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Abstract: Soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available
potassium (AK) are important indicators of soil fertility when undertaking a quality evaluation.
Obtaining a high-precision spatial distribution map of soil nutrients is of great significance for the
differentiated management of nutrient resources and reducing non-point source pollution. How-
ever, the spatial heterogeneity of soil nutrients lead to uncertainty in the modeling process. To deter-
mine the best interpolation method, terrain, climate, and vegetation factors were used as auxiliary
variables to participate in the investigation of soil nutrient spatial modeling in the present study. We
used the mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and accuracy
(Acc) of a dataset to comprehensively compare the performance of four different geospatial tech-
niques: ordinary kriging (OK), regression kriging (RK), geographically weighted regression kriging
(GWRK), and multiscale geographically weighted regression kriging (MGWRK). The results showed
that the hybrid methods (RK, GWRK, and MGWRK) could improve the prediction accuracy to a
certain extent when the residuals were spatially correlated; however, this improvement was not
significant. The new MGWRK model has certain advantages in reducing the overall residual level,
but it failed to achieve the desired accuracy. Considering the cost of modeling, the OK method still
provides an interpolation method with a relatively simple analysis process and relatively reliable
results. Therefore, it may be more beneficial to design soil sampling rationally and obtain higher-
quality auxiliary variable data than to seek complex statistical methods to improve spatial prediction
accuracy. This research provides a reference for the spatial mapping of soil nutrients at the farmland
scale.

Keywords: soil nutrients; spatial non-stationarity; multiscale; MGWRK; soil digital mapping

1. Introduction

Soil nutrient indicators are key indicators for the evaluation of soil quality. Study-
ing the spatial distribution of soil nutrients is the basis for understanding regional soil
quality conditions, adjusting management measures and various material inputs, and ob-
taining maximum benefits [1–3]. However, due to the combined effect of structure and
randomness [4,5], soil nutrients have a high degree of spatial heterogeneity and depen-
dence [6]. Therefore, it is necessary but difficult to obtain more accurate spatial distribution
information of soil nutrients in different regions.

In the past few decades, scholars have developed and applied many spatial inter-
polation methods, including deterministic interpolation methods (e.g., inverse distance
weighted (IDW), radial basis function (RBF), global polynomial interpolation, and local
polynomial interpolation), geostatistical methods (e.g., ordinary kriging (OK), simple
kriging, and CoKriging (COK)), and hybrid techniques (e.g., regression kriging (RK) and
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geographically weighted regression kriging (GWRK)) [7]. Among these methods, the OK
method is the most widely used geostatistical method. Through intensive field sampling,
OK makes full use of the data information of the sample point, and can provide an estima-
tion error for the interpolation results [8]. However, OK would consume large amounts
of labor, material, and financial resources [9]. The sampling density and method have a
considerable influence on the interpolation accuracy of OK [10]. Moreover, this method
does not incorporate environmental factors into the model, which are closely related to
soil nutrients. These limitations lead to the simulation of the spatial distribution of soil
properties in complex landscapes being greatly restricted [11,12].

With the rapid development of geographic information technology and remote sensing
technology, other environmental factors that have the advantages of high accuracy and
easy access have gradually been incorporated into spatial modeling analyses. Many studies
have shown that methods that use environmental covariates (e.g., RK) usually produce
more accurate simulations than OK. Watt and Palmer [13] used RK to draw a surface map
of New Zealand’s carbon/nitrogen ratio. Bangroo et al. [14] used RK to study the influence
of topographic factors on the spatial distribution of soil organic carbon (SOC) and total
soil nitrogen (TSN); the authors found that the RK method was significantly better than
the OK model in predicting SOC and TSN in the case of residuals with a moderate degree
of spatial autocorrelation. Mondal et al. [15] selected eight variables to predict SOC; the
RK method also provided satisfactory results from the accuracy point of view due to the
introduction of additional auxiliary information. The RK method combines the trend item
and kriging residual item generated by global regression fitting [16,17]. Thus, it has the
advantages of easy implementation, detailed results, and high prediction accuracy [18].

However, the relationships between soil nutrients and environmental covariates
are always non-stationary over space, but the RK method assumes that the relationship
between soil properties and environmental covariates is constant globally [12,19]. As a
result, RK cannot capture the local characteristics of the spatial variation of soil nutrients,
and the improvement of interpolation accuracy is again restricted. To solve this problem,
the local model GWRK has been applied. As a combination of geographically weighted
regression (GWR) and kriging, this method embeds the spatial position into the regression
parameters through the idea of local weighted least squares [20,21]. It not only considers
the non-stationarity of the spatial parameters and the local relationship between the target
variable and the explanatory variable, but also the spatial autocorrelation of the regression
residuals [22]. The GWRK method provides good prediction results in most cases [23–25].

