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Abstract: Here, unmanned aerial vehicle (UAV) remote sensing and machine vision were used to
automatically, accurately, and efficiently count Tianshan spruce and improve the efficiency of scientific
forest management, focusing on a typical Tianshan spruce forest on Tianshan Mountain, middle
Asia. First, the UAV in the sampling area was cropped from the image, and a target-labeling tool
was used. The Tianshan spruce trees were annotated to construct a data set, and four models were
used to identify and verify them in three different areas (low, medium, and high canopy closures).
Finally, the combined number of trees was calculated. The average accuracy of the detection frame,
mean accuracy and precision (mAP), was used to determine the target detection accuracy. The
Faster Region Convolutional Neural Network (Faster-RCNN) model achieved the highest accuracies
(96.36%, 96.32%, and 95.54% under low, medium, and high canopy closures, respectively) and the
highest mAP (85%). Canopy closure affected the detection and recognition accuracy; YOLOv3,
YOLOv4, and Faster-RCNN all showed varying spruce recognition accuracies at different densities.
The accuracy of the Faster-RCNN model decreased by at least 0.82%. Combining UAV remote sensing
with target detection networks can identify and quantify statistics regarding Tianshan spruce. This
solves the shortcomings of traditional monitoring methods and is significant for understanding and
monitoring forest ecosystems.

Keywords: Tianshan spruce; target detection; UAV; forest inventory

1. Introduction

Tianshan spruce forests play an irreplaceable role in water conservation [1], oxygen
supply and carbon fixation [2], climate regulation, air purification, nutrient pattern [3],
and biodiversity conservation. They also have an important impact on the ecological
environment and climate regulation in Xinjiang [4,5]. With the rapid development of
tourism, the Tianshan spruce forest at low latitudes on the northern slopes of Tianshan
Mountain is vulnerable to anthropogenic deforestation, which could reduce the biomass
of Tianshan spruce. Hence, the rapid identification and determination of quantitative
statistics are of great significance for understanding and monitoring forest ecosystems.

Field measurements and remote sensing estimations are the two main methods used
to quantify forest information [6]. The sample plot survey, a traditional method for deter-
mining forest quantity statistics, requires a heavy workload and a long cycle. Furthermore,
it has low efficiency, especially in mountainous areas with complex terrain. It is difficult to
determine statistics in this way, which cannot meet the requirements of modern forestry.
With the rapid development of remote sensing technology and the improvement of image
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resolution, satellite remote sensing technology has gradually become an important method
for extracting and estimating the number of trees in forest canopies. Liu et al. [7] used the
crown vertex detection method of multi-scale spot detection to extract the crown infor-
mation for Tianshan spruce using WorldView-2 images. They achieved good extraction
effects on crown information of Tianshan spruce under high, medium, and low canopy
densities. Fabien et al. [8] proposed a new method for automatically dividing tree canopies
based on very high-resolution WorldView-2 images and applied it to an Atlantic rainforest
area covered by a highly heterogeneous tropical canopy (the San Gebra Forest in Brazil).
This method can detect with 80% accuracy. Dilek et al. [9] used unmanned aerial vehicle
(UAV) multispectral images (MSIs) and digital surface models (DSMs) to extract citrus trees
using sequence threshold, canny edge detection, and circular Hough transform algorithms.
Their proposed method was successful, and achieved a delineation accuracy of over 80%.
However, most studies on crown extraction for single trees have focused on simple regular
or low-density stands. The spatial structure of the Tianshan spruce forest is more complex
and changeable, so there are still some difficulties regarding the accurate extraction and
statistical quantification of single tree crowns [10]. These difficulties are especially preva-
lent in high canopy density forests, owing to overlapping and connection between tree
crowns, and due to the occlusion of young trees. Most tree number acquisition methods
obtain the number of trees by extracting the crown information of individual trees and
then use the marked watershed segmentation method [11], but this approach is not ideal
for high-density areas.

