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Abstract: Expectations and challenges of modern sustainable engineering and architecture stimulate
intensive development of structural analysis and design techniques. Designing durable, light and
eco-friendly constructions starts at the conceptual stage, where new efficient design and optimization
tools need to be implemented. Innovative methods, like topology optimization, become more often
a daily practice of engineers and architects in the process of solving more and more demanding
up-to-date engineering problems efficiently. Topology optimization is a dynamically developing
research area with numerous applications to many research and engineering fields, ranging from the
mechanical industry, through civil engineering to architecture. The motivation behind the present
study is to make an attempt to broaden the area of topology optimization applications by presenting
an original approach regarding the implementation of the multi-domain and multi-material topology
optimization to the design and the strengthening/retrofitting of structures. Moreover, the implemen-
tation of the design-dependent self-weight loading into the design model is taken into account as a
significantly important issue, since it influences the final results of the topology optimization process,
especially when considering massive engineering structures. As an optimization tool, the original
efficient heuristic algorithm based on Cellular Automata concept is utilized.

Keywords: topology optimization; structure strengthening; multi-material structure; self-weight;
Cellular Automata

1. Introduction

Observed for decades, the continuous and intensive development of industry and
construction has led to both positive and negative changes in the many areas of human
life. Nowadays, the efforts of scientists, engineers, architects and planners are focused on
building innovative sustainable architecture restoring the balance between the products
of human hands and nature as nature is thought to have created the best environment
for humans. To achieve the goal, architecture, urban planning, civil engineering, material
science, computer science and mechanical engineering cooperate to make good designs
that can improve the quality of life. As a result of this cooperation, new innovative and
efficient design methods are developed, which can combine aesthetics and ecology with
reasonable engineering requirements and limitations of economy.

Among innovative design tools, topology optimization took its place as an important
approach, soon after it was introduced in [1]. This powerful and versatile approach allows
original designs to be created by an optimal distribution of material within the design
space. At the same time, over the last decades, one could observe the implementation of
various specific topology optimization methods, ranging from gradient-based approaches,
e.g., [1–4], where mathematical models are derived to calculate the sensitivities of design
variables, to non-gradient-based ones, where material is redistributed using various, in
many cases heuristic, techniques. In what follows, generation of optimal topologies
involves, among others, Evolutionary Structural Optimisation (ESO) and Bi-Directional
Evolutionary Structural Optimization (BESO), e.g., [5,6]; genetic algorithms, e.g., [7,8]; other
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biologically inspired algorithms, e.g., [9,10]; the material cloud method, e.g., [11]; spline-
based topology optimization, e.g., [12]; the level set method, e.g., [13–16]; proportional
topology optimization [17]; or moving morphable components approach, e.g., [18,19].

The most recent development is observed when coupling the Solid Isotropic Material
with Penalisation (SIMP) approach with the Non-Uniform Rational Basis Spline (NURBS)
hyper-surfaces framework. The robustness and effectiveness of the SIMP method combined
with the NURBS entities provide a pure geometrical (CAD-compatible) descriptor of the
topology of the continuum. The isogeometric topology optimization method [20–22] has
recently been used to solve problems involving requirements on structural displacements
and eigenfrequencies, as well as in multi-scale topology optimization problems. A vari-
ant of this method has also been used for the multi-material topology optimization of
continuum structures [23].

Many survey papers and books provide broad discussions on topology optimization
concepts, e.g., [24–26] or [27]. At the same time, hundreds of papers present numerous
results obtained for both simple models and complicated engineering structures. Neverthe-
less, although remarkable achievements have been already made, there is still room for
further investigations.

Topology optimization has been broadly accepted by the design community, and
literature presents various civil engineering and architectural applications like designing
bridges, e.g., [28,29]; designing high-rise buildings, e.g., [30]; and others e.g., [31]. The
discussion regards various issues including, for example, different types of constraints [32]
and the optimization of bi-material structures [33]. The strengthening of civil structures
suffering from the effects of material degradation, an extension of the standard area of
application of topology optimization, was proposed as well. This very important and
up-to-date topic of retrofitting heritage structures has been reported in the literature
and [34,35] may serve here as examples. Topology optimization allows original designs
to be obtained for civil engineering and architectural structures and can complement, for
example, tensegrity designs [36,37].

This paper proposes an original insight into the development of design and strengthen-
ing of civil structures within innovative sustainable architecture by introducing a heuristic
approach to multi-material topology optimization, which can be performed for specially
arranged structural sub-domains for which different materials are implemented. Once the
design domain has been divided into sub-regions, optimal topologies are generated under
the restriction that the redistribution of material can be performed only within sub-domains
selected for the employed materials. This approach is an alternative to the standard one,
which is the redistribution of one or a few materials within the whole design domain.

The presented concept is completed by including self-weight loading, which makes
obtained solutions more practical and realistic. Topology optimization of structures under
design-dependent load is rather rarely considered in the literature. The first consideration
of self-weight loading in optimal design can be found in [38], one of the first applications
of topology optimization to structures under self-weight loading is discussed in [39], and
some architectural applications can be also found in, e.g., [40]. The implementation of the
self-weight loading has a significant influence on the final results of topology optimization
process, which is very important, especially when dealing with the optimization of massive
engineering structures, like, for example, bridges or carrying systems of tall buildings. The
nature of the design-dependent loading is that the location, direction and magnitude of
the load depend on the actual shape of the structure. Among examples, one can point
out surface pressure caused by wind loads, e.g., [41]. Topology optimization of structures
under design-dependent loads can be a challenging task because it cannot be treated as
an extension of standard formulation of topology optimization under fixed loads and
therefore requires a modification of well-recognized approaches in order to eliminate issues
like a non-monotonous behavior of the compliance or parasitic effect [1].

