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Abstract: Residential electricity consumption is an important part of the electricity consumption of
the whole society. The systematic analysis of the influence mechanism of the external complex factors
of residential electricity consumption is significant for scientific and effective power demand side
optimization management. From the socio-economic and climate perspectives, Spearman’s correla-
tion was used to analyze external multiple disturbance indicators, and principal component analysis
(PCA) was used to reduce data dimensionality. The multi-factor residential electricity measurement
model (PCA-MCA) was established to explore the heterogeneity of influence mechanisms. Taking
Beijing as a case study, the results show that the sensitivity of residential electricity consumption of
Beijing to socio-economic indicators is greater than that of climate indicators, and the two influencing
factors are obviously heterogeneous. The impact of socio-economic factors on residential electricity
consumption appears to have continuous and stable characteristics, but climate factors are more
volatile. This paper discusses factors and disturbance mechanisms of regional residential electricity
consumption, fully considering the actual situation in Beijing. Taking the realization of regional
power demand lateral optimization management as the idea, the paper proposes some optimiza-
tion strategies to achieve regional power availability. This provides an analysis basis and practical
reference for sustainable development of regional power.

Keywords: residential electricity consumption; disturbance factors; Spearman rank correlation;
principal component regression; heterogeneity

1. Introduction

In recent years, with the continuous development of social production and living stan-
dards, the proportion of residential electricity consumption in the total energy consumption
of society has gradually increased from 10.53% in 1996 to 14.2% in 2019. Compared with
previous years, it is currently showing a trend of rapid growth, surpassing the growth rate
of electricity consumption in other parts of society during the same period. Therefore, it
is of realistic meaning to conduct in-depth research on the influence factors of residential
electricity consumption.

On the one hand, China’s actual situations have led to problems such as large volume
of electricity consumption by Chinese residents and uneven regional supply and demand.
In terms of residential electricity consumption, residential electricity consumption behavior
determines the size of residential electricity consumption. China is the most populous
country in the world, accounting for about 20% of the world’s population. The large
population is one of the main reasons for the large amount of electricity consumption [1,2].
Income guides residential consumption behavior and is one of the main influence factors
that affect residential electricity consumption [3]. It can be seen intuitively from Figure 1
that since 1996, China’s residential electricity consumption, population, and income have
all shown an increasing trend. In 2018, the electricity consumption of Chinese residents
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was about 8.55 times that of 1996, the population was about 1.14 times that of 1996,
and the income was about 8.11 times that of 1996. It can be seen that both residential
electricity consumption and income have developed rapidly, and as shown in Figure 1,
the growth rates of the two are roughly the same. From another perspective, the use
of various household appliances, such as lighting and cooling in residential homes, is
one of the main sources of electricity consumption [4]. The carbon emissions caused by
electricity production have a great impact on the greenhouse gas effects and worsen the
climate [5,6]. In the Paris Agreement, it is pointed out that developing countries such
as China and India should improve emission reduction targets according to their own
conditions and gradually achieve these. For China, the emission reduction target is even
more urgent. From 1984 to 2018, the proportion of years where China’s annual temperature
change rate was faster than that of the world was about 60%, indicating that China’s local
climate change is more serious than the global one. According to the China Blue Book
of Climate Change (2020), from 1951 to 2019, the annual average temperature of China
increased by 0.24 ◦C every 10 years. Even the rate of temperature increase was significantly
higher than the global average during the same period. Industrial development has led
to a rapid increase in the concentration of carbon dioxide, bringing the urgency of the
climate issue to a new level. The increase in extreme weather in China has increased the
dependence of residents on household appliances [7,8], which makes a huge challenge to
China’s emissions reduction targets in residential electricity consumption. Therefore, the
residential electricity consumption problem of China must be analyzed and adjusted in a
complete way to gradually adapt to the global emission reduction target.
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Figure 1. Residential electricity consumption, the per capita disposable income and the population in China from 1996 to
2018. Source: National Bureau of Statistics of China.
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On the other hand, the eastern coastal areas of China are densely populated, with
more than 400 people per square kilometer, the central area is about 200 people per square
kilometer and the western plateau areas are sparsely populated, with less than 10 people
per square kilometer. Therefore, the areas of peak residential electricity consumption in
China are concentrated, located in the east of China. Even though Shandong Province in
eastern China ranks first in power generation in the country, its electricity consumption in
the whole society far exceeds its power generation by more than 50 billion kWh, which
cannot meet its own needs. Compared with other provinces in China, the Inner Mongolia
Autonomous Region in northern China generated 147.53 billion kilowatt-hours of electricity
in 2018. Sichuan Province in western China generated 103.96 billion kilowatt-hours of
electricity in 2018. Therefore, most of the electricity consumption in the eastern and central
regions of China is transmitted through the “West-to-East Power Transmission Project”
and “North-To-South Power Transmission project” [9]. To a certain extent, it plays a role in
optimizing the allocation of power grid resources [10]. Part of the power is wasted due to
insufficient power infrastructure in China. In addition, the construction of China’s power
grid is seriously lagging behind the power source construction. Power sources are surplus,
and supply exceeds demand. At the end of 2015, the reserve capacity of China’s power
market reached 38%. However, the power grid’s ability to optimize resource allocation is
insufficient, and the power system is poorly adjustable, with less than 6% proportion of the
flexibly adjustable power sources in installed capacity. This has become an important issue
restricting the sustainable development of China’s power industry. Therefore, peak power
demand can be reduced by strengthening the power demand side management, and power
demand side management can alleviate supply shortages when power is lacking. Also, it
can be used to adjust energy consumption structure when there is surplus. The two aspects
of it can lay the foundation for achieving incremental substitution of electric energy.