Developments in computer science and technology have provided feature extraction
technologies based on deep convolutional neural networks, which are now widely used
in the field of computer vision. Deep learning methods based on convolutional neural
networks have gradually become a research hotspot in the field of image processing.
Therefore, some studies have examined tree detection using the deep learning method.
This method combines two technologies, and its progress offers great potential for tree
counting as it combines UAVs and depth of learning [12]. Deng et al. [13] used drone
images to improve the Fast Region Convolutional Neural Network (Fast-RCNN) deep
learning framework, thereby establishing a detection model for dead pine trees. They
established a geographic information output module to output the specific geographic
locations of diseased trees and to accurately locate pine blight and dead trees. Felix
et al. [14] used a semantic segmentation method (U-net, Convolutional Networks for
Biomedical Image Segmentation) that simultaneously segmented and classified tree species
from images and evaluated high-resolution red-green-blue (RGB) images provided by
traditional convolutional neural networks (CNNs) and drones for rendering. In this
way, they mapped the potential environmental benefits of temperate forest species. Ding
et al. [15] adopted a PCB micro-defect detection method based on Fast-RCNN, which
solved the shortcomings of deep convolutional networks in detecting small defective areas.
They achieved good experimental results by opening the printed circuit board (PCB) defect
database (a kind of database).

In recent years, the rapid development of UAV remote sensing technology has high-
lighted the advantages of high resolution and simple data acquisition—it is low cost, rapid,
and low risk [16,17]. These advantages make up for the shortcomings of traditional satel-
lite remote sensing. UAV remote sensing technology has been widely used in land use
classification, agricultural resources surveys [18], forestry resources investigations, forest
pest control, and fire prevention [19]. Yi et al. [20] used a local maximum and multi-scale
algorithm to extract the number of trees in subtropical forests based on UAV remote sensing.
Hernandez et al. [21] used mixed pixel- and region-based algorithms to segment images,
thereby automatically extracting individual trees in plantations. In this way, they were able
to estimate the heights and crown diameters of individual trees. However, there have been
few studies carried out on spruce detection and forest management for Tianshan spruce,
based on deep learning and UAV remote sensing.
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This study combined UAV high-resolution image data with a target detection algo-
rithm to identify and count Tianshan spruce in Yangjuangou, on the northern slopes of
Tianshan Mountain. Experiments on citrus trees, an important agricultural product in the
Mediterranean region, were performed in three areas with different tree densities but simi-
lar land areas and background coverage. This provided technical support for the extraction
of biomass information from the Tianshan spruce forest to accurately estimate the biomass
of spruce forest, predict the development and succession direction of the community, and
provide a reference for the efficient management and protection of Tianshan spruce.

2. Materials and Methods
2.1. Introduction to Research Objectives

Tianshan spruce is a main tree species in the forest community of the Tianshan Moun-
tains. It is tall and narrow but has a long crown that is high in the center and low around
the edges. In remote sensing images, the peak of the crown appears bright, whereas the
edges of the crown are dark. Tianshan spruce is mainly distributed across the northern
slopes of Tianshan Mountain, at an altitude of 1500–2700 m; it belongs to the northern
mountain coniferous forest system [22], which accounts for 44.9% of the total forested area
in Xinjiang (with an area of 5.28 × 105 hm2).

2.2. Study Area

Urumqi County is located in the northwest of China, in the central part of Xinjiang.
It lies at the northern foot of the Tianshan Mountains, south of the Dzungarian Basin
(Figure 1). The area has a continental arid climate and lies in the middle temperate zone; it
has an annual precipitation of 200 mm. The terrain mainly comprises mountainous areas,
basins, and plains. The terrain is high in the south and low in the north. The vegetation and
soil in the basin exhibit significant vertical zonality. The soil is dominantly grayish-brown
forest soil, and the annual average temperature is 2–3 ◦C. Yangjuangou is located in the
central part of Urumqi County, with a geographical location of 87◦27′40′′ E–87◦29′5′′ E,
43◦24′30′′ N–43◦26′ N. More than 90% of the trees in the forest area are Tianshan spruce,
with an average height of 15 m. The study area represents a typical distribution area of
Tianshan spruce in Xinjiang. Figure 1 is the map of study area.

2.3. Data Acquisition and Preprocessing

The data used in this study comprised of a low-altitude remote sensing image obtained
from a UAV (Dajiang spirit 4prov2.0, equipped with a CMOS camera, SZ DJI Technology
Co., Ltd, Shenzhen, China). The image, which had 20 million effective pixels, was taken on
8 November 2019 (there is a layer of low green grass under the Tianshan spruce forest in
summer. In November, the grass on the ground will wither and turn yellow, but Tianshan
spruce is a green plant in all seasons. Therefore, the data collection in November is
conducive to the detection effect). The conditions were sunny, and the wind speed was
3 m/s; the flight altitude was 175 m, the imaging area was 1.08 km2, the image resolution
was 4.38 cm, the band was the visible light band (RGB), and 1520 aerial photos were taken.