The outline of the paper is as follows. In Section 2, the topology optimization problem
is formulated, and the concept of sub-domain-based optimization is described. The Cellular
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Automata topology generator is introduced in Section 3, where local update rules and the
flexible approach are discussed. In Section 4, multi-domain and multi-material topology
optimization of support and multi-layer structure under an external load and self-weight
is performed, and obtained results are presented. The discussed approach is adapted
also to strengthening and retrofitting selected structures in Section 5, where the numerical
calculations are performed both for single- and multiple-load cases. The paper ends with
concluding remarks.

2. Sub-Domain Based Multi-Material Topology Optimization

Within a design domain, the problem of structural topology optimization is to find
the distribution of material giving the minimal value of the compliance of the structure
c (Equation (1)). The design domain is discretized by finite elements. The available
material volume fraction κ is defined and treated as a constraint in the optimization process
(Equation (2)).

minimize c(d) = UTKU = ∑N
i=1 dp

i uT
i kiui (1)

subject to V = κV0 (2)

KU = F (3)

0 < dmin ≤ di ≤ 1. (4)

In Equations (1)–(4), U and F are the global displacement and force vectors, K is the
global stiffness matrix, ui and ki are the element displacement vector and stiffness matrix,
respectively, and N is the number of elements, while di is a design variable that represents
a relative density of the material assigned to each element. The constraints are imposed on
the values of design variables, and dmin is a non-zero minimum relative density introduced
to avoid singularity.

As the material representation, the SIMP (Solid Isotropic Material with Penalization)
power law approach [42] is adapted. The elastic modulus Ei of each finite element is
modeled as a function of the design variable di. In Equation (5), p (typically p = 3) penalizes
intermediate densities and drives the design of black-and-white structures. E0 and ρ0 are
the elastic modulus and density of a solid material, respectively.

Ei = dp
i E0, ρi = diρ0. (5)

When dealing with the self-weight loading, the modification and extension of the
standard SIMP method is necessary (see [43]), such that the solid material density ρ0 of
each element is defined according to Equation (6):

ρi = dp
i ρ0. (6)

It is proposed to extend the conventional concept of topology optimization by in-
troducing the idea of multi-domain and multi-material topology optimization. A typical
approach regards redistribution of one or several materials within a whole design domain,
but this paper proposes a different approach. The design domain is divided into sub-
regions for which different types of material are defined, and through this procedure, the
multi-material structure is created. Following the preliminarily findings of [44], the aim of
the present research is to find optimal topologies, under the restriction that redistribution
of material can be performed only within sub-domains selected for employed materials.
What is very important, in terms of practical applications, is that it is possible to impose
separate constraints on volume fractions of each defined material. This approach produces
different results when compared to the traditional problem, which is the redistribution
of one or few materials within the whole design domain. Allowing for implementation
of many materials during the topology optimization process may open new possibilities
for improving existing solutions. In addition, including the self-weight loading makes
the considered design problems more practical and realistic, although more complicated
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in terms of computation. The nature of this type of loading, namely, design-dependent
loading, is that the location, direction and magnitude of the loads depend on the current
shape of the structure in the current optimization step. Topology optimization of structures
under design-dependent loads is rather rarely considered in the literature. This approach
requires modifying known and widely recognized approaches due to the potential occur-
rence of such issues as a non-monotonous behavior of the compliance, parasitic effect or
unconstrained character of the optimum, which means that the volume constraint can be
inactive for optimal topology.

3. Cellular Automata Rules for Topology Optimization

The effectiveness of the topology optimization process is determined by selecting a
proper method of numerical optimization. Heuristic optimization techniques are gaining
popularity among researchers—see, e.g., [45,46]—because they are easy for numerical
implementation, do not require gradient information, and one can easily combine this
type of algorithm with any finite element structural analysis code. This practical aspect of
engineering implementation of topology optimization techniques seems to be an important
issue for contemporary design.

This paper utilizes an efficient heuristic approach based on the concept of Cellular
Automata (CA). The main idea of CA is to replace a complex problem with a sequence
of simple decision-making based on local information and local interaction between cells.
The implementation of Cellular Automata requires decomposition of the design domain
into a usually, but not always, e.g., [47], uniform lattice of cells that are equivalent to finite
elements while performing analysis and topology optimization. It is assumed that the
interaction between cells takes place only within the neighboring cells and is governed
by local rules. The rules are identical for all cells and are applied simultaneously to each
of them. Updating the state of cells can be performed based on already updated values
found for cell neighbors (the Gauss-Seidel update scheme) or based on the states of the
surrounding cells determined in the previous iteration (the Jacobi update scheme).

In this paper, a heuristic local update rule is proposed utilizing the Jacobi update
scheme (see Equation (7)), where t is the current iteration number:

d(t+1)
i = d(t)i + ∆d(t)i , (7)

∆d(t)i =
1

M + 1

[
∑M

k=1 αik + αi

]
m. (8)

In Equation (8), m denotes move limit (e.g., m = 0.2). The coefficients αi for central cell
i and αik for M neighboring cells are calculated based on the following rules [48]:

αi =


−Cα if ci ≤ c∗

Cα if ci > c∗
; αik =


−Cα if cik ≤ c∗

Cα if cik > c∗
, (9)

where ci (Equation (9)) is the value of the compliance of a central cell, and cik stands for the
compliance of neighboring ones. The quantity Cα is a user-specified parameter [48].

In this paper, a modification of these rules is proposed. To make local rules more
flexible, instead of one threshold value c*, two values c1* and c2* are introduced.

