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Abstract: Wind energy plays a key role in the sustainability of the worldwide energy system. It is
forecasted to be the main source of energy supply by 2050. However, for this prediction to become
reality, there are still technological challenges to be addressed. One of them is the control of the wind
turbine in order to improve its energy efficiency. In this work, a new hybrid pitch-control strategy is
proposed that combines a lookup table and a neural network. The table and the RBF neural network
complement each other. The neural network learns to compensate for the errors in the mapping
function implemented by the lookup table, and in turn, the table facilitates the learning of the neural
network. This synergy of techniques provides better results than if the techniques were applied
individually. Furthermore, it is shown how the neural network is able to control the pitch even if the
lookup table is poorly designed. The operation of the proposed control strategy is compared with the
neural control without the table, with a PID regulator, and with the combination of the PID and the
lookup table. In all cases, the proposed hybrid control strategy achieves better results in terms of
output power error.

Keywords: pitch control; wind turbines; neural network; lookup table; hybrid; sustainability

1. Introduction

Clean energy sources play a key role in ensuring the sustainability of the global energy
system [1]. Its deployment is a fundamental pillar to achieve the Paris Climate Goals [2].
Governments around the world are aware of this need, and, consequently, new directives
are emerging to promote the use of alternative energy sources. Among renewable energies,
wind is the second most widely used followed by hydroelectric, due to its high efficiency [3].
Moreover, some studies suggest that wind energy will be the main source of generation
by 2050 [1]. However, to meet this forecast, a number of engineering challenges related to
wind turbines must be addressed.

Wind turbines (WT) present several challenges in the field of automatic control. In
fact, from a control perspective, several objectives must be met simultaneously. While the
main aim is to stabilize the power output around the nominal value, attempts should be
made to reduce vibrations and ensure safety under all operating conditions. For this goal,
different control actions are proposed, related to the pitch angle, the angular speed of the
generator, and the orientation of the nacelle or yaw motion. The pitch control rotates the
orientation of the blades to adjust the angle of attack of the wind. This is useful to stabilize
the power around the rated value once the wind speed exceeds a certain threshold. On the
other hand, the control of the angular speed of the generator aims to follow the optimal
power curve when the wind is below this threshold. Finally, the yaw control changes the
orientation of the nacelle to match the main direction of the wind stream.

Proper maneuvering for fulfilling these control tasks effectively and efficiently is
not easy. The problem is even more serious in case of offshore wind farms, where gusty,
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stronger winds, the ocean waves, low temperatures, and other factors are affecting the
operation of the turbine, additionally [4].

This article addresses the problem of pith angle control. This is not a trivial task due to
the high nonlinearity of the turbine behavior, with complex dynamics and a strong coupling
between its internal variables. Furthermore, especially for floating offshore wind turbines
(FOWT), the uncertainty of external loads makes the control even more difficult and may
affect the vibration of the structure. Another problem that is not usually mentioned, but
it is also important, is security. Indeed, security and safety are closely related concepts,
as incorrect or malicious manipulation of the sensors or other embedded devices can
damage the wind turbine. These challenges have led to the exploration of intelligent
control techniques to provide solutions to this control problem.

As can be seen in the related works section, a promising path to explore for the WT
control is the combination of different techniques. Hence, in this work, a novel hybrid
pitch-control strategy that combines a lookup table (LUT) and a neural network (NN) is
presented. This hybrid approach makes the control of the complex and nonlinear dynamics
of the wind turbines very suitable for real-time control. The lookup table implements a
mapping function that relates the wind speed with a pitch reference, while the neural
network also calculates a complementary pitch reference by using the power error as input.
The table and the neural network work in a synergic way and complement each other.
The neural network is used to reduce the errors produced by imprecisions in the mapping
function. On the other hand, the lookup table facilitates the learning of the neural network.
It has also been proven that the neural network is robust enough to control the pitch angle
even if the table is incorrectly designed.

The performance of the hybrid neurocontroller has been simulated and compared
with the neural network control without the lookup table, with a PID regulator, and with
the combination of the lookup table with the PID. The proposed hybrid control approach
works better than the strategies it has been compared with and for the cases in which it has
been proven in terms of output power error.

The structure of the rest of the paper is as follows: The related works are presented
in Section 2. The mathematical model of the small wind turbine we are working with is
described in Section 3. Section 4 details the architecture of the proposed pitch neurocon-
troller. Simulation results are shown in Section 5, where comparisons among different
pitch-control strategies are presented and discussed. The paper ends with the conclusions
and future works.

2. Related Works

Among other strategies, various intelligent techniques have been used with satis-
factory results in the wind-energy field, such as fuzzy logic (FL), neural networks (NN),
reinforcement learning (RL), and genetic algorithms (GA) [5–7].