However, GWR also has certain limitations. The method uses a single bandwidth
for all variables, ignoring the different scales of the relationship between the independent
variable and the dependent variable. This may cause a lot of noise and bias in the regression
coefficient, which may lead to unstable regression coefficients [26]. Nevertheless, scale is
an important term in geographic research [27,28], and spatial phenomenon are inherently
affected by scale effects [29]. Therefore, the change in scale has a considerable impact
on the model performance [30,31]. Murakami et al. [32] also emphasized the importance
of scale in local regression modeling. The first model to consider multi-scale effects was
the hybrid GWR model. The regression coefficients of some parameters in this model are
globally fixed, while the remaining parameters are spatially variable [33–36]. However, the
hybrid GWR is limited; it can only distinguish the scale influence of different variables
into global and local scales, but the local coefficients of the variables still change within the
same scale [37]. Fotheringham et al. [38] proposed the multi-scale geographic weighted
regression (MGWR) method in 2017 to allow multi-scale modeling, which allows the model
to run at different spatial scales by introducing a specific bandwidth for each variable.
As an extension of MGWR, MGWRK [39] is similar to other hybrid methods. It not only
retains the characteristics of MGWR, but also accounts for the relevance of the regression
residuals; thus, it appears to be a promising method.

In summary, scholars have carried out a lot of research on the digital mapping of soil
nutrients. Although the emergence of different methods is necessary, the portability of
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these methods is generally poor. The selected explanatory variables differ between research
areas and for various scales, the best interpolation method may also differ between target
variables. At the same time, as an emerging model, few studies have reported on the
application of MGWRK at the farmland scale. Therefore, the main aims of the present
study are to select environmental factors such as, vegetation, terrain, and climate factors for
modeling, and to compare the performance of different geospatial technologies (OK, RK,
GWRK, and MGWRK) in soil nutrient mapping.

2. Materials and Methods
2.1. Study Area

Gaoping City is located at the foothills of the Taihang Mountains in the southeast
area of Shanxi Province in central China (35◦40′–36◦0′ N, 112◦40′–113◦10′ E; Figure 1).
The total land area of the city is 946 km2, with an altitude ranging from 780 m to 1391
m. Gaoping is surrounded by mountains in the east, west, and north, with flat land in
the middle. There are many types of land use and large areas of arable land. The main
soil types are cinnamon soil and fluvo-aquic soil. The study area has a warm temperate
continental monsoon climate. The annual average temperature is approximately 10.5 ◦C,
the annual average sunshine duration is 2532.5 h, the frost-free period is 180–200 days,
and the annual average rainfall is about 600 mm (mainly from July to September). Shanxi
Province, Gaoping, where the research was carried out is characterized by good water and
air quality and as such offers optimum research possibilities.

Figure 1. Location of the study area and the spatial distribution of the calibration points (n = 2284)
and validation points (n = 254) in the study area.

2.2. Data Sources
2.2.1. Soil Sampling and Determination

A total of 2583 samples were collected before crops were planted in the spring of 2010,
in accordance with the “Rules for soil quality survey and assessment” (NY/T 1634–2008).
We used the “S” method to layout points in each field by employing stainless steel soil
drills and other tools. The spatial distribution of the data points is shown in Figure 1.
After pretreatment of the soil samples, the contents of soil organic matter (SOM), total
nitrogen (TN), available phosphorus (AP), and available potassium (AK) of each sample
were determined. Specific determination methods are described elsewhere [40].

2.2.2. Environmental Data

Numerous studies have demonstrated that soil nutrient content is comprehensively
affected by factors such as climate, vegetation, and terrain [3,14,41,42]. Therefore, this



Sustainability 2021, 13, 3270 4 of 19

paper selected these factors as auxiliary variables to participate in the investigation of soil
nutrient spatial modeling.

The climate factors included mean annual precipitation (MAP) and mean annual
temperature (MAT), which were obtained from National Meteorological Information Cen-
ter [43]. We downloaded the precipitation and temperature data of local meteorological
stations from 1980 to 2010. By calculating the average multi-year precipitation and average
multi-year temperature, and by performing kriging interpolation, meteorological data at
each soil sampling point in Gaoping City were extracted.

The topographic factors were derived from the DEM (30 m spatial resolution) obtained
from Geospatial Data Cloud [44]. Based on the DEM data, we obtained various composite
terrain factor indicators in the SAGA-GIS software.

The remote-sensing data include the NDVI and vegetation coverage (VC), which were
also derived from Geospatial Data Cloud [44]. We downloaded Landsat 8 remote sensing
images that were consistent with the sampling time. After preprocessing the image, we
used the band calculator to calculate the NDVI and VC to reflect the growth status of
farmland vegetation in that year. The data of various environmental covariates are shown
in Table 1.

Table 1. List of environmental covariate data.

Data Type Index

Terrain data

Elevation
Slope

Aspect
Plane curvature, PC

Topographic relief, TR
Surface roughness, SR

Topographic wetness index, TWI

Meteorological data Mean average precipitation, MAP
Mean average temperature, MAT

Remote sensing data
Normalized differential vegetation index,

NDVI
Vegetation coverage, VC

2.3. Geospatial Techniques
2.3.1. Ordinary Kriging (OK)

The OK model is based on spatial autocorrelation and second-order stationary as-
sumptions. It uses the semivariogram theory as a tool to analyze its spatial structure,
and realizes the optimal unbiased linear estimation of the unknown area based on the
existing sampling point data in a limited area [11]. The semivariance function equation is
described as Equation (1).