In this study, Agisoft Photoscan1.2.6 software (Agisoft LLC11 Degtyarniy per., St.
Petersburg, Russia) was used to quickly splice UAV images. A data set of Tianshan spruce
was built and divided into a training set and a verification set, according to the ratio of 7:3.
The image for the training area was enhanced. In order to better distinguish shadows on
the ground and trees, the band combination of the UAV image was split into Blue, Green,
and Red when training samples. After random clipping, rotation, and noise addition,
3300 datasets were generated for model training. Data enhancement can reduce the model
over the fitting phenomenon and can enhance the model generalization performance. Three
areas with low, medium, and high canopy densities were selected for verification, each
with a size of 1600 × 1600 pixels and an actual area of 4911 m2.
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Figure 1. (a) Geographical location of Urumqi County and (b) sampling area in Yangjuangou,
Urumqi County.

2.4. Methods

Deep learning has derived a variety of applications in scientific research, such as
target detection [23], motion tracking [24], and action recognition [25]. Target detection is
a challenging basic project in computer vision. In recent years, a large number of target
detection models have emerged in the framework of Convolutional Neural Networks
(CNNs), which have good performance in terms of speed and detection accuracy [26].
Generally, there are two kinds of frequently used algorithms. The first type is two-stage
regions with CNN features (RCNN) [27] algorithms (RCNN, Fast-CNN, Faster-RCNN,
etc.), which first need to generate the target position, and then classify and regress the
candidate frames. During training, the first training area is the region proposal network
(RPN), which is followed by training for the target area network detection. Thus, this
model is highly accurate but slow. The other type is single-stage algorithms, such as You
Only Look Once (YOLO) [28] and Single Shot MultiBox Detector (SSD) [29]. These use only
one CNN to directly predict the categories and positions of different targets. These models
are much faster than two-stage models, but they have lower accuracy. Regarding speed,
single-stage models are more suitable for industrial applications than two-stage models.

Unlike traditional image classification methods, target detection does not need to
extract specific artificial features for particular projects. Instead, training algorithms and
different network models are used to learn the advanced semantic information of the image
and complete the classification and positioning of the target, thus improving efficiency
and accuracy. In this study, SSD, YOLOv3, YOLOv4, and Faster-RCNN were used to
detect Tianshan spruce in Yangjuangou in Urumqi County. The most suitable model for
spruce detection was selected by comparing their detection effects. Figure 2 is the overall
technical route.
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Figure 2. The overall technical route.

2.4.1. SSD

The SSD [29] model (Figure 3) is an end-to-end deep learning model. In terms of
structure, the SSD model adds a new network structure to the Very Deep Convolutional
Networks for Large-Scale Image Recognition (VGG—small filters, deep networks) basic
network, converts the full connection layer into a convolution layer, adds convolution lay-
ers, and outputs the prediction result as a target detection frame by merging convolutions
conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and Conv11_2. Two 3 × 3 convolution
kernels were used for prediction: one for classification and the other for position regression.

Figure 3. Single Shot MultiBox Detector (SSD) network structure.

2.4.2. YOLOv3

The YOLOv3 [30] (Figure 4) algorithm is an improved algorithm based on YOLOv2. It
extends and improves the basic network structure of YOLOv2 from darknet19 (Darknet
is an open-source neural network framework). It is fast, easy to install, and supports
CPU and GPU computation and adopts the darknet53 network structure. This includes
53 volume layers for image feature extraction. When the deepest feature is extracted, the
output and sampling are performed at the same time to fuse with the features at another
scale. YOLOv3 combines the construction idea of the Deep Residual Learning for Image
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Recognition (RESNET) network and adopts a large number of residual blocks, which allows
the network structure to be set deeper. This means it has a strong feature extraction ability.

Figure 4. You Only Look Once (YOLO)v3 network structure.

2.4.3. YOLOv4

For YOLOv4 [31] (Figure 5), the target detection algorithm is more complex than that
of YOLOv3 in the network structure, and the accuracy of the neural network is improved
through more training skills. The network structure of YOLOv4 consists of four parts: input,
backbone, neck, and prediction [32]. The input introduces a mosaic data enhancement
method and self-confrontation training of SAT. The backbone main network combines
CSPDarknet53, Mish activation function, and Dropblock. In the neck section, SPP modules
are inserted between the backbone and the final output layer. In the prediction section,
the anchor frame mechanism of the output layer is the same as that of YOLOv3. The
main improvement is the CIOU-Loss [33] during training; the NMS [34] is filtered by the
prediction box to become Diou NMS.