It is important to mention some of them in relation to wind-turbine control. In the
paper by Rubio et al. [8], a fuzzy-logic-based pitch-control system for a wind turbine
installed on a semi-submersible platform is presented. It is applied to the WT model OC4
that represents a 5 MW wind turbine. The fuzzy controller has as input the instantaneous
value of the wind speed, filtered and normalized according to the nominal speed, and
it gives the pitch reference. The authors of [9] designed a hierarchical fuzzy logic pitch
controller to solve the nonlinear system effects produced by atypical winds. It is compared
to a PID pitch-control system. From a different approach, fuzzy logic is applied to develop
a rule-based turbine selection methodology in [10]. The proposed methodology analyzes
several scenarios in conjunction with the turbine selection model. In [11], a robust H∞
observer-based fuzzy controller is designed to control the turbine using the estimated wind
speed. A Takagi–Sugeno fuzzy model with nonlinear consequent parts is introduced for
the variable speed and variable pitch wind turbine. Two artificial neural networks are used
to accurately model the aerodynamic curves.
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Asghar and Liu [12] designed a neurofuzzy algorithm for optimal rotor speed of a
wind turbine. It uses an adaptive neurofuzzy inference system for the online estimation
of effective wind speed from instantaneous values of wind-turbine tip speed ratio, rotor
speed, and mechanical power. The estimated value of effective wind speed is further
utilized to design the optimal rotor speed estimator for maximum power point tracking
of variable-speed wind turbine. In [13], an artificial neural network-based reinforcement
learning for WT yaw control is shown. The biggest challenge of the yaw control algorithm
is to decide the moment and the quantity of the wind-turbine orientation variation. To do
so, a novel algorithm based on the RL Q-Learning algorithm is introduced. It learns the
best control action for each different state of the wind turbine with respect to the wind
direction represented by the yaw angle. Then, a multilayer perceptron with artificial neural
network is applied. It has been tested on an onshore wind turbine.

Neural networks in the field of wind turbines have been applied but mainly on
fault diagnosis and condition monitoring, as information to train the network is needed.
For example, Li proposes the use of deep small-world neural network on the basis of
unsupervised learning to detect the early failures of wind turbines [14]. In [15], Takagi–
Sugeno models and multilayer perceptron are used to describe the relationships between
measurement and the fault signals. Fu uses deep learning to monitor the condition of the
gearbox bearing [16]. Cucarella presents the development of a low-power wind-turbine
prototype to simulate faults usually encountered in high-power wind turbines and then
apply intelligent techniques to diagnose different faults [17].

Nevertheless, there are some works that use neural network for the modeling and/or
control of the wind turbine. Demiderlen et al. combine artificial neural networks and
optimization models to predict the parameters of wind turbines [18]. In [19], a neural
controller based on a radial basis function neural networks is used for pitch control. The
RBF network uses the error of the output power and its derivative as inputs, while the
integral of the error feeds an unsupervised learning algorithm. A performance analysis of
this neurocontrol strategy is carried out and compared with a PID regulator for the same
small real onshore wind turbine.

In [6], a variable pitch controller combining back-propagation neural network with PID
is proposed. The BP neural network with self-learning and weighting coefficient correction
capability is used to adjust the PID parameters online. An active disturbance rejection pitch
controller of the wind turbines is designed based on the proposed BP-PID algorithm. Du
and Wang [20] propose a wind-turbine pitch controller based on BP neural network PI. The
neural network optimizes the PI parameters. The two pitch-control strategies of PI with
gain scheduling and BP neural network PI are compared. The authors of [21] analyze the
input and output data of wind farm based on deep neural networks, develop an intelligent
model with an extreme learning machine, and predict some parameter of the wind turbine.
Regarding the pitch control, in that paper, a radial basis function neutral network is used.

Reinforcement learning has also been an inspiration for the design of control strate-
gies [22–28]. A recent overview of deep reinforcement learning for power system applica-
tions can be found in Zhang et al. [29]. In Fernandez-Gauna et al. [7], RL is used for the
control of variable speed wind turbines. Particularly, it adapts conventional variable speed
WT controllers to changing wind conditions. As a further step, the same authors apply
conditioned RL (CRL) to this complex control scenario with large state-action spaces to
be explored [30]. In Abouheaf et al. [31], an online controller based on a policy iteration
reinforcement learning paradigm along with an adaptive actor-critic technique is applied
to the doubly fed induction-generator wind turbines. Sedighizadeh proposes an adaptive
PID controller tuned by RL [32]. An artificial neural network based on RL for WT yaw
control to enhance the aerodynamic adaption capability of the wind turbine is presented in
Saénz-Aguirre et al. [13]. In a more recent paper, the same authors propose a performance
enhancement of this wind-turbine neuro-RL yaw control [33]. RL is also used in [28], where
the state estimator uses different reward strategies related to the energy deviation from the
rated power to make the pitch control more efficient. In the paper by Chen et al. [34], based
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on reinforcement learning and system state data, a robust wind-turbine controller that
adopts adaptive dynamic programming is proposed. The ADP algorithm is a combination
of temporal-difference algorithm and actor-critic structure, which can guarantee the rotor
speed is stable around the rated value to indirectly adjust the wind energy utilization
coefficient by changing the pitch angle in the area of high wind speed and achieve online
learning in real time. Interestingly, in Lin et al., 2020, deep learning is applied to investigate
the major driven force on the mooring line tension of a FOWT model [35].