A clear and accurate understanding of trends and influence factors of power demand
will not only help the supply side make a reasonable and accurate power plan that has an
effective management of demand side, but it also helps ensure the sustainable development
of China’s power industry. Therefore, based on the above, this paper deeply discusses
the factors that affect residential electricity consumption. We achieve the purpose of
improving the accuracy of the model based on the principal component regression in
Section 3. Furthermore, we analyze the heterogeneity of the socio-economic factors and the
climate factors and focus on one case to propose optimized regional power demand side
management in Section 5. Through the discussion in this article, the power sector can have
a better understanding of the factors that affect residential electricity consumption, so as to
better arrange power planning and optimize the allocation of power resources.

2. Literature Review

In recent years, the research results of residential electricity consumption are very
rich. These mainly focus on the analysis of single influence factors and the optimization of
residential electricity measurement models.

(1) Factor-analysis of single dimension. Related research focuses on the impact of a sin-
gle factor on residential electricity consumption or residential load. At the socio-economic
level, Fintan McLoughlin et al. discussed the four socio-economic factors based on multiple
linear regression models, and the results showed that the income effect makes high-income
people have greater power demand [11]. Zhou and Teng found that the scale of housing
and the holding of household appliances are also important determinants of residential
electricity demand [12]. Many scholars have used the method of autoregressive distribu-
tion to study electricity demand and found that electricity demand is mainly determined
by income and economic development level and has a weak relationship with electricity
prices [13–15]. Shibano and Mogi proposed a household income electricity consumption
model to estimate the electricity consumption of residents in a specific area [16]. Aydin
and Brounen analyzed the impact of residential energy-saving policies on the electricity
consumption of European residents from 1980 to 2016 and found that the energy label
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requirements of electrical appliances and stricter building regulations have led to a decline
in residential electricity consumption [17]. HaHyun et al. used population polynomials to
illustrate the impact of population age distribution on the electricity consumption of Korean
residents and found that the population of 20–44 years old and over 60 increased residential
electricity consumption [18]. At the level of climate factors, Alberini et al. decomposed the
factors that affect residents’ daily electricity consumption into four parts, starting from the
selection of time period and temperature range, and focused on the mechanism of climate
impact on Italian residential electricity consumption [19]. Allen et al. found that in the next
40 years, the increase in electricity demand caused by rising temperatures will have the
greatest impact on less populated areas [20]. Auffhammer et al. combined 20 downscaling
global climate models with temperature response functions to predict the impact of climate
change on total daily consumption and daily peak loads [21]. Shourav et al. found that
temperature and precipitation have an impact on daily electricity consumption [22]. Franco
and Sanstad used many climate scenarios to predict the concentration of carbon dioxide
in California, and simulated the maximum temperature per hour, fitting the function re-
lationship between hourly power demand and hourly maximum temperature [23]. Song
et al. normalized the specific daily power demand into the relationship between the basic
power demand and temperature, and calculated the temperature sensitivity every 3 h,
reducing the prediction error of the special daily load [24]. Mukhopadhyay and Nateghi
used the Bayesian additive regression tree method to capture the complex structure of the
data and concluded that the average dew point temperature is more suitable for predicting
climate-sensitive loads than the most commonly used average daily temperature, and wind
speed and precipitation are key predictors for the climate-sensitive parts indicator [25].
Fumo and Biswas used multiple regression analysis methods to analyze the impact of
outdoor temperature and solar radiation on residential electricity consumption [26].