αi =


−Cα if ci ≤ c∗1

f (ci) if c∗1 ≤ ci ≤ c∗2

Cα if ci > c∗2

; αik =


−Cα if cik ≤ c∗1

f (cik) if c∗1 ≤ cik ≤ c∗2

Cα if cik > c∗2

. (10)
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At the same time, the linear function in Equation (10) is built to fulfill the conditions
f(c1*) = −Cα and f(c2*) = Cα; thus

f (c) = 2Cα
c

c∗2 − c∗1
− Cα

c∗2 + c∗1
c∗2 − c∗1

. (11)

The values of the function f(c) (Equation (11)) refer to all compliances from the interval
[c1*, c2*]. The width of the interval can be modified during the optimization process. This
gives the function f(c) more flexibility, allowing for the choice between linear functions
of different slopes, and the step (−Cα, Cα) one if c2* − c1* tends to zero. One can, for
example, start with a wide interval, decreasing it as the generation of topologies proceeds,
or the opposite: start with one threshold value c1* = c2* = c* and then increase the interval
around c*. Implementing the adaptive technique by decreasing the interval [c1*, c2*] can,
for example, speed up the process of the so-called grey elements elimination at the final
stage of topology generation.

The numerical algorithm was built in order to implement the design rule proposed
above. As for the optimization procedure, the sequential approach was adapted, meaning
that for each iteration, the structural analysis performed for the optimized element was
followed by a local updating process. Simultaneously, a global volume constraint can be
applied for a specified volume fraction. The volume constraint is implemented in each iter-
ation when local update rules are applied to all elements. In practice, the design variables
multiplier is introduced, and then its value is sought to fulfill the volume constraint. As a
result, the generated topologies preserve a specified volume fraction of a solid material
during the optimization process. In this paper, the Finite Element Analysis tool (ANSYS)
stands for the structural analysis module.

In the present study, the assumed change of the objective function value for subsequent
iterations was implemented as the stopping criterion, but in general, the criterion can also
be defined as performing a selected number of iterations.

It is worth noticing that the total volume constraint can be inactive while considering
topology optimization including self-weight loading. The proper choice of c1*, c2* and Cα

can eliminate this problem.

4. Multi-Domain and Multi-Material Topology Optimization
4.1. Example 1—Support Structure
4.1.1. Topology Optimization of Uni-Material Structure under External Load

As the first example, a plane elastic support structure bolted on two brackets presented
in Figure 1 was chosen, assuming the symmetry of the structure. The structure is discretized
with a regular lattice of tetragonal cells. The number of cells equals 8005. Firstly, the topol-
ogy optimization using one material M1 with the Young modulus equal to E1 = 2 × 1011 Pa,
the Poisson ratio ν1 = 0.3 and density ρ1 = 8000 kg/m3 was performed. The volume fraction
equal to 0.5 was implemented. The volume fraction was constant during the optimization
process, and it is checked after each iteration (applies to all the examples considered in the
paper). Due to symmetry, one half of the structure was considered.
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Figure 1. The initial structure with applied loads and supports, material M1.

For the first calculation, a concentrated force equal to P1 = 1000 N was applied. The
final topology with the resultant compliance equal to 4.866 × 10−6 Nm is presented in
Figure 2, while the compliance of the initial structure with uniformly distributed material is
equal to 8.482 × 10−6 Nm. At the same time, the maximal displacement of 0.243 × 10−7 m
is reached for the final distribution of the available material, while for the initial structure
the maximal displacement equals 0.424 × 10−7 m. It is important to note that the final
topology for this case of loading does not depend on the value of applied loading.

Figure 2. The final topology for the structure loaded with the concentrated force P1 = 1000 N, material M1.

To illustrate the effectiveness of the proposed approach, the computing time for the
examples discussed in the paper was examined. As a metric of the algorithm runtime,
a clock-time was used. Each iteration consisted of two stages: FEM analysis and design
variable update. The time of the update step had a minor influence on the resultant time
of the calculation process (it took less than 1 or 2 s, even for a large number of elements),
while the structural analysis time depended highly on the mesh resolution (the number of
elements used for the discretization of the structure). For all 2D examples considered in
the paper, the 4-node finite element was used, and for 3D examples, the 8-node element.
ANSYS Mechanical APDL was used as the analysis tool with AMD Phenom(tm) II X4 955
3.20 GHz processor and 8 GB of RAM (64-bit architecture). For the example presented in
this section (8005 elements), 30 iterations were needed to reach a convergence, which took
about 3 min (one half of the structure was investigated due to the symmetry). The iteration
history showing the convergence of the objective function is provided in Figure 3.

Figure 3. The iteration history.
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In order to broaden the discussion regarding this example, the problem has been
reformulated by replacing the volume constraint by the mass constraint. In what follows,
the mass constraint µ = 0.5 has been implemented for the same geometry, material data
and boundary conditions. As was expected for uni-material problem, the final values of
compliance and maximal displacement are the same, since the volume and mass constraints
are in this case equivalent.

The final topology, with resultant compliance and maximal displacement equal to
4.866 × 10−6 Nm and 0.243 × 10−7 m, respectively, is presented in Figure 4, whereas
Figure 5 shows iterations history. It can be noted that less than 30 iterations were needed to
reach a convergence.

Figure 4. The final topology of the considered structure under mass constraint.

Figure 5. The iterations history.

4.1.2. Topology Optimization of Multi-Material Structure under External Load

For the next example, the two materials M1 and M2 with different material data were
applied as shown in Figure 6.

Figure 6. The initial multi-material structure with applied loads and supports, materials M1 and M2.

Both materials are linear elastic and isotropic. Material 1 (M1—drawn in Figure 6 in
dark grey color) is characterized by a Young modulus equal to E1 = 2 × 1011 Pa, the Poisson
ratio ν1 = 0.3 and density ρ1 = 8000 kg/m3; the second one—material 2 (M2—drawn in
Figure 6 in light grey color) is characterized by a Young modulus equal to E2 = 2 × 1010 Pa,
the Poisson ratio ν2 = 0.3 and density ρ2 = 2000 kg/m3. The ratios of the Young modulus
and density values calculated for material M1 and material M2 are approximately the same
as the ratios of these quantities for steel and concrete (compression). The same calculations
as for the uni-material structure were performed, i.e., for a structure loaded only with a
concentrated force equal to 1000 N. The final topology gained for this case is presented
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in Figure 7. The presented results show that multi-material topology optimization has
to be treated as a separate/different approach, since it can give a new layout of material
distribution for the optimized structure.