Figure 5. YOLOv4 network structure.
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2.4.4. Faster-RCNN

Faster-RCNN [35] (Figure 6) is a two-stage convolution neural network algorithm. It
consists of a feature extraction network (CNN), a target detection network (RCNN), and a
region recommendation network (RPN) [36]. RPN is a full convolution-based network that
can simultaneously predict the probability values of target area frames and the probability
value of the true target. RPN is an end-to-end network training that aims to generate a
high-quality regional suggestion box for Fast-RCNN classification and detection. Through
a simple alternative operation optimization method, RPN and Fast-RCNN can share
convolution features during training. Hence, the overall structure of Fast-RCNN can be
considered as an RPN + Faster-RCNN.

Figure 6. Faster Region Convolutional Neural Network (Faster-RCNN) network model.

3. Results

In this study, 3300 training samples were used to train four types of target detection
models: SSD, YOLOv3, YOLOv4, and Faster-RCNN. Finally, three different density areas
of spruce were identified, and the numbers of trees were counted. In order to improve
the accuracy of spruce recognition, the three validation areas were each split into 16 small
pieces using a regular grid, and then they were identified. Figure 7 shows the detection
effects for Tianshan spruce in three different density regions under the four different
models. The same training sample was selected as the data set, and the different network
structures exhibited obvious differences regarding their recognition of the Tianshan spruce.

Accuracy Assessment

In this study, the actual number of Tianshan spruce in each validation area was
obtained by visual interpretation. The objective detection algorithm was used to extract
the number of spruce trees, and the overall accuracy (OA) and overlap error (OE) were
estimated using Equation (1):

OA = |Nd − No|/Nv × 100% (1)

where Nv is the total number of Tianshan spruce in the visual interpretation sample plot,
Nd is the total number of spruce detected by the target detection model, and No is the
number of repeatedly detected spruce caused by image rule clipping.
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Figure 7. Test results of the four network structures.

Through visual interpretation, the actual quantity of Tianshan spruce in the three
validation areas were 165, 245, and 359. Table 1 shows that the average accuracy of the SSD
target detection algorithm, based on the VGG16 (Very Deep Convolutional Networks with
16 convolutions) network, was lower than that of the other algorithms. The accuracies of the
three different density regions were 24.85%, 14.69%, and 18.38%, respectively. In contrast,
the detection accuracy of SSD improved significantly. The accuracies of the three different
density areas were 74.55%, 65.31%, and 41.23%, respectively. The detection accuracy of
YOLOv4 exceeded that of YOLOv3, and the accuracy of the three validation areas were
82.42%, 82.04%, and 56.27%, respectively. The Faster-RCNN algorithm takes ResNet101-
FPN as the backbone network model. Although the training speed of ResNet101-FPN
was not as fast as that of the YOLO algorithm based on VGG16, the accuracies of the
Faster-RCNN algorithm were 96.36%, 96.32%, and 95.54%, which are, respectively, higher
than those of the other three algorithms.

This study also used accuracy (P), recall (R), and average precision (AP), which are
commonly used as references when evaluating the accuracy of different detection models.
AP is the area under the curve of accuracy and recall rate; it is an intuitive evaluation
standard used to assess the accuracy of detection models and can be used to analyze the
detection effect of a single category. The accuracy and recall were defined as shown in
Equations (1) and (2):

R = TP/TP + FP (2)

R = TP/TP + FN (3)

where TP means that the test result is correct—that is, the category of the detection box and
the label box are the same and the IOU is >0.5. FP signifies a target that has been wrongly
identified, and FN represents a target that has not been detected.
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Table 1. Accuracy evaluations of the four models.

Test Area1, Nv = 165 Test Area2, Nv = 245 Test Area3, Nv = 359

Nd No OA (%) Nd No OA (%) Nd No OA (%)

SSD 44 3 24.85 37 1 14.69 66 0 18.38
YOLOv3 135 12 74.55 167 7 65.31 150 2 41.23
YOLOv4 146 10 82.42 211 10 82.04 209 7 56.27

Faster-RCNN 191 32 96.36 280 44 96.32 362 19 95.54

Precision refers to the proportion of the number of correctly identified targets com-
pared to the total number of targets; it measures the degree of agreement between the
predicted box and the real box. The curve drawn by different precision and recall points
and the area AP formed by the X and Y axes were used to evaluate the prediction effect of
each model. The larger the value, the better the model effect. Figure 8 shows that Faster-
RCNN and YOLOv3 had the highest mAP (mean accuracy and precision) values (84.65%
and 84.97%); for YOLOv4 mAP, it was 76%, and for SSD mAP, it was 49%. Therefore, the
network model of Faster-RCNN is better than other models in terms of total accuracy and
mAP accuracy, which is thereby more suitable for spruce identification and detection.