(2) Residential electricity consumption measurement model. In recent years, with the
development of technology, the power system has higher requirements for the stability
of residential load, and accurate measurement of residential electricity is a key factor.
Wang et al. proposed a set of prediction methods that combine the lasso algorithm with
Gaussian process regression, which not only reduces the dimensionality of input data,
but also improves the accuracy of model prediction [27]. Yang et al. used the panel
data analysis method combined with the controlled variable method to quantitatively
analyze the residential electricity consumption, so that the model results are true and
reliable [28]. Blazquez et al. used the dynamic logarithmic demand function of the
two-step system Gaussian Mixed Model (GMM) estimator to analyze the panel data
of Spanish residential electricity consumption and innovated the use of panel data [29].
Based on the co-integration measurement method, Shahzad et al. proposed to use the
rebound effect to measure the factors affecting the residents’ load and separated the
short-term model from the long-term model to eliminate the deviation caused by the
time period [30]. Based on optimal subset regression and the Mann-Kendall (M-K) test,
Zheng et al. comprehensively demonstrated the changing trend of electricity consumption
of Guangzhou residents under various conditions under different socio-economic paths
and carbon dioxide concentrations [31]. Liu et al. proposed a hybrid model for ultra-short-
term forecasting of residential electricity consumption based on exponential smoothing
and extreme learning machines, which usually has low errors [32]. Hussain and Maha used
the Driving forces-Pressures-State-Impacts-Responses (DPSIR) model to fully consider
the driving factors for the growth of residential electricity consumption and improve the
accuracy of the model [33]. Elkamel et al. applied a multiple regression model and three
convolutional neural networks to predict the electricity consumption of Florida residents,
and the results showed that the multi-channel neural network that took all time series
variables into account had the highest accuracy [34]. Khan et al. integrated a convolutional
neural network and a multi-layer bidirectional gated recurrent unit into a deep learning
hybrid model, and the error rate of the dataset of this model was greatly reduced [35].
Ngabesong and McLauchlan used the R language to realize the accurate prediction of the
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electricity demand in Texas. The time series model was processed and implemented in
the R planning environment, and it can be used for random analysis and future electricity
demand forecasting [36]. Saravanan et al. proposed two forms of genetic algorithms
to estimate power demand, select the best-fitting genetic algorithm model based on the
average error percentage, and make more accurate predictions of power demand under
different scenarios [37]. Ningpramuda et al. used dynamic simulation methods to discuss
the dynamic behavior of current and future power demand based on three scenarios and
provided a flexible solution for future power demand forecasting [38]. Sowinski proposed a
power demand forecasting method based on the idea of the end-use model, taking regional
power consumption and population growth forecasts as input, and outputting the forecast
results of mid-term power demand levels [39]. Using limited historical data, Kartikasari
et al. used the dual moving average model, the Holt exponential smoothing model, and the
Grey model (GM) (1,1) model to predict the electricity demand in Indonesia. The results
showed that the gray GM (1,1) model has the smallest error. The fitting effect is the best [40].
Serge et al. created a new GM (1,1)-VAR (1) hybrid model based on Vector Auto regression
(VAR) and Grey models to predict residential electricity consumption in Cameroon, with a
root mean square error of 1.628% [41].

From the review of documents, it can be seen that for the current electricity market
in China, the research on residential electricity consumption is mainly concentrated on
the socio-economic level. Although the climate factors with increasing influence are
involved, there is less discussion on factors outside the residents. Under the current
situation, there are two major issues that need to be considered: (1) How to take all
necessary influence factors into consideration to obtain accurate residential electricity
consumption, and (2) whether there is heterogeneity among the influence mechanisms
of various factors, and if there is heterogeneity, how to measure residential electricity
consumption, respectively. Only by scientifically resolving the questions can we have a
deeper understanding of the influence factors of electricity consumption, which makes
us more targeted on power demand side management. This will help to achieve the
sustainable development of China’s power industry. Therefore, this paper analyzed the
mechanism of multiple indicators affecting electricity consumption outside the resident
and performed data dimensionality reduction processing on the basis of ensuring data
integrity. Through the above, we constructed a high-precision and multi-factor residential
electricity measurement model to predict accurately. The factors mentioned above can
guide the optimization of power demand side management.

3. Methodology

In this paper, a multi-factor residential electricity consumption model was constructed
from two perspectives to extract indicators that measure the socio-economic factors and
the climate factors. By analyzing the Spearman correlation degree of the indicators, we
eliminated the indicators that were not highly relevant. Principal component analysis
(PCA) was used to reduce the dimensions of the data, extract the top four principal
components of the variance contribution rate, and establish the multi-factor residential
electricity consumption function. With it, this paper discussed the heterogeneity of two
factors on the mechanism of residential electricity consumption. Finally, combined with the
actual situation on the demand side and the supply side in Beijing, some optimal strategies
were put forward to help optimize the allocation of resources in Beijing. The methodology
of this research is shown in Figure 2 and the main research methods are systematically
introduced below.

3.1. Method

This research aimed to examine the quantitative relationship between the residential
electricity consumption of Beijing and the multi-dimensional influence factors. Because
there is multi-collinearity in the indicators of the socio-economic and climate perspectives,
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and the data is in high dimensions, the principal component analysis is used to solve the
multi-collinearity problem and reduce the dimension of the data [42].
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3.1.1. Principal Component Analysis

In order not to be affected by the dimension of the original data, all data should be
standardized as follows: zy, zx1, zx2, zx2, zx3, zx4, zx5, zx6. The Kaiser-Meyer-Olkin (KMO)
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test is conducted on the data to observe whether it conforms to the conditions for principal
component analysis:

KMO =
∑ ∑i 6=j rij

2

∑ ∑i 6=j rij
2 + ∑ ∑i 6=j rij·1,2···k2 (1)

The value of the KMO test changes from 0 to 1, and the larger the number of KMO
sampling appropriateness, the more suitable for principal component analysis. When the
KMO value is 0.5, it is not suitable for subsequent principal component analysis; when the
KMO value is 0.7, it is suitable for principal component analysis.

Observe the data after standardization in the previous section and perform this
step if it is suitable for principal component analysis. Principal component extraction is
performed on standardized data, and principal components whose variance contribution
rate was greater than 85% were extracted. The component matrices of these principal
components were named matrix A and their eigenvalue moment B, then the matrix C used
for subsequent calculations was equal to AB. Matrix C is a linear combination of all initial
independent variables, as shown in Equation (2):

B =



a11 a12
... a1m

a21 a22
... a2m

a31
a41
...

an1

a32
a42
...

an2

... a3m

... a4m
...

...
... anm


×



λ1
λ2
λ3
λ4
...