Figure 7. The final topology for the structure loaded with the concentrated force P1 = 1000 N, materials M1 and M2.

The final compliance of the optimized structure equals 0.310 × 10−2 Nm, while
the compliance of the initial structure with uniformly distributed material is equal to
0.539 × 10−2 Nm. At the same time, the maximal displacement of 0.176 × 10−5 m is
reached for the final distribution of the available material, while the maximal displacement
of the initial structure is equal to 0.269 × 10−5 m.

For the example presented in Figure 7 (8005 elements), 33 iterations were needed to
reach a convergence, which takes about 3 min (half of the structure was investigated due
to the symmetry). The iteration history showing the convergence to the final solution is
provided in Figure 8.

Figure 8. The iteration history.

The presented example was remodeled into a three-dimensional structure by adding a
third dimension—the thickness equal to 0.25 m. A quarter of the structure was investigated
due to symmetry. All materials data as well as the boundary conditions are the same
as for the 2D example presented in Figure 6. The same calculations were performed to
illustrate the effectiveness of the algorithm. The value of the final compliance for the
optimized structure equals 0.155 Nm (0.303 Nm for the initial structure), and the final
maximal displacement equals 0.386 × 10−4 m (0.758 × 10−4 m for the initial structure).
The final topology is presented in Figure 9.

For the example presented above (20,808 elements), 37 iterations were needed to reach
a convergence, which takes about 12 min (a quarter of the structure was investigated due
to the symmetry). The iteration history showing the convergence to the final solution is
provided in Figure 10.
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Figure 9. The final topology for the 3D structure.

Figure 10. The iteration history.

As for the previous example, the considerations regarding the multi-material 2D
structure have been extended by replacing the volume constraint with the mass constraint.
In what follows, the mass constraint µ = 0.5 was implemented for the same geometry,
material data and boundary conditions. This time, since the multi-material structure
is investigated, the constraint replacement influences the final results. The compliance
of the optimized structure equals 0.276 × 10−2 Nm, while the maximal displacement
0.138 × 10−5 m. The final topology is presented in Figure 11. The iteration history showing
the convergence to the final solution is provided in Figure 12 (30 iterations were needed
to get the solution). It is worth underlining that the reformulation of the problem has no
influence on the convergence of the calculations.

Figure 11. The final topology of the considered structure under mass constraint.

If properly interpreted, the topology optimization results may be an inspiration for
architects and engineers at an early design stage. One can see that for generated topologies,
small holes or slender rods can occur. Those elements can be difficult to manufacture, and
in the case of slender rods, they can be exposed to the loss of stability. To prevent the
problems mentioned, either manufacturing constraints can be applied or those elements
need to be modified or removed in the final design steps.
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Figure 12. The iteration history.

4.1.3. Topology Optimization of Multi-Material Structure under External Load and the
Self-Weight

Next, the optimization process was performed for the same structure, but self-weight
loading was additionally included, with the gravity acceleration equal to 9.81 m/s2. The
implementation of self-weight loading has a significant influence on the final results of the
topology optimization process, which is very important, especially when dealing with the
optimization of massive engineering structures, for example, bridges or carrying systems of
tall buildings. Topology optimization of structures under design-dependent loads cannot
be treated as an extension of standard formulation of topology optimization under fixed
loads and therefore requires modifications of known and well-recognized approaches and
algorithms. The presented study shows that the proposed local rule can be effective also
for the more complicated problems like design-dependent loads. The final topology is
shown in Figure 13. The value of compliance for the final topology equals 2.531 × 10−2 Nm,
and the final displacement equals 0.336 × 10−5 m, while for the initial structure they are
4.333 × 10−2 Nm and 0.454 × 10−5 m, respectively.

Figure 13. The final topology for the structure loaded with the concentrated force P1 = 1000 N and self-weight, materials M1

and M2.

For the above example (8005 elements), 30 iterations were needed to reach a con-
vergence, which took about 3 min (one half of the structure was investigated due to the
symmetry). The iteration history showing the convergence to the final solution is provided
in Figure 14.

The calculations were repeated for the corresponding three-dimensional structure
(thickness of 0.25 m), as was done in the previous section, and the final results are pre-
sented in Figure 15. The value of final compliance for the optimized structure equals
0.204 Nm (0.399 Nm for the initial structure), and the final maximal displacement equals
0.431 × 10−4 m (0.833 × 10−4 m for the initial structure).
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Figure 14. The iteration history.

Figure 15. The final topology for the 3D structure including self-weight.

For this example (20,808 elements), 35 iterations were needed to reach a convergence,
which took less than 12 min (onequarter of the structure was investigated due to the
symmetry). The iteration history showing the convergence to the final solution is provided
in Figure 16.

Figure 16. The iteration history.

As for the previous example, the considerations regarding the multi-material 2D
structure were extended by replacing the volume constraint with the mass constraint.
In what follows, the mass constraint µ = 0.5 was implemented for the same geometry,
material data and boundary conditions. This time, since the multi-material structure
was investigated, the constraint replacement influences the final results. The compliance
of the optimized structure equals 0.276 × 10−2 Nm, while the maximal displacement
0.138 × 10−5 m. The final topology is presented in Figure 17. The iteration history showing
the convergence to the final solution is provided in Figure 18 (30 iterations were needed
to get the solution). It is worth underlining that the reformulation of the problem has no
influence on the convergence of the calculations.
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Figure 17. The final topology of the considered structure under mass constraint.

Figure 18. The iteration history.

4.2. Example 2—Multi-Layer Structure

A multi-layer structure presented in Figure 19 was chosen as the next example. This
structure can model a massive engineering structure for which the consideration of self-
weight loading is required. In addition, the application of multi-material solutions for
this type of structure can be found in architectural and structural engineering practice. In
this case, the threshold values c1* = c2* are selected and calculated based on the average
compliance of the structure.

