When the nano-MgO content is 1.0%,
the compressive strength of MCS reaches the maximum. When the carbonization time is
0 h, 6 h, 1 d, 2 d and 4 d, the compressive strength is 440.69 Pa, 547.33 kPa, 818.25 kPa,
724.10 kPa and 489.18 kPa, respectively, which is 23.3%, 13.3%, 50.2%, 41.5% and 15.1%
higher than that of cement soil without nano-MgO.
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Figure 11. The influence of different nano-MgO contents on the compressive strength of MCS.

This is mainly because when the nano-MgO content is between 0% and 1.0%, cement
and nano-MgO generate carbonate precipitation after hydration and carbonization, and
the volume increases and gradually fills the pores inside MCS. As a result, the internal
structure of the soil is denser. However, with the increase in nano-MgO content, the
reaction generates excessive carbonate precipitation, and the volume expansion exceeds the
volume of the pores inside MCS [25,36], which gradually compresses the surrounding soil,
resulting in the failure of cementation between soil particles. Microcracks appear inside
MCS, and the compressive strength decreases.

4.2. The Influence of Carbonization Time

The influence of different carbonization times on the compressive strength of MCS is
shown in Figure 12. It can be seen from the figure that the compressive strength of MCS
with the same nano-MgO content increases first and then decreases with the increase in
carbonization time, so there is an optimal carbonization time. Under the five nano-MgO
contents, the optimal carbonization time is 1 d. At this time, the compressive strength of
MCS is 544.92 kPa, 579.36 kPa, 818.25 kPa, 497.55 kPa and 470.92 kPa, respectively, which is
52.5%, 40.5%, 85.7%, 29.5% and 38.8% higher than that of non-carbonized MCS. When the
carbonization time is 4 d, the compressive strength of MCS under five nano-MgO contents
is 425.01 kPa, 465.68 kPa, 489.18 kPa, 461.74 kPa and 397.26 kPa, respectively, which is still
18.9%, 12.9%, 11.0%, 20.2% and 17.08% higher than that of non-carbonized MCS.
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Figure 12. The influence of carbonization time on the compressive strength of MCS.

The mechanism of action is similar to the influence of nano-MgO content. When
the carbonization time is short, the carbonate precipitation formed by carbonization can
fill the internal pores. However, as the carbonization time increases, excessive carbonate
precipitation causes cracks inside MCS, leading to a decrease in the compressive strength.

5. Ductility and Energy Dissipation Analysis
5.1. Curve Simplification

According to the change trend of the normalized stress–strain curve, the stress–strain
curve of MCS can be divided into four stages, as shown in Figure 13:

(1) Elastic stage (OA section). At this stage, the pores inside the sample are compressed,
the volume is reduced, and there are no cracks on the surface (Figure 14a). The contact
between the soil particles is closer, and the structure becomes stronger. The stress
increases linearly with the increase in strain and reaches the stress corresponding to
strengthening point A.

(2) Strengthening stage (AB section). As the axial load increases, the sample undergoes
plastic deformation, and small cracks appear on the surface (Figure 14b). At this stage,
the stress growth trend of the sample slows down and gradually reaches the stress
corresponding to the peak point B.

(3) Falling stage (BC section). As the axial load continues to increase, the sample shows
uneven plastic deformation, and the cracks on the surface gradually spread expand to
the surroundings (Figure 14c). At this stage, as the strain increases, the stress begins
to decrease, and the downward trend gradually increases until it drops to the stress
at point A, at which point, the stress–strain corresponds to the drop point C.

(4) Failure stage (CD section). As the axial load continues to increase, the cracks on the
surface gradually expand to the surroundings and are interconnected to one another
to form a penetrating crack, accompanied by soil shedding (Figure 14d). The stress
decreases rapidly with the increase in strain, but the downward trend gradually slows
down and finally approaches a fixed value. At this time, the point corresponding to
the stress and strain is the failure point D.
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5.2. Ductility Analysis

The strain at point B of the normalized curve of each group of samples was taken
as the peak strain of the group. The influence of different carbonization times on the
peak strain of MCS is shown in Figure 15. It can be seen from the figure that when the
nano-MgO content is 0 and 0.5%, the peak strain of MCS increases with the increase in
carbonization time. However, when the carbonization time increases from 0 to 2 d, the
peak strain of MCS increases significantly, and the difference between the peak strain of
MCS and the non-carbonized MCS is 3.8% and 3.0%, respectively; when the carbonization
time increases from 2 d to 4 d, the peak strain increases by 0.1% and 0.6%, respectively.
Therefore, the effect of 2 d carbonization on the peak strain of MCS is more obvious, which
can significantly increase the ductility of MCS.

When the nano-MgO content is 1.0%, 1.5% and 2.0%, the peak strain of MCS first
increases and then decreases with the increase in carbonization time. When the carboniza-
tion time is 2 d, the peak strain reaches the maximum, which is 6.5%, 6.2% and 6.7%,
respectively, and the difference between the peak strain of MCS and non-carbonized MCS
is 4.6%, 4.2% and 4.4%, respectively.

When the carbonization time is 0 h, 6 h, 1 d, 2 d and 4 d, the difference between the
maximum and minimum peak strains of MCS with different nano-MgO contents is 1.2%,
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1.3%, 0.7%, 0.6% and 1.1%, respectively. It can be found that the influence of different
nano-MgO contents on the peak strain is far less significant than that of carbonization time.
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Figure 15. The influence of carbonation time on the peak strain of MCS.