λn


= C =



→
C1

→
C2

→
C3
→
C4
...
→
Cn


(2)

3.1.2. Multiple Regression Analysis: PCA-MCA

The matrix C and the standardized dependent variables were analyzed by least
squares regression [43]. After the reduction of Equations (3) and (4), the final PCA-MCA
multi-factor residential electricity metering Function (5) is obtained.

zxi =
xi − xi√

Dxi
(3)

zy =
y− y√

Dy
(4)

ŷ = a1x1 + a2x2 + a3x3 + a4x4 + · · ·+ anxn + b (5)

3.2. Data Sources

The global annual average surface temperature comes from the website of the National
Oceanic and Atmospheric Administration on climate change (https://www.climate.gov/
accessed on 15 February 2021). The annual average temperature in China is from the “China
Climate Bulletin” (1984–2018) and obtained from the China Meteorological Administration
(http://www.cma.gov.cn/ accessed on 15 February 2021). China’s population, per capita
disposable income of urban residents, and household electricity consumption are derived
from the “China Statistical Yearbook” (2000–2018), obtained from the National Bureau of
Statistics (http://www.stats.gov.cn/ accessed on 15 February 2021).

This paper is based on a case study in Beijing, and the residential electricity con-
sumption of Beijing, annual maximum temperature, annual average temperature, per-
manent population, regional GDP, per capita disposable income, per capita regional
product, resident consumption level, and social labor rates are all from the “Beijing Sta-
tistical Yearbook” (1999–2018), obtained from the Beijing Municipal Bureau of Statistics
(http://tjj.beijing.gov.cn/ accessed on 15 February 2021). Weather-related data, such as aver-

https://www.climate.gov/
http://www.cma.gov.cn/
http://www.stats.gov.cn/
http://tjj.beijing.gov.cn/
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age high-temperature days, high-temperature days, average relative humidity, precipitation,
wind speed, and sultry index, all come from the Beijing Meteorological Station 54511, ob-
tained from the National Greenhouse Data (http://data.sheshiyuanyi.com/WeatherData/
accessed on 15 February 2021). The average high-temperature days are the days when the
daily average temperature is greater than 20 degrees Celsius, and the high-temperature
days are the days when the daily maximum temperature is greater than 35 degrees Cel-
sius. The sultry index is calculated from the daily average temperature and average
relative humidity.

4. The Multi-Dimensional Residential Electricity Consumption Model: A Case study
Based on Beijing
4.1. Introduction of Residential Electricity Consumption in Beijing

Based on the future smart energy model, regional power demand side management
is carried out with smart cities as the unit, so it is feasible to select cities for case studies
in this paper [44]. As a representative of China’s megacities, the living standards of
Beijing are higher than the average of China. It is a pioneer in the implementation of
smart cities in the future, and its residential electricity consumption is large and unstable.
How to achieve targeted power demand side management is very important for the
sustainable development of regional power. As shown in Figure 3, the residential electricity
consumption of Beijing rose from 30.78 million kWh in 1984 to 25,635.64 million kWh in
2018, an increase of approximately 35 times. In the situation of the continuous growth
of electricity consumption, it is of great significance to conduct a deep research on the
influence mechanism of electricity consumption in Beijing.
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Figure 3. Residential electricity consumption and growth rate in Beijing, China, from 1984 to 2018. Source: Beijing Municipal
Bureau of Statistics.
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On the demand side, the potential growth of residential electricity consumption in
Beijing is huge, which brings great challenges to the supply side to accurately measure the
electricity consumption. Residential electricity consumption behavior is affected by many
factors, including socio-economic factors and climate factors [11–18]. With the improve-
ment of people’s living standards, the people’s disposable income level has undergone
tremendous changes. In 2019, the per capita disposable income of Beijing increased five
times compared with 2000. The increase in disposable income has advanced the people’s
level of demand. Use for electricity is no longer limited to the level of necessities. Secondly,
climate change has intensified and disrupted Beijing’s climate self-regulation system. Ac-
cording to the research, by 2070, the North China Plain is very likely to become the center
of heat waves [45]. Figure 4 reflects the increasing trend of annual average temperature
and annual maximum temperature in Beijing over the past 30 years. After entering the
21st century, both rose to fluctuate within another range. As the temperature rises and
the frequency of heat waves accelerates, the use time and frequency of cooling appliances
continue to rise, which will lead to a rapid increase in residential electricity consumption.
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Figure 4. The broken line chart of annual mean temperature of Beijing, China, from 1984 to 2018. Source: Beijing Municipal
Bureau of Statistics.

For the supply side, the residential electricity load in Beijing is developing in a higher
volume and is more diversified, which puts forward higher requirements for effective
regional power demand side management. In recent years, the rapid development of
Beijing’s economy and society has diversified the residential electricity load. The rapid
growth of the load, the advancement of the peak time, and the delay of the valley time are
not compatible with the current grid power structure of Beijing. The resource optimization
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poses a problem of how to effectively implement regional power demand side manage-
ment and optimize the allocation of existing power grid resources under complicated
situations, such as to large electricity volume, diversified loads, and unstable influencing
factors [46,47]. Secondly, the regional power supply in Beijing is greatly affected by season-
ality and economy [48]. It is difficult for the supply side to effectively evaluate the factors
that guide residential consumption behavior. Under the situation of the diversification
of loads in Beijing and the limitations of forecasting residential electricity consumption,
the supply side is facing great challenges in optimizing resource allocation. Therefore,
combined with the reality of demand and supply side, this paper selects Beijing as a case
study in order to have a deeper understanding of China’s power market.