Figure 19. The multi-layer structure with applied loads and supports, material M1 and M2.
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The multi-layer structure is built of two materials. Both materials are linear, elastic
and isotropic. Material 1 (M1 drawn in Figure 19 in dark grey color) is characterized
by the Young modulus equal to E1 = 2.1 × 105 MPa, the Poisson ratio ν1 = 0.3 and
density ρ1 = 7860 kg/m3; whereas material 2 (M2 drawn in Figure 19 in light grey color) is
characterized by the Young modulus equal to E2 = 2.7 × 104 MPa, Poisson ratio ν2 = 0.2
and density ρ2 = 2500 kg/m3. The black regions simulating girders are excluded from the
design process. The structure is loaded by the external pressure equal to 2 104 N/m acting
on each girder as is shown in Figure 19.

4.2.1. Topology Optimization of Multi-Material Multi-Layer Structure under External Load
and Self-Weight

The topology optimization of the structure under external was performed, and the
results are presented in Figure 20a. For the final topology, the values of compliance and
maximal displacement are 11.164 Nm and 0.242 × 10−4 m, while for the initial structure,
they are equal to 17.791 Nm and 0.326 × 10−4 m, respectively.

Figure 20. (a) The final topology for the structure loaded by the external pressure, material M1 and
M2. (b) The final topology for the structure loaded by the external pressure and self-weight, material
M1 and M2.

Next, the generation of optimal topology for the multi-layer structure was performed,
but this time with the self-weight loading included. The final topology is shown in
Figure 20b. The value of compliance for the final topology equals 544.38 Nm, whereas the
maximal displacement is equal to 0.191 × 10−3 m. For the initial structure, the respective
values are 1379.33 Nm and 0.268 × 10−3 m.

For this example (15,300 elements), 30 iterations were needed to reach a convergence,
which took about 4 min. Figure 21 shows the iteration history for the convergence to the
final solution without self-weight loading (topology presented in Figure 20a). Figure 22
shows the solution with self-weight loading (topology presented in Figure 20b).
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Figure 21. The iteration history for a structure loaded only by external forces.

Figure 22. The iteration history for a structure loaded by external forces and self-weight.

4.2.2. Topology Optimization of Multi-Material Multi-Layer Structure under External Load
and Self-Weight—Design of the Reinforcement

The present consideration regards the implementation of the sub-domain-oriented
topology optimization to the special case of the design domain selection. In what follows,
only one part of the multi-layer structure, selected in three different ways, is considered to
be the design domain. As previously, the external pressure and self-weight loading were
applied. The final topologies obtained for the three cases under consideration are presented
in Figure 23. One can observe that the location of the selected design domain significantly
influences not only the generated topology but also the final value of compliance. The
results of calculations are 2025.02 Nm for the structure on the left, 1756.25 Nm for the
middle one and 1501.25 Nm for the one on the right. The above-mentioned approach
allows for a sample modification of supports of existing structures with a view to obtain
the minimal compliance of the reinforcement.
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Figure 23. Final topologies for sub-domain-oriented multi-material topology optimization.

5. Topology Optimization Techniques Adapted to Strengthening and Retrofitting of
Civil Structures

In the case of cultural and architectural heritage, strengthening weakened material
and retrofitting structural damage can be a concern for historians and architects, but also for
engineers. The implementation of innovations in engineering and science seems to be an
attractive alternative to conventional, well-known ideas. Following this line of reasoning,
this paper proposes a concept for optimal designing of a restoration process, which allows
reducing the mass of strengthening elements, including one or more applied materials.

5.1. Strengthening of Structures Suffering from the Effects of Material Degradation

An attempt to build a simple but effective technique for design strengthening for
cultural heritage monuments and historical buildings suffering from the effects of material
degradation is made in this section. It is proposed to treat the restoration process as a
topology-optimization task, in which the strengthening with a low volume of material and
maximal stiffness are sought for.

As an example of strengthening civil structures suffering from the effects of material
degradation using multi-domain and multi-material oriented topology optimization, the
bridge structure presented in Figure 24 was selected. The bridge is loaded by a uniform
pressure equal to 1000 N/m.

Figure 24. The initial damaged bridge structure with applied loads and supports.
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The structure is divided into two domains. The first one, a design-passive region,
is presented in Figure 25, where grey color marks the weakened material. The design-
active domain is marked red—in this domain, the strengthening is designed by topology
optimization. For the first case, uniform material was selected for the whole structure
(Young modulus E = 27 × 109 Pa, Poisson ratio ν = 0.3 and density ρ = 2500 kg/m3), and
then the randomly weakened material was selected for the design-passive region to model
a material degradation in the damaged construction. The material’s random properties
were calculated from the interval: 0.8 × 27 × 109 Pa–27 × 109 Pa and 0.8 × 2500 kg/m3–
2500 kg/m3. These material uncertainties may serve as a simplified model of real-life
material of old structures, for which it is impossible to describe material characteristics at
every point without detailed examination.

Figure 25. The domain subject to optimization—marked red.

The calculations for uniformly distributed material were performed first, which al-
lowed for reducing the compliance value from 3.006 × 10−2 Nm for the initial structure (with-
out strengthening) to 1.871 × 10−2 Nm for a structure with strengthening (see Figure 26a).
At the same time, the maximum displacement was reduced from 0.315 × 10−5 m to
0.150 × 10−5 m. The calculations for random weakness of the material were performed
next, and as the result, the initial value of compliance of the structure, 3.334 × 10−2 Nm,
was reduced to 2.061 × 10−2 Nm (see Figure 26b). At the same time, the maximum dis-
placement was reduced from 0.348 × 10−5 m to 0.164 × 10−5 m. What is worth underlining
is that the volumes of the strengthening for both cases are the same (volume fraction κ for
both cases equals 0.25).