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (1)

where γ(h) is the semivariogram value; h is the lag; N(h) is the total number of point pairs
with an interval of h; Z(xi) and Z(xi + h) are the measured values of regionalized variables
at positions xi and xi + h, respectively.

2.3.2. Regression Kriging (RK)

Regression kriging combines multiple linear regression (MLR) and kriging interpo-
lation. The steps for establishing this method are as follows: a stepwise MLR analysis is
performed between the target variable and its highly correlated auxiliary variables to obtain
the trend item and residual item, which represent certainty and randomness, respectively.
Then, OK is applied to interpolate the residual item of the regression model before finally
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summing them up [16,18]. The fundamental equation of the RK model is described as
Equation (2):

yRK(xi) = yMLR(xi) + yOK(xi) (2)

where yRK(xi) denotes the predicted value of the RK model at the point xi; yMLR(xi) is the
trend value of MLR at point xi; yOK(xi) is the residual item estimated by the OK method at
the point xi.

2.3.3. Geographically Weighted Regression Kriging (GWRK)

As a hybrid method, the modeling process of GWRK [25] is similar to that of RK,
with the exception of the fact that the global fitting in RK is replaced with the local fitting
in GWR. The GWR approach is used to deal with spatial non-stationarity by introducing a
spatial location into regression coefficients [21].

Assuming that there is a total of n observation points, the location of each observation
point is (ui, vi), and there is a total of m independent variables involved in modeling.
The expression of the GWR model is shown in Equation (3):

yi =
n

∑
i=0

m

∑
j=0

β j(ui, vi)xij + εi (3)

where xij is the jth independent variable at the observation point; βi(ui, vi) is the regression
coefficient of the jth independent variable at the position (ui, vi); εi is the random error
term; yi is dependent variable.

Two types of spatial weight function methods, the Gaussian function and Bi-square
function, are usually used to determine the spatial weight in GWR analysis. Different
types of kernel functions can be used during operation, including fixed kernel functions
and adaptive kernel functions. Research has shown that an adaptive kernel is arguably
more favorable when dealing with non-uniform spatial distributions [21,24]. Because the
sampling points are not uniformly distributed, this study selects an adaptive Gaussian
kernel function for modeling. In addition, geographic weighted regression analysis is very
sensitive to the bandwidth selection of a specific weight function [45]. This study uses the
corrected Akaike information criterion (AICc) to determine the model bandwidth, where
the principle is to minimize the AICc. This approach helps to evaluate whether the GWR
model simulates the data better than the MLR model.

2.3.4. Multiscale Geographically Weighted Regression Kriging (MGWRK)

As mentioned, MGWRK [39] is a combination of MGWR and kriging interpolation.
The MGWR model can be expressed as Equation (4):

yi =
n

∑
i=0

m

∑
j=0

βbwj(ui, vi)xij + εi (4)

where βbwj is the regression coefficient corrected by the effective bandwidth of the jth
independent variable. In our study, the kernel functions and kernel types of MGWR and
GWR models are consistent.

The MGWR model accounts for the spatial scale effect of the influence of different inde-
pendent variables on the dependent variable, and provides different independent variables
with different bandwidths. This is the main difference between the MGWR model and the
GWR model. All independent variables in the GWR model share a bandwidth, which can be
regarded as a weighted average of different levels of spatial heterogeneity [38,46].

2.4. Model Validation and Evaluation

Ninety percent of sampling points (2284) were randomly selected from the original
data as the prediction set to build the model, and the remaining 10% samples (254) were
used as the verification set to test the model’s prediction accuracy. We evaluated the
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performance of different models by calculating the mean error (ME), mean absolute error
(MAE), root mean square error (RMSE), and prediction accuracy (Acc) of the validation
set [33,47]. These four indices can be written as Equations (5)–(8):

ME =
1
n

n

∑
i=1

[
Ẑ(xi)− Z(xi)

]
(5)

MAE =
1
n

n

∑
i=1

[∣∣Ẑ(xi)− Z(xi)
∣∣] (6)

RMSE =

√
1
n

n

∑
i=1

[
Ẑ(xi)− Z(xi)

]2 (7)

Acc =

[
1− 1

n

n

∑
i=1

∣∣∣∣ Ẑ(xi)− Z(xi)

Z(xi)

∣∣∣∣
]

(8)

where Ẑ(xi) is the predicted value at position xi; Z(xi) is the measured value at position xi;
n is the number of samples.

In general, ME, MAE, and RMSE values closer to zero and a higher Acc give a better
prediction.

3. Results
3.1. Descriptive Statistics

In this study, 11 indicators (elevation, slope, aspect, PC, TR, SR, TWI, MAP, MAT,
NDVI, and VC) were initially selected as environmental variables (Figure 2).

Figure 2. Spatial distribution of environmental covariates.