3. Mathematical Model of the Wind Turbine

In this work, a mathematical model of a small 7 kW wind turbine has been used. The
equations which describe the effective wind speed, the electric current, and the power in
the generator are summarized in (1–8). The development of these expressions is further
explained in [19,36,37].

A graphical schema of the model, that may help to understand the relationships
between the mechanical and electrical parts and the variables is shown in Figure 1.
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where La is the armature inductance (H), Kg is a dimensionless constant of the generator,
Kφ is the magnetic flow coupling constant (V·s/rad), Ra is the armature resistance (Ω), w
is the angular rotor speed (rad/s), and Ia is the armature current (A). The values of the
coefficients c1 to c9 depend on the characteristics of the wind turbine, J is the rotational
inertia (Kg·m2), R is the radius or blade length (m), ρ is the air density (Kg/m3), vin is the
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wind speed (m/s), ve f f is the effective wind speed in the rotor (m/s), K f is the friction
coefficient (N.m/rad/s), θre f is the pitch reference (rad), and θ is the pitch angle (rad).

On the other hand, the resistance of the load is assumed to be purely resistive. Thus,
the output power is defined by (9), where Ia is the output current of the generator and
RL (Ω) is the load.

Pout = RL·Ia
2, (9)

The wind velocity, vin, is filtered to take into account the shape of the blades (2–3).
This fact produces what we called the effective wind ve f f . The parameters of this filter
are [α, β, γ, τ]. On the other hand, the pitch actuator has been modeled as a second order
system with parameters [Tθ , Kθ ], as it is common in this type of actuators.

From these equations it can be seen that the controlled variable is the output power,
Pout, and the manipulated variable is the pitch reference, θre f . The velocity of the generator
and the current in the armature are the state variables.

4. Description of the Neurocontroller

The aim of this control strategy is to stabilize the output power around its rated value
using blade angle control. The architecture of the controller is shown in Figure 2. The block
WT represents the mathematical model of a real wind turbine. The control strategy consists
of a lookup table (LUT), an RBF neural network (NN), a learning algorithm, and some
nonlinear saturators.

As shown in Figure 2, the lookup table (LUT) works in open loop; it receives the wind
velocity and generates a reference for the pitch angle, θLT . As it may be expected, the larger
the speed, the bigger the pitch angle, as the pitch control aims to stabilize the power. If
the mapping function implemented by the LUT were perfect, the pitch reference given
by the LUT would stabilize the output power around its nominal value. However, due
to inaccuracies in the model, disturbances, etc., this is not the case. Thus, the role of the
NN will be to adjust online the control law to reduce these imprecisions and undesirable
effects.
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The NN acts as a nonlinear controller, and hence, it works with the error of the
controlled variable, the output power, and its derivative. It has as input the difference
between the current output of the WT, Pout, and the nominal power, Pre f , that is, the power
error, Perr. The gains of this neurocontroller are adjusted by the learning algorithm when it
updates the weights of the NN.

In this neurocontrol approach, the power error Perr and its derivative dPerr/dt are
considered. The derivative is used as input in order to capture the dynamics of the system.
Therefore, the distance of the pair (Perr, dPerr/dt) to the center of the neuron is the input
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of the exponential function of each RBF neuron. However, if this distance is large, the
contribution of the neuron to the output is negligible; thus, the total output of the network
is practically null, and the pitch reference would not vary with the power error. In order to
limit this effect, the input space is bounded. Input values outside the limits are saturated to
ensure a minimal contribution to the output value of the neural network.

The neural network obtains another pitch reference, θNN . Both pitch references, θLT
from the lookup table and θNN from the neural network, are combined to obtain the final
pitch reference for the wind turbine. This reference is saturated to keep it within the range
of the pitch signal, [0, pi/2] rad.

This controller is formally described by Equations (10)–(17).