As it was shown preliminarily in [49], the proposed approach can be an effective tool
for designing the strengthening of damaged structures in the case of weakened material. In
the present study, the self-weight loading has been taken into account, and the illustration
of the influence of the self-weight on the final topologies is presented in Figure 27.

First, the calculations including self-weight for uniformly distributed material were
performed, which allowed the compliance value to be reduced from 162 Nm for the initial
structure to 109 Nm for a structure with strengthening (see Figure 27a). At the same time,
the maximum displacement was reduced from 0.211 × 10−3 m to 0.105 × 10−3 m. Next, the
calculations for a random weakness of the material including self-weight were performed,
and the initial value of compliance of the structure 144 Nm was reduced to 100 Nm (see
Figure 27b). At the same time, maximum displacement was reduced from 0.221 × 10−3 m
to 0.104 × 10−3 m.

For example, as presented in Figure 26a, 60 iterations (about 5 min.) were needed to
reach a convergence, while for the example presented in Figure 26b, 80 (about 7 min.). The it-
eration history showing the convergence to the final solution is provided in Figures 28 and 29.
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Figure 26. (a) The final topology of strengthening for uniformly distributed weakened material, (b) the final topology of
strengthening random distribution of the Young modulus of weakened material. The magnification of the design-active
region is applied.

Figure 27. (a) The final topology of strengthening for uniformly distributed weakened material
including self-weight; (b) the final topology of strengthening random distribution of the Young
modulus of weakened material including self-weight. The magnification of the design-active region
is applied.
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Figure 28. The iteration history for a topology presented in Figure 26a.
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Figure 29. The iteration history for a topology presented in Figure 26b.

For examples where the self-weight loading is applied, 80 (i.e., about 7 min) and
50 (i.e., about 4 min) iterations were needed to reach the convergence. The iteration
history showing the convergence to the final solution is provided in Figures 30 and 31 (for
topologies presented in Figure 27a,b, respectively).
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Figure 30. The iteration history for a topology presented in Figure 27a. 

2 

 
Figure 31. The iteration history for a topology presented Figure 27b.
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An interesting observation is that the final topology for examples for which the self-
weight was included is almost the same. The explanation can be found in the ratio of values
of external loadings and self-weight: when the self-weight is applied and the external
forces are low compared to it, the distribution of the material is governed by its own weight
more than by external loads transmitted through the weakened material to the design area.

5.2. Strengthening of Structures Suffering from the Structural Damage—The Multiple-Load Case

As an example of strengthening civil structures suffering from the effects of structural
damage, a model of a building facade is proposed (see Figure 32). The idea is to use the
given material amount to build the strengthenings, which can minimize the compliance of
the stucture. To illustrate the versatility of the method, a multiple-load case is investigated.
The loading cases are presented in Figure 33. The loading models wind loads and a snow
load. The horizontal pressure equals 600 N/m, and the vertical load is distributed, as is
shown in Figure 33c, equal to 7000 N.

Figure 32. The damaged facade structure.

Figure 33. The damaged facade structure with applied load cases and supports: (a) load case I, (b) load case II, (c) load
case III.

The applied material data are the Young modulus E = 2 × 1010 Pa, the Poisson ratio
ν = 0.3. In these cases, the material data are the same for the structure and the strengthening.
The volume fraction κ for all cases for design-active regions equals 0.2. Figure 34 presents
the final topologies for all schemes of loading treated separately and, at the end, the final
topology for a multiple-load case. The magnification of the design-active region is applied.

The final values of compliances are, for the final topology for load case I, 6.133 ×
10−4 Nm; for the final topology for load case II, 6.262 × 10−4 Nm; for the final topology
for load case III: 3.978 × 10−3 Nm. Considering the multiple-load case, the compliance
should be checked for final topology, but for every loading separately, and what follows,
the compliance values for the considered load cases are 0.692 × 10−3 Nm, 0.676 × 10−3 Nm
and 4.032 × 10−2 Nm, respectively.
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Figure 34. The final topologies for: (a) load case I, (b) load case II, (c) load case III, (d) load case IV
(multiple-load case).

For this example, the convergence of the multiple-load case presented in Figure 34d is
discussed. At every iteration, three analyses are performed, so the computational time is
larger than for the single-load case. For the presented example, 30 iterations were needed
for the solution, which took about 9 min for 14,087 elements used for discretization. The
iteration history showing the convergence to the final solution is provided in Figure 35.
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Figure 35. The iteration history for a topology presented in Figure 34d.

5.3. Strengthening of the Multi-Material 3D Structures

The strengthening of a multi-material 3D structure was selected to present the capa-
bilities of the method in application to topology optimization for real three-dimensional
engineering structures. The model of breach as a model of structural damage is presented
in Figure 36, with the final strengthening (drawn in Figure 36 in red color). The material
data for the strengthening was defined as E1 = 2 × 1011 Pa and ν1 = 0.3, while the ma-
terial data for the damaged structure (drawn in Figure 36 in grey color) was defined as
E2 = 2 × 1010 Pa and ν2 = 0.3. The volume fraction was defined as 0.4. The considered
structure was divided into bottom (1 m × 0.5 m × 0.1 m) and top (1 m × 0.5 m × 0.1 m)
blocks, determined as the non-optimized subdomains, and a middle block (1 m × 0.5 m ×
0.8 m), determined as an optimized sub-domain. The bottom plane of the structure was
fixed, while the top-right corner was loaded by three concentrated forces equal to 1000 N
each, as presented in Figure 36. The initial compliance of the structure 4.990 × 10−2 Nm
was reduced by the optimization process to the value of 2.511 × 10−2 Nm.

Figure 36. The final topology of the 3D structure strengthening.

For the 3D example, a quarter of a structure was considered with 20,230 elements. A
total of 30 iterations were needed to get the solution, which took about 8 min. The iteration
history showing the convergence to the final solution is provided in Figure 37.
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Figure 37. The iteration history.