4.2. Multi-Factor Extraction Based on Spearman Correlation Analysis

This research discussed the influence factors of residential electricity consumption at
the external level. Residential electricity consumption is closely related to socio-economic
factors. The economy and society have been developing rapidly. Gross domestic product
(GDP), permanent population, social labor productivity, and other representative indi-
cators are rising, which reflects the improvement of living standards and consumption
levels. Among socio-economic factors, having a greater impact on residential electricity
consumption indicators are gross domestic product, urbanization rate, permanent pop-
ulation, per capita disposable income, residential consumption level, and social labor
productivity [11–18]. Based on the existing research achievements, gross domestic product,
per capita gross domestic product (PGDP), permanent population, per capita disposable in-
come, residential consumption level, and social labor productivity are selected as indicators
to measure the socio-economic factor.

On the other external level, climate factors are closely related to residential electricity
consumption [48]. Among the natural factors, temperature, precipitation, and humidity
have a great effect on residential electricity consumption. The number of days in a year
when the average daily temperature is above 20 degrees Celsius (average high-temperature
days) and the number of days in a year when the highest temperature in China is above
35 degrees Celsius (high-temperature days) are selected as indicators to measure tem-
perature changes. In addition, average relative humidity, wind speed, and precipitation
are all affected by climate change and have a strong correlation with power load [49,50].
The sultry index contains two climatic indexes, showing the daily average temperature
and the daily average relative humidity. The organic combination of the two can better
reflect the real situation of the body sensation temperature on that day, so as to accurately
understand the driving factors of residential behaviors for electricity consumption. Based
on the analysis, six indexes including average high-temperature days, high-temperature
days, average relative humidity, precipitation, wind speed, and sultry index are selected.
Therefore, twelve indicators are selected for correlation analysis, whose results are shown
in Figure 5.

In order to deeply understand the influence of various factors on the residential
electricity consumption in Beijing and simplify the data, this paper adopts the Spearman
rank correlation method to analyze the correlation degree between various indicators and
the residential electricity consumption. The formula is shown as Equation (6). The results
of the correlation analysis are shown in Table 1.

∑N
i=1
(
Xi − X

)(
Yi −Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi −Y

)2
(6)

Through, in the socio-economic dimension, between the GDP and the PGDP, there
is a high correlation between GDP and residential electricity consumption, so the GDP
is selected. Among the remaining four indicators, permanent population and per capita
disposable income have the highest correlation. For climate factors, the correlation of
average high-temperature days, average relative humidity, and sultry index on residential
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electricity consumption is relatively high. Therefore, the final six indicators and the scatter
diagram of residential electricity consumption in Beijing are shown in Figure 6.
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Table 1. Spearman rank correlation.

Factors Indicators Correlation

Socio-economic
factors

Permanent population 0.995
Gross domestic product 0.999

Per capita disposable income 0.999
Per capita gross domestic product 0.996

Residential consumption level 0.990
Social labor productivity 0.994

Climate factors

Average high-temperature days 0.721
High-temperature days 0.563

Average relative humidity −0.419
Precipitation −0.184
Wind speed −0.390
Sultry index 0.653

4.3. Principal Component Analysis under Multiple Indicators: Data Dimensionality
Reduction Processing

The names of the variables corresponding to the multi-dimensional indicators are
shown in Table 2.

4.3.1. Raw Data Preprocessing: Standardization and KMO Test

The value of the KMO test is 0.731, as shown in Table 3. It indicates that there is strong
collinearity among all variables, which conforms to the condition of principal component
analysis. The purpose of the Bartlett test is to determine whether the data is a population
with multivariate normal distribution. If the F value of the difference test is significant,
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it implies that the data subjects to a normal distribution, and further analysis can be
conducted. In Table 3, the significance value is equal to 0, which indicates that the data
conforms to a normal distribution.
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Figure 6. Scatter plots of selected indicators and residential electricity consumption. Source: National Greenhouse Data.

Table 2. The actual indicator corresponding to the variable.

Y (Million
Kilowatt-Hour) x1 (Day) x2 (%) x3

x4 (Ten Thousand
People)

x5 (100-Million
Yuan) x6 (Yuan)

Residential electricity
consumption

Average high-
temperature

days

Average
relative

humidity
Sultry index Permanent

population
Gross domestic

product

Per capita
disposable

income

Table 3. The Kaiser-Meyer-Olkin (KMO) test and the Bartlett’s test.

The Kaiser-Meyer-Olkin Test and the Bartlett’s Test

The number of KMO sampling appropriateness 0.731

The Bartlett’s test
Approximate Chi-Square (K2) 324.783

Degrees of freedom 15
Significance 0

4.3.2. Data Dimension Reduction: Principal Component Extraction

The principal component analysis is used to extract the principal components from
the standardized data, whose results are shown in Table 4.
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Table 4. The principal component extraction results.