Table 2 shows the descriptive statistics of the soil nutrients. The SOM content ranged
from 3.10 g/kg to 45 g/kg. The TN, AP, and AK contents of soil ranged from 0.11 g/kg to
2.51 g/kg, 1.40 mg/kg to 39.90 mg/kg, and 38 mg/kg to 388 mg/kg, respectively. The coef-
ficient of variation (CV) is defined as the ratio of the standard deviation to the mean, and is
a normalized measure of the dispersion of a probability distribution or frequency distribu-
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tion [20]. The CV values of the SOM, TN, AP, and AK contents were 26.92%, 21.65%, 48.48%,
and 28.95%, respectively. Thus, the CV of the AP content was the largest, which is consistent
with previous research results [48]. In addition, Table 3 shows the descriptive statistics of the
environmental covariates. The CV of different environmental covariates in the study area also
varied significantly.

Table 2. Descriptive statistics of soil nutrients.

Index Unit Min Max Mean S.D. Variance CV (%)

Soil organic matter, SOM g kg−1 3.10 45.00 27.04 7.28 52.99 26.92
Total nitrogen, TN g kg−1 0.11 2.51 1.33 0.29 0.08 21.65

Avaliable Phosophorus, AP mg kg−1 1.40 39.90 12.90 6.25 39.09 48.48
Avaliable potassium, AK mg kg−1 38.00 388.00 153.03 44.30 1962.28 28.95

3.2. Correlation Analysis of Soil Nutrients and Environmental Factors

The results of a Pearson’s correlation analysis of soil nutrients and environmental
factors in the study area are presented in Table 4. There were significant correlations
between the SOM content and (i) topographic factors (elevation, slope, SR, TR), (ii) climate
factors (MAP), and (iii) vegetation factors (NDVI and VC). The significant influencing
variables of the TN content of soil were elevation, TR, and the NDVI. Both MAP and MAT
had significant effects on the AP and AK contents. The AP content was also significantly
negatively correlated with the TWI.

Terrain conditions affect soil nutrients by regulating the distribution of soil moisture
as well as heat and air permeability conditions in a landscape [49,50]. In this study,
topographic factors and soil nutrient content were significantly negatively correlated, thus
indicating that environments with a high elevation, steep slopes, a fragmented ground
surface, or low TWI usually have a low soil nutrient content.

Climate is the main driving force affecting plant type, crop growth, and litter de-
composition [51], but soil nutrients have different response mechanisms to the different
synergy of temperature and precipitation. Generally speaking, an environment with high
precipitation and low temperature is conducive to the accumulation of soil nutrients [49];
however, an increase in precipitation may also increase soil erosion, which leads to the
loss of effective soil elements [52]. Studies have also shown that temperature changes will
affect the decomposition of microorganisms in the soil, thus complicating the relationship
between temperature and nutrients [53]. In our study, the MAP had a positive effect on
the SOM content, whereas it had a negative effect on AP and AK. Temperature exhibited a
significant positive relationship with AP and AK, while the relationships between SOM,
TN, and temperature were not significant.

Vegetation is also an important factor affecting the soil nutrient content. The influence
of vegetation is usually mediated through terrain and climate variables [54]. Significant
negative correlations were observed between the various vegetation factors and the soil
nutrient content in Gaoping City, which is inconsistent with the results of Bangroo et al. [14].
It may be that the part of the plant residues returned to the soil by complex vegetation
types hindered the accumulation of soil nutrients.
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Table 3. Descriptive statistics of soil environmental covariates.

Index Unit Min Max Mean S.D. Variance CV (%)

Mean Average Precipitation, MAP mm 552.52 561.93 555.35 1.67 2.79 0.30
Mean Average Temperature, MAT ◦C 10.33 11.44 10.82 0.25 0.06 2.29

Elevation m 780.00 1273.00 914.78 68.08 4635.17 7.44
Slope ◦ 0.00 34.20 7.38 4.46 19.87 60.41

Aspect ◦ −1.00 359.17 176.34 96.16 9245.94 54.53
Surface Roughness, SR 1.00 1.21 1.01 0.02 0.00 1.49
Topographic relief, TR 14.00 157.00 46.24 18.69 349.19 40.41
Plane Curvature, PC −2.24 2.34 0.01 0.57 0.33 5870.25

Topographic wetness index, TWI 3.81 22.38 7.44 2.68 7.16 35.95
Normalized differential vegetation

index, NDVI −0.16 0.37 0.07 0.07 0.01 100.89

Vegetation Coverage, VC 0.00 1.00 0.29 0.18 0.03 61.33

Notes: Min, Minimum. Max, Maximum. S.D., standard deviation. CV, the coefficient of variation.

Table 4. Correlations between environment attributes and soil nutrients.

Index SOM TN AP AK

MAP 0.114 ** −0.006 −0.098 ** −0.109 **
MAT −0.015 0.018 0.082 ** 0.079 **

Elevation −0.154 ** −0.057 ** 0.039 −0.025
Slope −0.094 ** −0.022 −0.008 −0.012

Aspect 0.016 −0.002 0.012 0.015
SR −0.082 ** −0.020 0.001 −0.016
TR −0.214 ** −0.066 ** 0.019 −0.029
PC −0.028 −0.018 0.025 0.001

TWI 0.018 0.006 −0.031 −0.043 *
NDVI −0.151 ** −0.098 ** −0.004 0.010

VC −0.154 ** −0.098 ** −0.006 0.006
Notes of abbreviation. SOM, soil organic matter. TN, total nitrogen. AP, available phosophorus. AK, available
potassium. MAP, mean average precipitation. MAT, mean average temperature. SR, surface roughness. TR,
topographic relief. PC, plane curvature. TWI, topographic wetness index. NDVI, normalized differential
vegetation index. VC, vegetation coverage. * and ** represent the significant at the 0.05 level and 0.01 level
(2-tailed), respectively.