6. Discussion and Conclusions

This paper presents the idea of sub-domain-based topology optimization of multi-
material structures under both external and self-weight loading. The design domain is
divided into sub-regions, for which materials with different properties are applied. This
approach to topology optimization allows one to obtain minimal-compliance structures
with less material compared to the initial design. As has been shown, introducing a bi-
material structure leads to different results when compared to the problem formulated
for uni-material structure. On the other hand, the distribution of material within a sub-
domain allows for this concept to be applied to architectural design, while multi-material
solutions are desirable in innovative sustainable buildings to make constructions more
environmentally friendly and modern. Furthermore, designers can be more flexible during
the design process, with the possibility of using standard building material and new al-
ternative solutions like renewable materials. The main issue, which can be a challenge in
designing massive structures using topology optimization, is the implementation of the
design-dependent loading, namely self-weight loading. In many cases, when applying opti-
mization algorithms, numerical instabilities occur. The chosen method allows manufacture-
friendly designs to be obtained easily and in a short calculation time, even when dealing
with materials of different physical properties. Additionally, the proposed method is
utilized for the sub-domain optimal design of strengthening of structures suffering from
structural damage and/or material degradation. Material uncertainties, design-dependent
loading (self-weight) and a multiple-load case are considered to illustrate the versatility
of the method and the possibility of defining more complicated problems. What is very
important is that the concept topology optimization performed by Cellular Automata is
a fast-converged technique, not suffering from the checkerboard and mesh dependency
effect. This method can be successfully used in practical civil engineering problems.

Author Contributions: Conceptualization, B.B. and K.T.-Z.; methodology, B.B. and K.T.-Z.; software,
B.B. and K.T.-Z.; validation, B.B. and K.T.-Z.; formal analysis, B.B. and K.T.-Z.; investigation, B.B.
and K.T.-Z.; resources, B.B. and K.T.-Z.; data curation, B.B. and K.T.-Z.; writing—original draft
preparation, B.B. and K.T.-Z.; writing—review and editing, B.B. and K.T.-Z.; visualization, B.B. and
K.T.-Z.; supervision, B.B. and K.T.-Z.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Faculty of Mechanical Engineering Cracow University
of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All files including APDL and FORTRAN code utilizing in this paper
and data used to support the findings of this study are available from the corresponding author
upon request.



Sustainability 2021, 13, 3435 23 of 24

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bendsoe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [CrossRef]
2. Sigmund, O. A 99 line topology optimization code written in MATLAB. Struct. Multidiscip. Optim. 2001, 21, 120–127. [CrossRef]
3. Andreassen, E.; Clausen, A.; Schvenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in Matlab using 88 lines of

code. Struct. Multidiscip. Optim. 2011, 4, 1–16. [CrossRef]
4. Liu, K.; Tovar, A. An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2014, 50, 1175–1196.

[CrossRef]
5. Xie, X.M.; Steven, G.P. Evolutionary Structural Optimisation; Springer: Berlin, Germany, 1997.
6. Querin, Q.M.; Steven, G.P.; Xie, Y.M. Evolutionary structural optimization using a bi-directional algorithm. Eng. Comput. 1998, 15,

1034–1048. [CrossRef]
7. Kane, C.; Jouve, F.; Schoenauer, M. Structural topology optimization in linear and nonlinear elasticity using genetic algorithms.

In Proceedings of the 21st ASME Design Automatic Conference, Boston, MA, USA, 17–20 September 1995; pp. 1–8.
8. Balamurugan, R.; Ramakrishnan, C.; Singh, N. Performance evaluation of a two stage adaptive genetic algorithm in structural

topology optimization. Appl. Soft Comput. 2008, 8, 1607–1624. [CrossRef]
9. Kaveh, A.; Hassani, B.; Shojaee, S.; Tavakkoli, S.M. Structural topology optimization using ant colony methodology. Eng. Struct.

2008, 30, 2559–2565. [CrossRef]
10. Kobayashi, M.H. On a biologically inspired topology optimization method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15,

787–802. [CrossRef]
11. Chang, S.Y.; Youn, S.K. Material cloud method for topology optimization. Numer. Methods Eng. 2006, 65, 1585–1607. [CrossRef]
12. Eschenauer, H.A.; Kobelev, V.V.; Schumacher, A. Bubble method for topology and shape optimization of structures. Struct. Optim.

1993, 8, 42–51. [CrossRef]
13. Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003,

192, 227–246. [CrossRef]
14. Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004,

194, 363–393. [CrossRef]
15. Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S. Matlab code for a level set-based topology optimization method using a reaction

diffusion equation. Struct. Multidiscip. Optim. 2015, 51, 1159–1172. [CrossRef]
16. Wei, P.; Li, Z.; Li, X.; Wang, M.Y. An 88-line MATLAB code for the parameterized level set method based topology optimization

using radial basis functions. Struct. Multidiscip. Optim. 2018, 58, 831–849. [CrossRef]
17. Biyikli, E.; To, A.C. Proportional topology optimization: A new non-sensitivity method for solving stress constrained and

minimum compliance problems and its implementation in Matlab. PLoS ONE 2015, 10, e0145041. [CrossRef]
18. Guo, X.; Zhang, W.S.; Zhong, W.L. Doing topology optimization explicitly and geometrically—A new moving morphable

components based framework. J. Appl. Mech. 2014, 81, 081009. [CrossRef]
19. Zhang, W.; Yuan, J.; Zhang, J.; Guo, X. A new topology optimization approach based on Moving Morphable Components (MMC)

and the ersatz material model. Struct. Multidiscip. Optim. 2016, 53, 1243–1260. [CrossRef]
20. Gao, J.; Xue, H.; Gao, L.; Luo, Z. Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput.