Component
Initial Eigenvalues Extract the Sum of Squares of Loads

Gross Variance Proportion Accumulation% Gross Variance Proportion Accumulation%

1 4.098 68.299 68.299 4.098 68.299 68.299
2 0.803 13.378 81.677 0.803 13.378 81.677
3 0.624 10.399 92.076 0.624 10.399 92.076
4 0.426 7.099 99.175 0.426 7.099 99.175
5 0.049 0.814 99.988
6 0.001 0.012 100.000

From the Table 4, as long as the fourth principal component is calculated, and the
cumulative variance contribution rate reaches 99.18%, greater than 85%, therefore, the
selection of the top four principal components for subsequent calculation can ensure the
integrity of the data when reducing the dimensionality.

The component matrix is shown in Table 5. The matrix that corresponds to the top
four principal components is calculated in the subsequent calculation.

Table 5. Component matrix.

Component Matrix

1 2 3 4 5 6

Average high-temperature days 0.766 0.029 0.388 −0.512 −0.002 0.000
Average relative humidity −0.568 0.708 0.397 0.138 0.003 0.000

Sultry index 0.690 −0.383 0.501 0.356 −0.010 0.001
Permanent population 0.951 0.197 −0.124 0.083 0.184 0.000

Gross domestic product 0.947 0.246 −0.174 0.072 −0.088 0.018
Per capita disposable income 0.954 0.235 −0.141 0.082 −0.085 −0.019

Through Table 4, the eigenvalues are 4.098, 0.803, 0.624, and 0.426, respectively. Multi-
ply the extracted component matrix with the eigenvalue matrix, which obtains F1, F2, F3,
and F4:

F1 = 0.378zx1 − 0.281zx2 + 0.341zx3 + 0.470zx4 + 0.468zx5 + 0.471zx6 (7)

F2 = 0.032zx1 + 0.790zx2 − 0.427zx3 + 0.220zx4 + 0.274zx5 + 0.262zx6 (8)

F3 = 0.491zx1 + 0.503zx2 + 0.634zx3 − 0.157zx4 − 0.220zx5 − 0.179zx6 (9)

F4 = −0.784zx1 + 0.211zx2 + 0.545zx3 + 0.127zx4 + 0.110zx5 + 0.126zx6 (10)

4.4. PCA-MCA—Beijing

After the data are processed by principal component analysis, now, it is suitable for
multivariate regression analysis to discuss the linear or nonlinear relationship between
multiple variables, then establish the multi-dimensional residential electricity consumption
function. The multiple linear regression model established by zy and F1, F2, F3, and F4 is
shown in Table 6. The multiple coefficient of determination (R square) is 0.985, indicating
a good fitting degree of the regression equation. When the significance is equal to 0.05,
the corresponding statistic F is not in the rejection region, indicating that the regression
equation is significant.

Table 6. Multivariate linear regression model.

Model R R Square F Variation Degree of freedom
(DOF) 1 DOF 2 Significance

1 0.993 0.985 536.706 3 31 0
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The coefficient matrix of the multiple linear regression model established above is
shown in Table 7, and the four independent variables are all remarkable.

Table 7. The coefficient matrix of a multiple linear regression model.

Unstandardized
Coefficients

Standardized
Coefficients T Significance

B Stderr
(Sample Standard Error) Beta

Constant 0.022 0.000 1.000
F1 0.477 0.011 0.965 43.645 0
F2 0.206 0.025 0.185 8.347 0
F3 −0.155 0.028 −0.123 −5.557 0
F4 0.102 0.034 0.066 3.003 0.005

The function of calculating variables in SPSS is used to get the relationship between the
standardized variable, the dependent variable, and the independent variables, as shown in
Equation (11):

zy = 0.031zx1 − 0.027zx2 + 0.032zx3 + 0.307zx4 + 0.325zx5 + 0.319zx6 (11)

The regression equation is reduced by using Equations (3) and (4), and the final
expression is shown in Equation (12):

ŷ = 1678.34x1 − 6276.15x2 + 28, 728.99x3 + 522.08x4 + 25.35x5 + 12.57x6 − 1, 863, 764.78 (12)

4.5. Results Analysis
4.5.1. Analysis of Factors Affecting Multiple External Disturbances in Residential
Electricity Consumption

Without dimensional influence, the sensitivity of indicators in the socio-economic
factors and the climate factors is shown in Figure 7.
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In general, Beijing residential electricity consumption is much more sensitive to the
socio-economic factors than the climate factors. When the indicators of both dimensions
change per unit at the same time, the indicators of the socio-economic dimension change
in residential electricity consumption ten times that of the dimension of climate indica-
tors. This is consistent with the results of Spearman’s correlation analysis in Section 4.2.
The correlation between socioeconomic factors and residential electricity consumption is
generally greater than that of climate factors. Comparing the true data of Beijing with the
multi-dimensional measurement model data of residential electricity consumption, the
comparison results are shown in Figure 8. The yellow part of the figure shows the error
between the true value and the model value.
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Figure 8. Comparison between the true and model values of residential electricity consumption in Beijing, China, from 2000
to 2018.

Around 1980, a large-scale warm winter began to appear in China, and the increase
of meteorological indexes in this interval was abnormal, which was relatively obvious in
North China [51]. Therefore, the influence of abnormal indexes on the fitting degree of the
model was relatively large. Except for this period, the average error rate of other years
does not exceed 6.6%. Without special circumstances, the fitting degree of the model is
quite considerable. Based on the deviation between residential electricity consumption
and the true value caused by special circumstances in the current year, such as epidemic
of infectious diseases, abnormal climate, demonstrations, etc., this model does not take
those into account. Due to the circumstances above, the error of the model still needs to
be further studied and improved. The paper uses principal component analysis to reduce
its dimensionality due to multiple data dimensions and complex cardinality to facilitate
subsequent calculation and analysis, but the data integrity is very high at 99.18%. This
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shows that the model reduces the data dimension and simplifies the calculation while
ensuring the integrity of the original data. The model can be used for reference.