Therefore, under the same nano-MgO content, 2 d carbonization has the best effect on
improving the peak strain of MCS, which can significantly increase the ductility of MCS.
Under the same carbonization time, the nano-MgO content has little effect on the peak
strain of MCS.

5.3. Energy Dissipation Analysis

During the loading process, energy dissipation leads to the process of the formation
of internal cracks. In the elastic stage, there are almost no cracks inside MCS, so the
energy storage and release are reversible. In the strengthening stage, damage and cracks
occur inside MCS, leading to energy dissipation. The greater the energy dissipation is, the
stronger the ability of MCS to resist damage is. Therefore, energy dissipation can be used
to measure the ability of MCS to resist damage.

As shown in Figure 13, the area enclosed by ABCFE is the total energy dissipation
density S of the sample; the area enclosed by ABC is the enhanced energy dissipation
density S1 of the sample; the area enclosed by ACFE is the basic energy dissipation density
S2 of the sample. The calculation formula is shown in Equation (9), and the unit is kJ/m3.

S =
∫ ε2

ε1
f (ε)dε

S2 = σ1 × (ε2 − ε1)
S1 = S− S2

(9)

σ1 is the stress at point A on the f (x) curve; ε1 and ε2 are the strains at point A and
point C on the f (x) curve, respectively. As shown in Figure 10, the normalized curve of
each group of samples can be obtained by using the above curve normalization method,
so as to better determine the specific location of points A, B, C and D. In order to better
measure the degree of energy dissipation of MCS, the ratio of S1 and S is taken as the energy
dissipation rate K of MCS to reflect the ability to resist external damage. The larger the K
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is, the stronger the ability of MCS to resist external damage is. The influence of different
carbonization times on the energy dissipation rate of MCS is shown in Figure 16.
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It can be seen from Figure 16 that the K of MCS increases first and then decreases
with the increase in carbonization time under the same content of nano-MgO. When the
carbonization time is 1 d, the K of MCS with five nano-MgO content reaches the maximum,
which is 0.17, 0.24, 0.16, 0.18 and 0.18, respectively. This is much higher than that of non-
carbonized MCS. Therefore, under five nano-MgO contents, the MCS after 1 d carbonization
can better resist external damage.

When the carbonization time is 0 h, 6 h and 1 d, the K of MCS with 0.5% nano-MgO
content is the largest, which is 0.10, 0.17 and 0.24, respectively. When the carbonization
time is 2 d, the K of MCS with 1.0% nano-MgO content reaches the maximum value, 0.10.
When the carbonization time is 4 d, the K of MCS under five nano-MgO contents is 0.02,
0.02, 0.03, 0.05 and 0.04, respectively, and the range of change is small. Therefore, when the
carbonization time is 4 d, different nano-MgO contents have no significant influence on the
K of MCS.

In summary, MCS with 0.5% nano-MgO content has the largest energy dissipation rate
after 1 d carbonization, which is much greater than the other MCS with other nano-MgO
contents and after other carbonization times. This indicates that MCS with 0.5% nano-MgO
content can better resist external damage after 1 d carbonization.

6. Conclusions and Discussion
6.1. Conclusions

Through the unconfined compressive strength tests, the influence of different nano-
MgO contents and carbonization times on MCS was explored from the three aspects of
compressive strength, peak strain and energy dissipation. The following conclusions can
be drawn:

(1) A method for normalizing the stress–strain curve was proposed, and the normalized
curve had a good correlation with the five stress–strain curves obtained through
the tests.
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(2) Under the same carbonization time, the compressive strength of MCS first increases
and then decreases with the increase in nano-MgO content. When the nano-MgO
content is 1.0%, the compressive strength of MCS reaches the maximum, which is
23.4%, 13.3%, 50.2%, 41.4% and 15.0% higher than that of cement soil without nano-
MgO. Under the same nano-MgO content, the compressive strength of MCS first
increases and then decreases with the increase in carbonization time under five nano-
MgO contents. Therefore, when the nano-MgO content is 1.0%, the compressive
strength of MCS after 1 d carbonization reaches the maximum.

(3) When the nano-MgO content is 0% and 0.5%, the peak strain of MCS increases with
the increase in carbonization time. When the carbonization time increases from 2 d to
4 d, the increase in peak strain is smaller, so the modification effect of 2 d carbonization
is optimal. When the nano-MgO content is 1.0%, 1.5% and 2.0%, the peak strain of
MCS first increases and then decreases with the increase in carbonization time. When
the carbonization time is 2 d, the peak strain reaches the maximum. Therefore, under
five nano-MgO contents, 2 d carbonization can significantly increase the peak strain
of MCS and its ductility. However, the nano-MgO content has little influence on the
peak strain of MCS.

(4) Under the same nano-MgO content, the energy dissipation rate of MCS first increases
and then decreases with the increase in carbonization time. When the carbonization
time is 1 d, the energy dissipation rate of MCS reaches the maximum under five
nano-MgO contents, which can better resist the damage of external load. However,
when the carbonization time is 4 d, the energy dissipation rate of MCS is the smallest,
and different nano-MgO contents have almost no effect on the energy dissipation rate.

6.2. Discussion

(1) In this paper, the CO2 concentration during the carbonization process is 20% ± 3%,
and the influence of CO2 concentration on MCS is not considered.

(2) During the curing process, the samples were carbonized in the later period of the
curing, and the effect of carbonization at the early and middle stages of the curing on
the test results was not explored in depth.
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