3.3. Analysis of Spatial Distribution Patterns of Soil Nutrients
3.3.1. Selection of Environmental Covariates and MLR Modeling

Using a stepwise regression method to select variables can ensure that only indepen-
dent variable factors that are significant to the soil nutrient content enter the regression
model, and can also check the multicollinearity of the model [55]. The probability level
of variable entry in stepwise regression is 0.05, and the probability level of elimination is
0.1 The final fitting model of the MLR of each dependent variable is shown in Table 5.

Table 5. MLR models between soil nutrient and environmental variables.

Index Regression Equation R2

SOM SOM = 0.7188 ×MAP − 0.1338 × TWI − 0.0123 × Elevation − 0.1669 × Slope
− 2.5425 × VC + 52.1433 × SR − 0.05106 × TR − 0.5255 × PC − 408.3766 0.075

TN TN = 0.4060069 × NDVI + 1.354716 0.0097

AP AP = −0.3824 ×MAP + 1.5562 ×MAT + 0.0123 × Elevation − 0.0170 × TR +
197.9734 0.0193

AK AK = −2.9193 ×MAP − 0.8736 × TWI − 0.0909 × TR + 1785.001 0.0154

Notes: SOM = soil organic matter, TN = total nitrogen, AP = available phosphorus, AK = available potassium;
MAP = mean average precipitation, MAT = mean average temperature, SR = surface roughness, TR = topographic
relief, PC = plane curvature, TWI = topographic wetness index, NDVI = normalized differential vegetation index,
VC = vegetation coverage.
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To further explore the influence of environmental covariates on the soil nutrient
content in the study area at different locations, and to compare the differences in spatial
mapping of different methods, the factors of the MLR model were also applied for GWR
and MGWR modeling.

3.3.2. Spatial Variability Characteristics of Soil Nutrients and Residuals of MLR, GWR, and
MGWR Models

The residuals of the regression models were used to fit the semivariogram model.
We selected the optimal semivariogram model according to the maximum determination
coefficient (R2). Table 6 showed that the R2 value of each model was >80%, which indicated
that a good model simulation effect was achieved in each case. Semivariograms of soil
nutrients and the residuals of MLR, GWR, and MGWR are shown in Figure 3.

Table 6. Semivariogram parameters of each model.

Index Type Fitting Model Nugget
(C0)

Sill
(C0 +

C)

Nugget/Sill
[C0/(C0 +

C), %]

Range
(m) R2

SOM

OK Exponential Model 44.000 88.010 50.0 71,100 0.873
MLR residuals Exponential Model 39.300 78.610 50.0 8110 0.841
GWR residuals Gaussion Model 40.000 80.010 50.0 71,100 0.966

MGWR
residuals Gaussion Model 47.200 109.980 57.1 71,100 0.979

TN

OK Exponential Model 0.0715 0.143 50.0 31,100 0.844
MLR residuals Exponential Model 0.068 0.137 50.0 21,100 0.876

GWR residuals Exponential Model 0.065 0.131 50.0 21,100 0.837
MGWR

residuals Gaussion Model 0.073 0.176 58.5 71,100 0.923

AP

OK Exponential Model 32.500 65.010 50.0 71,100 0.941
MLR residuals Exponential Model 31.800 63.610 50.0 71,100 0.896
GWR residuals Gaussion Model 35.100 70.210 50.0 71,100 0.835

MGWR
residuals Gaussion Model 31.630 63.270 50.0 71,100 0.883

AK

OK Gaussion Model 1851 3882 52.3 71,100 0.959
MLR residuals Gaussion Model 1826 3653 50.0 71,100 0.915
GWR residuals Gaussion Model 1599 3199 50.0 71,100 0.850

MGWR
residuals Gaussion Model 1462 4453 67.2 71,100 0.896

Figure 3. Semivariograms of soil nutrients and the residuals of MLR, GWR, and MGWR.
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The spatial autocorrelation for SOM in the various models ranged from 8110 m to
71,100 m. The nugget values were 44 (OK), 39.3 (MLR residuals), 40 (GWR residuals),
and 47.2 (MGWR residuals). The spatial autocorrelation for TN ranged up to 31,100
m, and the spatial ranges of the residuals for MLR, GWR, and MGWR were 21,100 m,
21,100 m, and 71,100 m, respectively. The nugget values were 0.0715 (OK), 0.068 (MLR
residuals), 0.065 (GWR residuals), and 0.073 (MGWR residuals). The spatial autocorrelation
for the AP in each model ranged up to 71,100 m. The nugget values were 32.5 (OK),
31.8 (MLR residuals), 35.1 (GWR residuals), and 31.63 (MGWR residuals). The spatial
autocorrelation for AK in each model also ranged up to 71,100 m. The nugget values were
1851 (OK), 1826 (MLR residuals), 1599 (GWR residuals), and 1462 (MGWR residuals).