θLT(ti) = fLT(Vin(ti−1)), (10)

Perr(ti) = Pre f (ti−1)− Pout(ti−1), (11)

.
Perr(ti) =

1
Tc

(Perr(ti−1)− Perr(ti−1 − Tc)), (12)

PerrS(ti) = MIN(PerrMAX , MAX(PerrMIN , Perr(ti))), (13)
.
PerrS(ti) = MIN

(
dPerrMAX , MAX

(
dPerrMIN ,

.
Perr(ti)

))
, (14)

θNN(ti) = fNN

(
Perr(ti),

.
Perr(ti), WNN(ti−1)

)
, (15)

θre f (ti) = MIN
(π

2
, MAX(0, θLT(ti)− θNN(ti))

)
, (16)

WNN(ti) = WNN(ti−1) + fLA(Perr(ti)), (17)

where ti is the current time, fLT : R→
[
0, π

2
]

is the mapping function of the lookup table.
The neural network function is fNN : R→ R , and WNN is the set of weights of the neural
network; fLA : R→ R denotes the function performed by the learning algorithm to update
the NN weights; the values PerrMAX , PerrMIN , dPerrMAX , and dPerrMIN are parameters of the
controller to adjust the range of the NN input; and MIN() and MAX() denote the minimum
and maximum, respectively. Although any neural network can be used, NNs with regres-
sion capabilities such as radial basis (RBF-NN) or multilayer perceptron (MP-NN) provide
better results. Depending on the type of NN used, the functions fNN and fLA are different.

Equation (12) applies the backward approximation of the derivative. In this case, it is
the average variation rate of the power error within the previous control period, Tc. That
is, the difference between the error Perr(ti−1) and at the start of the control period Tc, so
Perr(ti−1 − Tc).

The implementation of the NN has been done with an RBF-NN. The number of hidden
neurons has been set to 25. The number of neurons has been set by trial and error to obtain
a good balance between performance and computational complexity. The centers of the
neurons are equally distributed in the input space, as it is commonly assumed that the
whole input space contributes the same to the output, if there is not any extra information
to think otherwise. Therefore, the σi parameter is set in advance to the same value for all
the neurons. The input space of the neural network

(
Perr,

.
Perr

)
is discretized applying a

gridding in order to map it to the output space. The 2D Euclidean distance has been used.
The NN learns online based on the power output error, minimizing it. The weights

of the NN are updated online by the learning algorithm described in [19]. This algorithm
receives the power error Perr and updates online the weights of the neural network using
Equation (18).

fNN(Perr) = µPerre−
dist(Perr ,

.
Perr ,c1,c2)
σ , (18)

where µ is the learning rate, (c1, c2) represent the center of each neuron, and σ is the
width of the neuron. An increment in the power error produces an increment in the
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weights, meaning that a smaller pitch reference is obtained, which leads to a larger power
to compensate the power error.

In the experiments, the value of σ is 0.2, and µ is 0.001.
The lookup table and the NN are thought to complement each other (Figure 2). This

makes the learning converges even if the mapping function of the LUT is not well defined.
That is, the neural networks are able to obtain the correct the value of the pitch reference
with a lookup table poorly designed. Only an increasing relationship between wind speed
and pitch angle is enough to define it. Indeed, different lookup tables have been tested
with similar results.

On the other hand, the LUT improves the results provided by the NN in the following
way: the output space of the NN is [−π/4, π/4], but the input range of the WT pitch angle
is [0, pi/2]. Hence, a bias is applied to match those ranges.

When the NN is applied without the lookup table LUT, its output is θRBF, and the bias
is π

4 , i.e., exactly half the input range of the WT. This formula works well when the wind
speed is around half the range of the pitch operation.

θRBF =
π

4
− fNN

(
Perr,

.
Perr

)
(19)

However, when the NN is combined with the LUT, the bias is obtained by the output
of the LUT (20) and then adjusted using the wind speed in real time. This provides better
results than applying a fixed bias in this case.

θTRBF = fLT(Vin)− fNN

(
Perr,

.
Perr

)
(20)

The sensitivity of the aerodynamic power to the pitch angle varies in the high-wind-
speed region; therefore, gain scheduling would be required to improve the performance of
a PID control system. However, in our approach the role of the gains of the PID is played
by the weights of the neural network. These weights are online updated by the learning
algorithms (17–18) to fit the proper control law.

5. Comparison with Other Control Strategies and Analysis of the Simulation Results

Several simulation experiments have been carried out to test the validity of this hybrid
control approach, using Matlab/Simulink software. The duration of the simulations is 250 s.
In order to reduce the discretization error, a variable step has been used. The maximum
step size has been set to 10 ms, and the control period Tc is 100 ms.

The performance of the proposed control strategy has been compared with several
alternatives: namely, a PID, the lookup table combined with the PID, and the application
of the neural network without a lookup table. These control solutions can be described by
Equations (21)–(23), respectively.

θPID =
π

4
−
[

Kp · Perr + KD ·
.
Perr + KI

∫
Perr

]
, (21)

θTPID = fLT(Vin)−
[

Kp · Perr + KD ·
.
Perr + KI

∫
Perr

]
, (22)

θRBF =
π

4
− fNN

(
Perr,

.
Perr

)
, (23)

where θPID is the output of the PID controller, θTPID is the output of the controller which
combines the lookup table and the PID, θNN is the output of the RBF without the lookup
table, and θTRBF is the output of the hybrid controller.