4.5.2. Analysis of the Influence Mechanism of Socio-Economic Factors

The socio-economic factors are highly sensitive to the residential electricity consump-
tion. When the socio-economic indicators change, the residential electricity consumption
of Beijing can react quickly to the increase of the indicators. Among three socio-economic
indexes studied in this case, gross domestic product has the greatest effect on the residential
electricity consumption in Beijing, whose value is 0.325. This index objectively reflects
the production development level of Beijing. Moreover, when the gross domestic product
of Beijing will increase by 100 million yuan, the electricity consumption will increase by
253,500 kilowatt-hours. The per capita disposable income with a sensitivity of 0.319 di-
rectly reflects living standards of people, thus guiding electricity consumption behavior of
people. In addition, when the per capita disposable income in Beijing increases by 1 yuan,
the residential electricity consumption in Beijing will grow by 125,700 kilowatt-hours. In
this dimension, the permanent population with the lowest sensitivity has an agglomerate
effect on residential electricity consumption of the whole city. The residential electricity
consumption of Beijing increases by 5.2208 million kilowatt-hours while the permanent
population of Beijing rises by 10,000. In general, the regional GDP and per capita disposable
income have the same mechanism of action on residential electricity consumption, while
the agglomeration effect of the permanent population leads to an increase or decrease in
residential electricity consumption.

In terms of the correlation degree, the internal indicators of the socio-economic dimen-
sion are highly related, which indicates that the degree of collinearity is high. In Beijing,
the change of GDP, per capita disposable income, and resident population are shown in
Figure 9. It is easy to find that the three indexes have a tendency to grow slowly or even
enter into the bottleneck period, which implies that the uncertainty of the socio-economic
dimension is declining in the future and gradually, the impact of it becomes stable. In
addition, the collinearity is high in the socio-economic dimension. It indicates that the
socio-economic indicators will be more predictable.
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Figure 9. Changes in socio-economic dimension indicators. Source: Beijing Municipal Bureau of Statistics.
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4.5.3. Analysis of the Influence Mechanism of Climate Factors

In the case of the dimension of the climate factors, there is no obvious difference in the
mechanism of the three indexes, and all show that rising temperature leads to the increase
of sensible temperature and average relative humidity, and then guide the behavior on
the demand side. Among the three indexes in the natural dimension, the residential
electricity consumption of Beijing is the most sensitive to the sultry index, which can more
directly determine whether to use cooling appliances on the demand side. Moreover, the
residential electricity consumption of Beijing increases by 287,289,900 kilowatt-hours, while
the sultry index rises per unit. The average high-temperature days with a sensitivity of
0.031 directly reflect the days in a year when the average daily temperature exceeds 20 ◦C.
As shown in Figure 10, when the average daily temperature in Beijing exceeds 20 ◦C, the
electricity consumption will reach the turning point and start to rise up. Moreover, when the
average-temperature days increase by per unit day, the residential electricity consumption
of Beijing will increase by 16,783,400 kilowatt-hours. It can be seen in Equation (11)
that the average relative humidity is inverse to the residential electricity consumption
in Beijing, which signifies that when the average relative humidity rises, the residential
electricity consumption decreases. Climate change is a very complex process. In Beijing,
climate change leads to an increase in evaporation and then a decrease in average relative
humidity. When the average relative humidity [52] decreases by 1%, residential electricity
consumption increases by 62,761,500 kilowatt-hours.
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Figure 10. The relationship between daily average temperature and daily electricity consumption in Beijing, China.

In terms of the correlation degree, among climate indicators, the degree of collinearity
of each index is small, which implies that the difference of each index is obvious. Therefore,
it is impossible to simplify multiple indicators into the same indicator for forecasting, which
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makes the forecasting work more difficult. In addition, with the aggravation of climate
change and frequent occurrence of extreme weather, the uncertainty of each indicator
increases, which means that the impact in the climate dimension on residential electricity
consumption is abrupt. Therefore, it is particularly important to conduct individual
research on each indicator and accurately predict the impact of climate factors on residential
electricity consumption.

5. Conclusions and Optimal Strategies Based on the Case Study
5.1. Conclusions

(1) The PCA-MCA multi-factor measurement model has high data integrity and low
error rate.

The multi-dimensional residential electricity consumption model was constructed
through the principal component analysis to data dimension reduction process, which
simplified the calculation and guaranteed the data integrity of 99.18% at the same time.
Using the actual data for historical inspection and operation of the model, the results
showed that under the condition of no abnormal circumstances, the simulated value of
the output variable is within ±7% of the actual value. It belongs to the credible scope.
The reliability of the model is high and can effectively calculate the residential electricity
consumption. The growth rate in the latter of the model prediction curve is less than
the actual value, which shows that according to the forecast pattern of this article, the
growth of residential electricity consumption in Beijing should be slowed down after the
socio-economic factors stabilize. However, the actual situation is contrary to the fact that
the growth rate of actual residential electricity consumption has increased, which indicates
that the abnormal climate factors have played a great role in the growth of residential
electricity consumption and disrupted the trend of residential electricity consumption
growth. Therefore, it is necessary to pay great attention to the abnormal situation of climate
change and formulate some policies to improve the situation.