The nugget/sill ratio of the optimal residual model was between 25% and 75%,
which indicates that the model residual had a moderate degree of spatial autocorrelation.
Therefore, it was necessary to use hybrid technologies (RK, GWRK, and MGWRK) for
modeling [33]. The obtained semivariogram and various parameters were used to per-
form the kriging interpolation on the residuals. The results are presented in Figure 4,
which shows that the three models produced very different spatial distributions of the
residuals: (i) The extremum of the MLR residuals were the largest compared with other
models, and the high and low values were clearly clustered, (ii) the spatial distribution of
the GWR residuals presented a “low–high–staggered” phenomenon. (iii) the extremum
of the MGWR residuals were the lowest for some indices, but the phenomenon of “low–
high–staggered” distribution was much more serious than that of the GWR residuals.
This may be because different bandwidths for various independent variables were used in
the MGWR model, while all independent variables in the GWR model shared one mean
bandwidth. Hence, the “fragmentation” phenomenon of the spatial distribution of GWR
residuals was much less intense than that of the MGWR residuals.

Figure 4. Maps of different model residuals for soil nutrients.

3.3.3. Results of Soil Nutrient Mapping Based on Different Models

Based on the above analysis, we drew spatial distribution maps of the soil nutrient
content in the study area based on different geospatial technologies (OK, RK, GWRK, MG-
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WRK) (Figure 5). A comparison of the results revealed that the overall spatial distribution
trends of nutrient indicators obtained by these different models were consistent. The spatial
prediction effect of the OK method was smoother. The mapping effects of RK and GWRK
were very similar, while the “fragmentation” phenomenon of the MGWRK mapping effect
was more prominent, which was basically consistent with the performance characteristics
of the residual spatial distribution map.

Figure 5. Distribution of soil nutrients mapped by different models.

The high-value areas of the SOM content in the study area were concentrated in the
east, whereas the low-value areas were concentrated in the west. The TN content of soil
decreased from the center of the study area toward the surrounding regions, which was
contrary to the distribution patterns of various topographical factors. This implies that the
TN content of soil in the study area is greatly affected by topographical factors. The AP
content of soil in the western region of the study area was higher than that in the east,
which was contrary to the characteristics of the spatial distribution of SOM. This may
be because the regional differences in the amount of fertilizer applied, along with the
fixed and difficult-to-move nature of phosphate fertilizers complicate the distribution of
soil phosphorus over a small area [56,57]. The AK content was obviously higher in the
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southeast region of the study area compared to the northwest. The study also found that
the soil nutrient content in the river valley is relatively high. This may be due to the flat
terrain and convenient irrigation conditions, which is beneficial to the accumulation of
various soil nutrient contents while soil nutrients are more likely to be lost in mountainous
and hilly areas. At the same time, human activities such as different main crops and
different management measures in various towns and small farm families may also cause
differences in the spatial pattern of soil nutrient content.

3.3.4. Evaluation of Model Accuracy

The prediction accuracy of the OK, RK, GWRK, and MGWRK models for soil nutrients
was comprehensively evaluated by comparing each model’s performance based on the
ME, MAE, RMSE, and Acc of 254 samples (Table 7). MLR, GWR, and MGWR participated
in model accuracy evaluation simultaneously. The results showed that, for different soil
properties, the best interpolation methods also differed depending on the selected auxiliary
factors. We concluded that the best prediction model for (i) SOM was RK, (ii) TN and AP
was RK or OK, and (iii) AK was GWRK.

Table 7. Evaluation index of each model.

Index Methods ME MAE RMSE ACC

SOM

OK 0.0232 4.4986 5.6669 0.8062
MLR −0.0001 5.6720 6.9999 0.7545
RK 0.0160 3.9056 4.9402 0.8317

GWR 0.0340 5.3505 6.6495 0.7696
GWRK 0.0244 4.4597 5.6152 0.8079
MGWR 0.1947 5.2317 6.6090 0.7785

MGWRK 0.0186 5.2615 6.6687 0.7759

TN

OK 0.0003 0.1832 0.2392 0.8450
MLR −0.0003 0.2234 0.2858 0.8117
RK 0.0004 0.1831 0.2388 0.8450

GWR −0.0019 0.1997 0.2598 0.8303
GWRK 0.0010 0.1942 0.2530 0.8358
MGWR −0.0007 0.1928 0.2512 0.8365

MGWRK 0.0007 0.1922 0.2504 0.8377

AP

OK −0.0048 3.6354 4.8464 0.6716
MLR 0.0000 4.6657 6.1906 0.5696
RK −0.0069 3.6383 4.8454 0.6712

GWR −0.0577 4.4876 5.9648 0.5883
GWRK −0.0086 3.8141 5.0737 0.6557
MGWR −0.0262 4.8092 6.3629 0.5645

MGWRK −0.0137 4.8087 6.3818 0.5674

AK

OK 0.0385 25.5836 33.9677 0.8200
MLR −0.0002 33.6282 43.9463 0.7601
RK 0.0419 25.7632 34.1836 0.8188

GWR 0.2043 31.4605 41.5619 0.7775
GWRK 0.0508 24.3765 32.4621 0.8286
MGWR −1.5545 39.4682 53.3011 0.7260

MGWRK −0.1635 39.4764 53.5148 0.7264
Notes: OK: Ordinary Kriging; MLR: Multiple Linear Regression; RK: Regression Kriging; GWR: Geographically
Weighted Regression; GWRK: Geographically Weighted Regression Kriging; MGWR: Multiscale Geographically
Weighted Regression; MGWRK: Multiscale Geographically Weighted Regression Kriging.