The PID gains, [KP, KD, KI] have been determined by trial and error and set to the
values [1, 0.2, 0.1] ∗ (π/4 PerrMAX ).
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The performance of the control strategies has been evaluated by the MSE, mean and
Std metrics, calculated by Equations (24)–(26), respectively.

MSE[W] =

√
1

Tsim
∑

i

[(
Pout(ti)− Pre f

)2
Ts(ti)

]
, (24)

Mean[W] =
1

Tsim
∑

i
[Pout(ti) · Ts(ti)], (25)

Std[W] =

√
1

Tsim
∑

i

[
(Pout(ti)−Mean)2Ts(ti)

]
, (26)

The controller has been tested with different wind velocity profiles: a random profile,
a sinusoidal one, a square profile, and a sawtooth one. The random wind speed is a white
Gaussian noise signal with a minimum value of 12.25 m/s and a maximum value of 13 m/s.
The sinusoidal wind has a mean value of 12.625 m/s, an amplitude of 0.375 m/s, and a time
period of 50 s. The square wind profile has a minimum value of 12.25 m/s, a maximum
value of 13 m/s, and a time period of 50 s. Finally, the sawtooth-shaped wind has the same
minimum, maximum, and time period values.

The values of the parameters used in the WT model are shown in Table 1. They have
been extracted from [36] for a 7 kW wind turbine.

Table 1. Parameters of the wind-turbine model [36].

Parameter Description Value/Units

La Inductance of the armature 13.5 mH
Kg Constant of the generator 23.31
Kφ Magnetic flow coupling constant 0.264 V/rad/s
Ra Resistance of the armature 0.275 Ω
RL Resistance of the load 8 Ω
J Inertia 6.53 Kg m2

R Radius of the rotor 3.2 m
ρ Density of the air 1.223 Kg/m3

K f Friction coefficient 0.025 N m/rad/s
[c1, c2, c3] Cp constants [0.73, 151, 0.58]
[c4, c5, c6] Cp constants [0.002, 2.14, 13.2, 18.4]
[c7, c8, c9] Cp constants [18.4,−0.02,−0.003]
[Kθ , Tθ] Pitch actuator parameters [0.15, 2]
[α, β, γ, τ] Filter constants [0.55, 0.832, 1.17, 9]

[PerrMIN , PerrMAX ] Limits of the Perr saturator [−1100, 1100]
[dPerrMIN , dPerrMAX ] Limits of the

.
Perr saturator [−1000, 1000]

5.1. Performance Evaluation of Different Pitch-Control Approaches

The four mentioned WT pitch-control approaches have been applied. In Figure 3,
the output power, the pitch angle, and the wind profile are shown with random wind
(Figure 3a,c,e) and sinusoidal wind (Figure 3b,d,f), with the parameters detailed above. The
blue line represents the output obtained when the pitch reference is set to 0◦, meaning the
transferred mechanical power is maximum; the red line represents feather position of the
blades, i.e., the pitch angle is 90◦ and thus, minimum power transference. For this reason,
these lines are the boundaries of the output power signal in all the figures. The yellow
line represents the results obtained when the lookup table is combined with the RBF-NN,
named TRBF; the purple one shows the output of the RBF-NN without the lookup table.
When the lookup table is combined with the PID, the TPID signal is red, and the green line
represents the PID output. Finally, the black dashed line is the rated output power. All
the results have been captured at iteration 10. In the wind profiles (Figure 3e,f), the blue
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line represents the input wind speed, vin in (3); and the red line shows the effective wind
speed, ve f in (3).

When the wind is random all the close-loop strategies stabilize the power around
the nominal power. However, it is noticeable how the settling time is much smaller when
the hybrid TRBF or only the RBF network are applied. In addition, the MSE (Table 2) is
also smaller for these techniques. Moreover, the TRBF produces smaller overshoot. In the
case of sinusoidal wind, Figure 3b, again TRBF gives the best results followed by RBF. The
performance of the PID and TPID control strategies is much worse than the other two. The
biggest difference is the amplitude of the oscillations, which is almost 300 W for the PID
and only 100 W for TRBF and RBF.
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As expected, when the wind profile is random, the pitch angle is slightly noisier if
the lookup table is used (TAB, TPID, and TRBF control configurations). This may be due
to the fact that the wind, which is the input to the table, introduces noise. The strategies
that do not depend directly on the wind to obtain the pitch reference (0◦, 90◦, RBF, and
PID) are less sensitive to noisy wind. Indeed, it is possible to see that the noisiest pitch
angle occurs with the TAB control configuration, as neither the RBF network nor the PID
regulator which smooths the pitch reference is applied. On the other hand, the sinusoidal
shape is observable in the pitch angle when the wind has this sinusoidal profile.