(2) The influence mechanism of socio-economic factors and climate factors is heterogeneous.
The results of the model show that the socio-economic factor is positively correlated

with the residential electricity consumption of Beijing, and the correlation degree of the
internal index is close, with a sign of slowing, which is the stable influence. However, the
correlation degree of climate indexes is uneven, with both positive and negative degrees.
The intensification of climate change leads to the unclear trend of the index change, which
is the mutational effect. It indicates that the collinearity degree of the socio-economic
factors on the residential electricity consumption of Beijing is much greater than that of
climate factors. In general, nowadays, the influence of the socio-economic dimension and
the climate dimension on residential electricity consumption has become heterogeneous.
The growth of socio-economic indicators has slowed down, or some of them have even
entered a bottleneck period, while the internal indicators of climate factors have a small
degree of collinearity and the uncertainty caused by the aggravation of climate change has
increased. Faced with China’s current rapid growth in residential electricity consumption
and intensified climate change, based on the heterogeneity of socio-economic factors and
climatic factors, the government can adopt appropriate control and measurement measures
for different factors.

Based on principal component analysis and multiple linear regression, this research
constructed a multi-factor residential electricity consumption model, and quantitative
analysis was carried out through this model. At the same time, this paper performed a case
study of Beijing and discussed and selected the multi-factor indicators that highly related
to the residential electricity consumption. On the basis outlined above, the multi-factor
residential electricity consumption function of Beijing was constructed, which was used
to analyze the different influence mechanisms of the two factors on residential electricity
consumption. Ultimately, the optimal strategies were provided for ensuring the stable
operation of the regional power system. The research results effectively solved the visual
measurement of the external dimensions of residential electricity consumption in Beijing
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and expanded the heterogeneous understanding of the influence mechanisms of different
factors. Some optimization strategies were provided to manage power demand side effec-
tively, which are beneficial to the sustainable development of the regional power industry.

5.2. Optimal Strategies

The case study of Beijing shows that the residential electricity consumption is affected
by two factors, which begin to become heterogeneous. In view of how to strengthen
the power demand side management in order to better realize the optimal allocation of
resources, the following three strategies are proposed.

5.2.1. Actively Promote the Reform of a New Type of Electricity Pricing Policy and Guide
Residents to Cut Peak Load from the Demand Side

In the socio-economic aspects, the per capita disposable income is highly sensitive
to the residential electricity consumption in Beijing. The situation of Beijing shows that
residential load gradually diversifies along with the development of the economy, which
means that the supply side has more difficulty accurately predicting residential electricity
consumption. Therefore, adjusting the peak load from the demand side becomes extremely
important. One paper showed that the real-time pricing strategy of user electrical appliance
classification can achieve the effect of peak load cutting better than the peak and valley price
currently implemented. Moreover, the real-time pricing model is not only time-effective but
also maximizes the utility of both the supplier and the demander [53]. By implementing the
real-time electricity price strategy of user electrical appliances classification, the government
could indirectly influence the residential electricity consumption level, which feeds back the
change of total residential electricity consumption. Finally, it plays a role in the stabilization
of residential load. While meeting the same utility, it reduces power consumption and
power demand, which meets the requirements of regional power sustainable development.

5.2.2. Strengthen the Forecasting Accuracy of Diversified Loads and Ensure the Stability
Load Running within the Plan

From the analysis in this paper, it could be seen that the socio-economic indicators
of Beijing have a high degree of collinearity. There are gradually slowing down and even
entering the bottleneck period. It indicates that the socio-economic indicators tend to be
stable, accurate, and predictable. Besides, with the construction of a smart power grid, the
renovation of smart electric equipment on residents of Beijing is being implemented. Real-
time monitoring equipment such as smart electricity meters, smart sockets, and big data
sharing platform are constantly improved. What is mentioned above makes the collection
of residential information more complete on the supply side, which lays a foundation for
the accurate prediction of residential electricity consumption. The government should
combine with the big data platform to accurately predict the trend of socio-economic
indicators and measure the residential electricity consumption under the stable influence.
It can ensure that electricity consumption of this part is carried out within the plan and can
make the optimal allocation of grid resources.

5.2.3. Use Small-Scale Renewable Energy-Generating Units to Respond to the Sudden
Load Caused by Climate Change

According to the model results, the climate indicators are of great uncertainty and
vary in correlation degrees, which have a mutational impact on the residential electricity
consumption. Therefore, it is very important to eliminate the impact of the mutational load
on the stability of the power system. The government should encourage local departments
to take measures according to local conditions. Moreover, it can use renewable energy
and energy storage technology to set up small-scale renewable energy-generating units
in different areas, such as photovoltaic power generation and wind power generation.
With those, we can cope with the small-scale power consumption peak caused by the
uncertainty of climate indicators, thereby alleviating the pressure of sudden load on power
demand. This will not only ensure the stable operation of the load under the abrupt
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power consumption peak, but also realize the incremental substitution of clean energy,
and gradually solve the current contradiction in the consumption of renewable energy in
power demand side management of China.
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