4. Discussion
4.1. Spatial Non-Stationary Relationship between Soil Nutrients and Environmental Variables

In actual situations, the relationships between environmental variables and soil nutri-
ents may vary geographically, i.e., spatial non-stationarity. Liu et al. [20] demonstrated in
their study that nearest distance to residential area (TRA), Normalized Difference Moisture
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Index (NDMI), slope, Normalized Difference Vegetation Index (NDVI), nearest distance to
road (TRD), and elevation were the dominant variables affecting the spatial distribution
of SOC stocks; while the other three factors (i.e., nearest distance to river (TRR), aspect,
and the land cover degree comprehensive index (LDCI)) did not play a dominant role in
any part of the study region.

SOM is a critical indicator for the evaluation of soil quality. Thus, this study took
SOM as an example to compare and analyze the regression effects of MLR, GWR and
MGWR. Table 8 showed that the GWR and MGWR models based on local regression idea
could better explore and explain the spatial non-stationarity characteristics of variables
than the global model MLR. It could also be seen from Table 7 that the MGWR model
performed better than the GWR model in various diagnostic indicators. For example, the
AICc value is reduced from 6947.297 (GWR) to 6823.630 (MGWR), and the R2 value is
increased from 0.165 (GWR) to 0.201 (MGWR), indicating that the MGWR model achieved
a higher fitting accuracy. The maps of standardized local coefficients for the different
explanatory variables by the MGWR model were provided in Figure 5, which could be
a reference for the contribution of each influencing factor to SOM in various locations.
The positive regression coefficients represent positive correlation, the negative regression
coefficients correspond to negative correlation, and the absolute coefficient values reflect
the degree of the influence of the factor on SOM [58].

Table 8. The diagnostic criteria of the different regression models.

Model RSS AIC AICC R2 Adjust R2

MLR 2347.743 7022.766 7024.853 0.075 0.072
GWR 2118.583 6939.399 6947.297 0.165 0.132

MGWR 2028.812 6816.744 6823.630 0.201 0.171
Notes: RSS denotes residual sum of squares, AIC denotes Akaike information criterion, AICc is the corrected
AIC.

Specifically, Figure 6b showed the standardized local coefficients of MAP (−2.39 to
3.86). MAP was negatively correlated with SOM in the northern region of the study area,
and with the increasing MAP, the negative effect between MAP and SOM also increased.
Whereas positive correlation was presented in the south, which indicated that SOM content
increased with rising MAP over this area. Figure 6c showed the negative correlation
between elevation and SOM in the western region, and the positive correlation in the
eastern region. The local coefficients of slope (Figure 6d) and SR (Figure 6e) showed similar
trends across the space. Both of them varied from positive to strongly negative from
northwest to southeast, which demonstrated that with the increase of slope and MAP in
the northwest of the study area, higher SOM could be observed, while the southeast is
the opposite. In terms of TR (Figure 6f), negative correlation between SOM and TR was
found in the north and southwest, while positive correlation was seen in the southeast.
The absolute coefficient value was the lowest in the central area, which indicated that the
central area was less effected by TR. Such spatial patterns could be due to the distribution
of TR (Figure 2g); the terrain of the central region is very flat, therefore the weak influence
from TR. In Figure 6g,h, it could be seen that the two explanatory variables (PC and TWI)
had a strong negative impact on SOM in the eastern part of the study area and positive
impact in the west. The negative effect in the eastern fringe was the greatest, which
indicated that PC and TWI play a critical role in the distribution of SOM here. The local
estimates of VC coefficients (Figure 6i) varied from strongly negative to strongly positive
from northwest to southeast. We also found that the impact of VC on SOM is very weak in
the central area, where the main land use type was construction land with low vegetation
coverage. Understanding the characteristics of spatial non-stationarity is helpful to further
explore the spatial relationships between environmental variables and soil nutrients.
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Figure 6. Spatial patterns of local coefficients in the MGWR.

4.2. Comparison of Model Performance in Soil Nutrient Mapping

Accuracy indicators were used to prepare radar charts to visualize the spatial predic-
tion accuracy of the different models (Figure 7). The prediction accuracy of the MLR was
not very good, and this approach provided the worst predictions of SOM and TN. Because
MLR is less flexible, it can only estimate soil nutrient content by fitting a global function.
If the relationship between soil properties and covariates is spatially variable rather than
globally fixed, MLR usually cannot simulate the distribution of soil nutrients accurately.
Although the regression equations and regression coefficients of the four nutrient indicators
passed the significance test, the low R2 values proved that each regression equation could
only explain a small part of the spatial variation of the corresponding data [59]. This may
be due to the non-linear relationship between soil nutrient indicators and environmental
parameters in Gaoping City; thus, traditional linear regression models are restricted for the
study area. However, by performing OK interpolation on the regression residuals, the pre-
diction accuracy of the RK model was significantly improved, and similar conclusions have
been drawn in previous studies [60–63].