Independent of the wind profile, the effective wind shows a peak around t = 10 s. This
explains the initial peak in the output power which appears in Figure 3a,b.

Figure 4 shows the output power, the pitch angle, and the wind profile when different
control strategies are applied for a square-wave (Figure 4a,c,e) and sawtooth wind profiles
(Figure 4b,d,f). The color code is the same as in Figure 3. The square and sawtooth shapes
are clearly shown in the boundaries of the red and blue lines. In both cases, the PID
presents the worst results. The combination of the PID with the lookup table improves its
performance. In particular, the control response is much faster than the square-wind profile
changes. In this case, however, the performance of the TRBF and RBF control strategies is
good but not much better than the TPID one. This may be explained by the fact that RBF
usually does not give good results with input signals that present large discontinuities, as
is the case of the square-wave wind profile.

Nevertheless, TRBF and RBF control configurations give a good response with a
sawtooth wind profile. As in the case of sinusoidal wind, the amplitude of the oscillations
is much smaller, and thus, the MSE is as well (Table 2). The difference between the
amplitude of the oscillation with the PID in relation to TRBF and RBF responses is over
200 W. Unlike with the square wind, in this case, the performance of the TPID control is
clearly poorer than the TRBF and RBF control strategies.

Again, in these figures the shape of the wind can be observed in the pitch angle but
smoother due to the dynamics of the pitch actuator. This fact is more significant when the
lookup table is used. In general, it is possible to observe how the lookup table enlarges the
effective range of the pitch angle.

In addition to the graphical results shown in Figures 3 and 4, numerical results have
been obtained to compare the performance of the controllers. Tables 2–4 show the results of
the different metrics evaluated, MSE, Std, and mean. The wind profiles are the same as in
the previous experiments. The different control strategies are shown in the columns: TRBF
is the combination of RBF-NN and the lookup table; RBF is just the NN without lookup
table; TPID is the combination of the PID regulator and the lookup table; PID represents
the PID control without the lookup table, and TAB denotes the lookup table without any
other controller. The best results have been boldfaced. The row “Mean” shows the average
value of the four above rows.

It is possible to observe that the best MSE and Std results are generally obtained with
the TRBF control strategy when the wind has a sawtooth-wave profile. This may be due
to the singularities of the wind profile. Curiously, the TPID control configuration gives
the best results for low-velocity random winds. The worst results are given by the PID
controller, followed by the lookup table control strategy. The combination of PID and
lookup table generally improves the results with respect to the application of only the PID.
On the other hand, the application of the RBF network gives better results than TAB, PID,
and TPID controls.

As expected, Std values are similar to MSE (see Equations (22) and (24)). In fact, when
the mean is equal to the output power reference, both are the same. However, the Std
metric focuses on the measurement of the variation no matter the value of the output power
reference.
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As it may be seen in Table 4, the best mean values are obtained with the PID and
TPID control strategies. It may be explained as, in general, when PID control is applied the
difference between the low values and the power reference is smaller than the difference
between the high values and the reference. This negative trend tends to compensate the
peak that appears the first 20 s in Figures 3 and 4.
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Table 2. MSE [W] comparison for different control strategies and wind profiles.

Wind Profile TRBF RBF TPID PID TAB

Random 11.75–12.5 160.426 158.578 151.3329 169.653 195.736
Random 12.25–13 172.022 175.993 182.556 174.636 191.472

Random 12.75–13.5 226.132 231.356 239.226 241.738 264.491
Sinusoidal 204.578 209.105 288.215 337.303 297.478

Square 335.097 337.245 348.372 405.249 369.020
Sawtooth 167.444 162.722 251.910 284.161 285.387

Mean 210.949 212.500 243.602 268.790 267.264

Table 3. Std [W] comparison for different control strategies and wind profiles.

Wind Profile TRBF RBF TPID PID TAB

Random 11.75–12.5 160.579 167.039 138.091 141.277 173.031
Random 12.25–13 169.142 172.821 182.555 174.535 183.258

Random 12.75–13.5 195.631 203.711 208.920 211.386 186.121
Sinusoidal 200.488 205.055 288.197 337.148 295.886

Square 336.801 337.284 404.724 404.724 365.118
Sawtooth 164.568 160.115 251.821 284.162 283.033

Mean 201,102 201,741 240,563 255,205 244,456

Table 4. Mean [W] comparison for different control strategies and wind profiles.