Methods Appl. Mech. Engrg. 2019, 352, 211–236. [CrossRef]
21. Xu, J.; Gao, L.; Xiao, M.; Xu, J.; Li, H. Isogeometric topology optimization for rational design of ultra-lightweight architected

materials. Int. J. Mech. Sci. 2020, 166, 105103. [CrossRef]
22. Gao, J.; Xiao, M.; Gao, L.; Yan, J.; Yan, W. Isogeometric topology optimization for computational design of re-entrant and chiral

auxetic composites. Comput. Methods Appl. Mech. Engrg. 2020, 362, 112876. [CrossRef]
23. Gao, J.; Luo, Z.; Xiao, M.; Gao, L.; Li, P. A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology

optimization of structures. Appl. Math. Model. 2020, 81, 818–843. [CrossRef]
24. Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [CrossRef]
25. Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct.

Multidiscip. Optim. 2014, 49, 1–38. [CrossRef]
26. Sajjad Zargham, S.; Thomas Arthur Ward, T.A.; Rahizar Ramli, R.; Irfan Anjum Badruddin, I.A. Topology optimization: A review

for structural designs under vibration problems. Struct. Multidiscip. Optim. 2016, 53, 1157–1177. [CrossRef]
27. Liu, J.; Gaynor, A.T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future

trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 2018, 57, 2457–2483. [CrossRef]
28. Wu, J.; Wu, L. Revised level set-based method for topology optimization and its applications in bridge construction. Open Civ.

Eng. J. 2017, 11, 153–166. [CrossRef]
29. Xie, Y.; Zuo, Z.; Huang, X.; Black, T.; Felicetti, P. Application of topological optimization technology to bridge design. Struct. Eng.

Int. 2014, 24, 185–191.

http://doi.org/10.1007/BF01650949
http://doi.org/10.1007/s001580050176
http://doi.org/10.1007/s00158-010-0594-7
http://doi.org/10.1007/s00158-014-1107-x
http://doi.org/10.1108/02644409810244129
http://doi.org/10.1016/j.asoc.2007.10.022
http://doi.org/10.1016/j.engstruct.2008.02.012
http://doi.org/10.1016/j.cnsns.2009.04.014
http://doi.org/10.1002/nme.1508
http://doi.org/10.1007/BF01742933
http://doi.org/10.1016/S0045-7825(02)00559-5
http://doi.org/10.1016/j.jcp.2003.09.032
http://doi.org/10.1007/s00158-014-1190-z
http://doi.org/10.1007/s00158-018-1904-8
http://doi.org/10.1371/journal.pone.0145041
http://doi.org/10.1115/1.4027609
http://doi.org/10.1007/s00158-015-1372-3
http://doi.org/10.1016/j.cma.2019.04.021
http://doi.org/10.1016/j.ijmecsci.2019.105103
http://doi.org/10.1016/j.cma.2020.112876
http://doi.org/10.1016/j.apm.2020.01.006
http://doi.org/10.1007/s00158-013-0978-6
http://doi.org/10.1007/s00158-013-0956-z
http://doi.org/10.1007/s00158-015-1370-5
http://doi.org/10.1007/s00158-018-1994-3
http://doi.org/10.2174/1874149501711010153


Sustainability 2021, 13, 3435 24 of 24

30. Beghini, L.; Beghini, A.; Katz, N.; Baker, W.; Paulino, G. Connecting architecture and engineering through structural topology
optimization. Eng. Struct. 2014, 59, 716–726. [CrossRef]

31. Kingman, J.; Tsavdaridis, K.; Toropov, V. Applications of topology optimization in structural engineering: High-rise buildings
and steel components. Jordan J. Civ. Eng. 2015, 9, 335–357.

32. Dapogny, C.; Faure, A.; Michailidis, G.; Allaire, G.; Couvelas, A.; Estevez, R. Geometric constraints for shape and topology
optimization in architectural design. Comput. Mech. 2017, 59, 933–965. [CrossRef]

33. Aage, N.; Amir, O.; Clausen, A.; Hadar, L.; Maier, D.; Sondergaard, A. Advanced topology optimization methods for conceptual
architectural design. In Advances in Architectural Geometry; Block, P., Knippers, J., Mitra, N., Wang, W., Eds.; Springer: Berlin,
Germany, 2014.

34. Syngellakis, S. (Ed.) Retrofitting of Heritage Structures. Design and Evaluation of Strengthening Technique; WIT Press: Southampton,
UK, 2016; p. 62.

35. Costa, A.; Arêde, A.; Varum, H. (Eds.) Strengthening and Retrofitting of Existing Structures; Springer: Singapore, 2018.
36. Bel Hadj Ali, N.; Rhode-Barbarigos, L.; Pascual Albi, A.A.; Smith, I.F.C. Design optimization and dynamic analysis of a

tensegrity-based footbridge. Eng. Struct. 2010, 32, 3650–3659. [CrossRef]
37. Montuori, R.; Skelton, R.E. Globally stable tensegrity compressive structures for arbitrary complexity. Compos. Struct. 2017, 179,

682–694. [CrossRef]
38. Rozvany, G.I.N. Optimal plastic design: Allowance for self-weight. J. Eng. Mech. Div. 1977, 103, 1165–1170. [CrossRef]
39. Bruyneel, M.; Duysinx, P. Note on topology optimization of continuum structures including self-weight. Struct. Multidiscip.

Optim. 2005, 29, 245–256. [CrossRef]
40. Zhang, H.; Liu, S.; Xiong, Z. Topology optimization of 3d structures with design-dependent loads. Acta Mech. Sin. 2010, 26,

767–775. [CrossRef]
41. Chen, B.C.; Kikuchi, N. Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 2001, 37, 57–70. [CrossRef]
42. Zhou, M.; Rozvany, G.I.N. The COC algorithm, Part II: Topological, geometry and generalized shape optimization. Comput.

Methods Appl. Mech. Eng. 1991, 89, 197–224. [CrossRef]
43. Felix, L.; Gomes, A.; Suleman, A. Wing topology optimization with self-weight loading. In Proceedings of the 10th World

Congress on Structural and Multidisciplinary Optimization, Orlando, FL, USA, 19–24 May 2013; Furnish, M.D., Ed.;
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