The local regression model GWRK achieved a good prediction accuracy in most
cases because it considered the non-stationarity of the spatial parameters, the relationship
between each target variable and the explanatory variable, and the spatial distribution
characteristics and trends of the residuals [12]. Brian et al. [23] used the GWRK method to
predict the spatial pattern of soil pH at a depth of 15 cm. The results showed that, compared
with the global model based on MLR, the local model based on GWR significantly improved
the prediction accuracy of soil pH. Kumar et al. [24] estimated the SOC density in the
Midwest of the United States based on the GWRK method. The authors proved that GWRK
provides a useful visualization tool for SOC estimation on a regional scale when good
correlations exist between SOC and environmental variables, and when the residual has
spatial autocorrelation. These studies demonstrated that GWRK is a promising method for
spatial predictions of soil attributes.
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Figure 7. Radar chart of the prediction accuracy (Acc) values of different models, where a longer polyline corresponds to
greater accuracy. Notes: OK: Ordinary Kriging; MLR: Multiple Linear Regression; RK: Regression Kriging; GWR: Geo-
graphically Weighted Regression; GWRK: Geographically Weighted Regression Kriging; MGWR: Multiscale Geographically
Weighted Regression; MGWRK: Multiscale Geographically Weighted Regression Kriging.

As a newly proposed method, MGWRK has certain advantages in reducing the overall
residual level. The R2 of MGWR is also higher than that of GWR, but its prediction accuracy
is not very high compared with other models. Only in the prediction of TN, MGWRK
ranked in the top three. The MGWRK model accounts for the spatial scale effect of different
environmental covariates, which is a useful exploration. However, different bandwidths
also have an impact on the spatial distribution of the residuals, which may lead to the
failure of the MGWRK method to achieve the desired ideal effect. This was also reported by
Qiao Lei et al. [39], who selected 13 indices (i.e., aspect, slope, MAP, MAT, altitude, annual
cross primary productivity of vegetation, annual evapotranspiration, topographic wetness
index, plane curvature, stream power index, terrain position index, terrain ruggedness
index, and the annual average NDVI) as the environmental covariates, and compared the
capabilities of OK, RK, GWRK, and MGWRK on SOM prediction; their results showed that
the spatial prediction accuracy of the MGWRK method reached 69.0% of the RK method,
71.7% of the OK method, and 71.2% of the GWRK method. Therefore, MGWRK can provide
a method reference for the digital mapping of the soil nutrient content in the study region,
but its characteristics and performance require further investigation.

In summary, the use of hybrid technologies (RK, GWRK, and MGWRK) could improve
the spatial prediction accuracy of soil properties than pure regression models (MLR, GWR,
and MGWR). Hybrid methods also had advantages compared with OK, thus indicating
that taking heterogeneity and dependence into consideration is necessary when model
residuals showed moderate or strong spatial autocorrelation. Other studies reported similar
results [23,64,65]. Yang et al. [33] compared the performance of MLR, RK, GWR, GWRK,
MGWR, and MGWRK in mapping topsoil electrical conductivity (EC). The authors also
found that hybrid approaches (i.e., MGWRK, RK, and GWRK) occupied the first three
positions in the digital mapping of soil EC. However, the improvement of hybrid methods
is very limited in our study, which may be due to the fuzzy correlations between soil
properties and auxiliary variables [66]. The OK method, which makes full use of the
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spatial structure information of the data, has also achieved a satisfactory accuracy at a high
sampling density and with a strong spatial correlation of the sampled data. Therefore,
it may be more beneficial to design soil sampling rationally and obtain higher-quality
data of auxiliary variables than to look for complex statistical methods to improve spatial
prediction accuracy [10,67].

5. Conclusions

To summarize, this study compared the performance of OK, MLR, RK, GWR, GWRK,
MGWR, and MGWRK for the digital mapping of soil nutrients in Gaoping City, China.
The results showed that these models performed differently when predicting various in-
dicators. The hybrid methods (RK, GWRK, and MGWRK) improved model prediction
accuracy to a certain extent when the residuals were spatially correlated; however, this
improvement was not significant. The new method MGWRK has certain advantages in
reducing the overall residual level, but it failed to achieve the desired accuracy. Further ver-
ification of the applicable conditions and deviations of the MGWRK approach is required.
Considering the cost of modeling, the OK method still provided an interpolation method
with a relatively simple analysis process and relatively reliable results. This does not mean
that more complex models would lead to an improved model performance.

In addition, the prediction accuracy of a spatial regression model largely depends
on the correct selection of auxiliary variables. Although all the variables selected in this
study were natural factors, soil nutrients are simultaneously affected by five major soil-
forming factors and human factors. Human activities in low-altitude areas increase the
spatial variability of soil nutrients. Future research should select appropriate methods to
quantify management measures (e.g., planting systems, farming measurements), and then
incorporate them into models to further improve prediction accuracy.
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