Wind Profile TRBF RBF TPID PID TAB

Random 11.75–12.5 6983.80 6981.00 6937.81 6905.73 6908.22
Random 12.25–13 7033.36 7035.62 6999.02 7005.60 7055.10

Random 12.75–13.5 7113.24 7113.44 7116.36 7117.21 7187.50
Sinusoidal 7040.24 7040.54 6996.40 6989.41 7030.40

Square 7007.74 7007.52 7024.31 7020.00 7053.14
Sawtooth 7030.52 7028.96 6992.98 6999.00 7036.28

Mean 7034.81 7034.55 7011.13 7006.11 7045.12

5.2. Evaluation of the Learning Strategy

In this section, the learning of the control strategies based on neural networks, i.e.,
TRBF and RBF, is evaluated. Several simulation experiments with different wind profiles
have been carried out. Unlike in previous experiments, where the data are collected at
iteration 10, here the evolution of the MSE with the number of iterations is also presented.

Figure 5 shows the MSE evolution with random (Figure 5a) and sinusoidal (Figure 5b)
wind profiles. The blue lines represent the results when the RBF-NN is applied without
the lookup table and the red ones when the neural network is combined with the lookup
table, TRBF. The MSE with the TRBF configuration is always smaller than with only the
RBF neural control.

The improvement is not constant but has a growing trend with the random wind. This
indicates that the MSE continues decreasing after iteration 10, meanwhile the curve of RBF
gets flat. However, in the case of sinusoidal wind, there is a clear decreasing trend in the
learning rate for both curves. Even so, the error of hybrid TRBF control is always smaller
than the neural network error. The difference between these curves decreases during the
first iterations, but then it is stabilized and maintains a constant value.



Sustainability 2021, 13, 3235 13 of 17

Sustainability 2021, 13, 3235 13 of 18 
 

Table 4. Mean [W] comparison for different control strategies and wind profiles. 

Wind Profile TRBF RBF TPID PID TAB 

Random 11.75–12.5 6983.80 6981.00 6937.81 6905.73 6908.22 

Random 12.25–13 7033.36 7035.62 6999.02 7005.60 7055.10 

Random 12.75–13.5 7113.24 7113.44 7116.36 7117.21 7187.50 

Sinusoidal 7040.24 7040.54 6996.40 6989.41 7030.40 

Square 7007.74 7007.52 7024.31 7020.00 7053.14 

Sawtooth 7030.52 7028.96 6992.98 6999.00 7036.28 

Mean 7034.81 7034.55 7011.13 7006.11 7045.12 

5.2. Evaluation of the Learning Strategy 

In this section, the learning of the control strategies based on neural networks, i.e., 

TRBF and RBF, is evaluated. Several simulation experiments with different wind profiles 

have been carried out. Unlike in previous experiments, where the data are collected at 

iteration 10, here the evolution of the MSE with the number of iterations is also presented. 

Figure 5 shows the MSE evolution with random (Figure 5a) and sinusoidal (Figure 

5b) wind profiles. The blue lines represent the results when the RBF-NN is applied with-

out the lookup table and the red ones when the neural network is combined with the 

lookup table, TRBF. The MSE with the TRBF configuration is always smaller than with 

only the RBF neural control. 

The improvement is not constant but has a growing trend with the random wind. 

This indicates that the MSE continues decreasing after iteration 10, meanwhile the curve 

of RBF gets flat. However, in the case of sinusoidal wind, there is a clear decreasing trend 

in the learning rate for both curves. Even so, the error of hybrid TRBF control is always 

smaller than the neural network error. The difference between these curves decreases dur-

ing the first iterations, but then it is stabilized and maintains a constant value. 

  
(a) (b) 

Figure 5. (a) Comparison of the MSE evolution with random wind; and (b) comparison of the MSE 

evolution with sinusoidal wind. 

Figure 6 shows the MSE evolution with a square-wave (Figure 6a) and a sawtooth 

(Figure 6b) wind profiles. The color code is the same as in Figure 5. In the case of the 

square wave, the learning is faster with the hybrid TRBF control scheme, and the MSE is 

always smaller than with only the RBF network. However, for the sawtooth wind profile, 

the results of Table 2 are confirmed, i.e., RBF control is better, although this difference is 

reduced over time. 

Figure 5. (a) Comparison of the MSE evolution with random wind; and (b) comparison of the MSE
evolution with sinusoidal wind.

Figure 6 shows the MSE evolution with a square-wave (Figure 6a) and a sawtooth
(Figure 6b) wind profiles. The color code is the same as in Figure 5. In the case of the
square wave, the learning is faster with the hybrid TRBF control scheme, and the MSE is
always smaller than with only the RBF network. However, for the sawtooth wind profile,
the results of Table 2 are confirmed, i.e., RBF control is better, although this difference is
reduced over time.
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5.3. Influence of the Values of the Lookup Table

The sensitivity to changes of the lookup table values is here analyzed. As explained
before, the lookup table implements a mapping function fLT : R→ [0, π/2 ] of the wind
speed Vin (m/s) into the pitch reference angle θLT (rad). Figure 7 shows different mapping
functions that have been evaluated. The blue line is a straight line between the points
(12.15, 0) and (13.1, pi/2) of both coordinates, wind speed, and pitch angle (Rect). The
red one is a third-order polynomial with derivative value zero at points (12.15, 0) and
(13.1, pi/2), (3Ord). The yellow line is a curve obtained by trial and error to test a different
configuration (def). Finally, the purple line represents a curve that has been intentionally
wrongly obtained, where, contrary to expected, larger wind velocities produce smaller
pitch references (bad).