Figure 8. Precision–recall curves of the four network models.

4. Discussion

Traditional forest protection and management methods are mainly conducted through
manual field investigations, which entail a heavy workload, low efficiency, and strong
subjectivity. Furthermore, it is difficult to monitor using these methods at high altitudes
and on steep slopes. The method proposed in this paper can establish a detection model
for Tianshan spruce using UAV remote sensing and a target detection algorithm, thereby
overcoming the above shortcomings. The identification effects of SSD, YOLOv3, YOLOv4,
and Faster-RCNN models were compared through the identification of Tianshan spruce,
which provided a method reference for quick detection and tree number estimation.

Although Faster-RCNN showed higher precision, it requires a longer training time
than the other methods. A total of 5000 training samples were used in this study, and the
training time of Faster-RCNN was 10 h more than the other three methods. There is still



Sustainability 2021, 13, 3279 10 of 12

more space for improvement in the structures of the YOLO and SSD models regarding
parameter improvement and data selection [37]. Yu et al. [38] improved YOLOv4-FPM to
achieve a real-time detection approach for bridge cracks. Hence, in the model architecture,
corresponding residual units could be added to the residual block to obtain more target
feature information. Regarding parameter improvement, attempts could be made to
combine multiple parameters to obtain a better solution and therefore improve the usability
of the model. Regarding data selection, a small sample data model could be used to avoid
expanding the labor cost; the small sample data model could be used to expand the data
set and thus improve the availability of the model.

Compared with traditional extraction methods for obtaining the number of trees, the
target detection method is both rapid and precise. Considering real-time monitoring and
model generality, combining UAV images with deep learning is better than the traditional
image classification method for monitoring the distribution of Tianshan spruce. This
approach can provide better technical support for studying Tianshan spruce in the typical
watershed of the gentle slopes of Tianshan Mountain. Supervised learning based on the
CNN model is limited by the large amount of labeled data needed as training samples
for model training and feature learning [39]. Here, the training samples were optimized
to reduce the over-fitting phenomenon of the model and to enhance it through image
enhancement methods such as rotation, color change, and edge noise. Finally, a fast and
high-precision detection effect was achieved for Tianshan spruce.

5. Conclusions

For forest planning and yield estimation, extracting the locations, numbers, and diam-
eters of trees are important albeit difficult, and demanding. In this study, four detection
models based on the target detection method were proposed (SSD, YOLOv3, YOLOv4, and
Faster-RCNN), and the proposed approaches were tested in three different density areas.
The most suitable model for detecting Tianshan spruce was determined by evaluating
each model’s quantity, pixel accuracy, and ability to identify and generate statistics for
Tianshan spruce.

The SSD model had the lowest detection accuracy; its average accuracy over the three
different density regions was below 20%. YOLOv3 achieved accuracies of 74.55% and
65.31%. YOLOv4 achieved accuracies of 82.42% and 82.04% in low and medium density
regions but only produced accuracies of 41% and 56%, respectively, in the high-density
region. The Faster RCNN model had the highest accuracy (96.36%, 96.32%, and 95.54%,
respectively). The performances of these algorithms were similar, and their detection accu-
racies depended on the density of the trees. The accuracies of three algorithms (YOLOv3,
YOLOv4, and Faster-RCNN) decreased with the increasing density; however, Faster-RCNN
showed the smallest change.

Combining machine vision and UAV remote sensing can improve efficiency, ensure
accuracy, and hence overcome the shortcomings of traditional survey methods. Therefore,
the Faster-RCNN network model can be used to identify Tianshan spruce and has important
practical significance for understanding and monitoring forest ecosystems. In order to
carry out further studies, the output module could be used for the network by adding a
coordinate system transformation function and geographic location information in the later
stage. Thereby, the latitude and longitude information of each target detection result could
be extracted and generated. Further research and discussions regarding the detection of
dead spruce trees could then be explored.
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