For this wind turbine, with the parameters defined in Table 1, the minimum wind
velocity that provides an output power above 7 kW, when the pitch is permanently set
to 0◦, is 12.15 m/s. On the other hand, the maximum wind velocity which provides an
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output power below 7 kW, when the pitch is permanently set to 90◦, is 13.1 m/s. For this
reason, the boundaries of the mapping function are (v = 12.15, pitch = 0◦) and (v = 13.1,
pitch = 90◦).
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Figure 7. Different mapping functions implemented in the lookup table.

In the first experiments, the three curves “Rect”, “3Ord”, and “def”, have been consid-
ered. Figure 8 shows the evolution of the MSE with random (a) and sinusoidal (b) wind
profiles. The blue lines represent the results of the RBF neurocontrol; the results of the MSE
of hybrid TRBF with “Rect” curve (red), “3Ord” (yellow), and the curve defined by trial
and error “def” (purple) are also represented. As it may be observed, the results are similar
no matter the curve applied. That is, the hybrid control strategy is robust to uncertainties
in the table design. The only exception is the third-order curve for the random wind. In
this case, the MSE of the hybrid TRBF configuration is close to the MSE of the RBF network,
and the lookup table does not improve the response significantly. Although the results are
similar, a careful look at the figures shows how, as expected, the “def” curve produces the
best performance.
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Figure 8. (a) MSE for different mapping functions with random wind; and (b) MSE for different
mapping functions with sinusoidal wind.

Figure 9 shows the MSE evolution with a square-wave (Figure 9a) and a sawtooth
(Figure 9b) wind profile. The color code is the same as in Figure 8. Again, all curves provide
similar results, although the worst performance is obtained with the “3Ord” curve and the
best with the “def” curve, except for iterations 3, 4, and 6 with square-wave wind, where
the “Rect” performance is better.
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Figure 9. (a) MSE for different mapping functions with square-wave wind; and (b) MSE for different
mapping functions with sawtooth wind profile.

Finally, the robustness of the hybrid control approach against errors in the lookup
table is tested. A curve with a wrong relation between wind speed and pitch reference is
used (Figure 7, purple line). The results are shown in Figure 10 for random (Figure 10a) and
sinusoidal (Figure 10b) winds. The blue lines represent the RBF network control results and
the red ones the hybrid TRBF control strategy. As expected, the performance of the TRBF
approach is worse as the neural network has to counteract the incorrect pith reference, θLT .
However, it is remarkable how, still, the NN is robust enough to handle the wrong lookup
table and, moreover, the learning convergence is good even in this complex situation.
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6. Conclusions and Future Works

The use of wind as a renewable energy resource grows year after year due to the
development and technological maturity of wind turbines (WT). In fact, they are essential
to ensure the sustainability of the worldwide energy grid. However, there are many
engineering challenges related to WT that must be addressed to improve their efficiency.

A synergy of techniques has been successfully used to model and control complex
systems. In this work, a new hybrid strategy is proposed to control the pitch of a small wind
turbine. The approach combines a neural network and a lookup table. The lookup table
and the RBF-NN complement each other. On the one hand, the NN learns to compensate
for errors produced by inaccuracies or erroneous values in the lookup table. On the other
hand, the lookup table facilitates the learning of the neural network. In this way, the hybrid
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control strategy provides better results than the techniques applied individually, as shown
by simulation results.

The hybrid control proposal has been validated on a model of a 7 kW turbine. Its
performance has been compared to an RBF-NN control without a lookup table, with a PID
controller, and with the combination of the PID and the lookup table. In all cases, the new
control solution provides better results for different wind profiles.

The learning strategy has been analyzed. Moreover, the hybrid control strategy has
been shown to be robust against lookup table failures. In fact, the NN is capable of
controlling the pitch even if the lookup table is intentionally incorrectly designed. A lookup
table has been used where the relationship between the wind speed and the pitch reference
is the opposite of expected; that is, higher wind speeds produce lower pitch references.
Even in this case, the proven control strategies have been successful.

As future work lines, it is planned to apply these control strategies to a larger turbine,
scaling the model, to prove that it is possible to generalize these pitch-control solutions to
any turbine. Furthermore, the methodology here proposed might be applied to working
wind farms, both offshore and terrestrial, and compare the results. It would also be
desirable to test this approach on a real turbine or on a prototype.
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