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Abstract: From the Kyoto Protocol to the Copenhagen Conference and the Paris Agreement, eco-
environmental problems have gradually become a matter of common concern worldwide. Eco-
efficiency (EE) is an essential indicator for measuring levels of sustainable development. This
study uses an epsilon-based measure (EBM) model with undesirable outputs to evaluate the EEs of
30 Chinese provinces during the research period 2008 to 2017, and a spatial Durbin model (SDM) to
search for the impact factors of EE. The results indicate that most provinces in China have a low EE
level. The EE value of the eastern area is higher than are those for the central, western, or northeastern
areas. The EE in China as a whole demonstrates an inverted V-shaped trend with a high point in
2011. The SDM shows that economic development level, foreign trade dependence, and technological
progress exert significant positive effects on EE, while population density exerts significant negative
influences on EE. This paper provides scientific bases for the formulation of policies resulting in
sustainable development.

Keywords: Eco-efficiency; the EBM model with undesirable outputs; spatial Durbin model

1. Introduction

The global mean temperature has risen 0.85 ◦C between 1880 and 2012, and this was
mainly caused by human activities [1]. According to the IPCC report, average temperatures
across the world are likely to rise by 4 ◦C above pre-industrial levels without effective action
to inhibit greenhouse gas emissions [2]. In this context, the Paris Agreement was signed to
prevent the global mean temperature from rising to more than 2 ◦C above pre-industrial
levels, while working to curb the rise to 1.5 ◦C above pre-industrial levels [3]. Therefore,
probing the relationship between economic growth and the resource environment is of
great significance for sustainable global development.

Eco-efficiency (EE) is an essential indicator for measuring levels of sustainable de-
velopment [4]; it was first proposed by Schaltegger and Sturm [5] and emphasized the
creation of more goods and services while consuming fewer resources and producing less
waste and pollution [6]. This accords with the core idea of sustainable development, which
fosters the harmonious development of the economy, resources, and environment.

In recent decades, China has undergone rapid and stable economic growth. China
already has, in fact, the second-largest economy in the world, and its share of global GDP
passed the 14.8% mark in 2018 [7]. However, the economic growth of China still largely
bears the cost of sacrificing the ecological environment [8]. China is the largest consumer of
energy, accounting for 23.2% of global energy consumption in 2018 [9], and also is the most
significant source of CO2 emissions, producing 21.2% of global CO2 emissions in 2016 [10].
According to the 2018 Environment Performance Index (EPI), China’s EPI ranked 120 in all
the 180 countries and regions in 2018 [11].

Facing the ever-increasingly severe problems of both global warming and the eco-
logical environment, the Chinese government has proposed a goal of building a beautiful
China and setting up a five-sphere integrated plan; this requires that, while taking eco-
nomic construction as the central task, there must also be comprehensive advances of
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the construction of political, economic, cultural, social and ecological development [12].
However, China also faces the problem of vast territories with regional differences re-
garding resource endowment, technology accumulation, and capacity for environmental
governance. Therefore, the formulation of a policy for pollutant reduction in different
regions must not apply the “one size fits all” approach. In 2011, the Chinese government
promulgated the main functional area planning, which has required the implementation
of different environmental strategies in different regions [13]. The environmental policies
should be designed separately to account for the concrete EE conditions in various areas.
What then are the characteristics of regional EE? What are the primary factors that lead
to changes in EE? Only by recognizing and mastering these challenges can policymakers
avoid establishing ineffective or harmful strategies for eco-environmental improvement.

In general, methods for EE evaluation can be divided into the stochastic frontier
analysis (SFA) and data envelopment analysis (DEA) methods. However, traditional DEA
methods, such as the Charnes–Cooper–Rhodes (CCR) model, Banker–Charnes–Cooper
(BCC) model, and the slacks-based measure (SBM) model, have their own limitations. CCR
and BCC neglect the non-radial slacks; this limitation may cause a biased measure of the ef-
ficiency score of the decision-making unit (DMU). The SBM model requires input or output
variables to change proportionally, and cannot cope with other cases properly [8,14–22].
The epsilon-based measure (EBM) model with undesirable outputs is a recent approach
to evaluate the EE, which can compensate for the weakness of traditional DEA methods
as well as deal with undesirable outputs [15–26]. Additionally, the common methods for
analyzing the factors driving EE, the Tobit model, Spatial Lag Model (SLM), and Spatial
Error Model, also have their own strengths and weaknesses. The traditional Tobit model
fails to consider spatial factors [23]. Although spatial effects are involved in the Spatial Lag
Model (SLM) and Spatial Error Model, the lags in both spatial independent variables and
the dependent spatial variable are not considered at the same time in these models [27–29].

The major contributions of this article include: (1) The factors influencing EE were
determined by using the Spatial Durbin model (SDM), which overcomes the drawbacks of
both SEM and SLM, and includes spatial lags in the explained variable and independent
variables [27,30]. (2) This study uses the empirical research results to propose a series of
development policies designed to accomplish the targets of both the energy savings and
emissions reductions, and suggestions for future research are also provided herein.

The rest of the article is as follows: In Section 2, the relevant researches are reviewed
and evaluated. In Section 3, the article introduces the EBM model with undesirable outputs
and the SDM method. In Section 4, indicator selection and data sources are described. In
Section 5, the paper analyzes the characteristics of Chinese EE levels and explores their
causes. Section 6 involves concluding the research results and offering policy suggestions.
The flowchart is given in Figure 1.

Figure 1. Flowchart of the empirical research of Eco-efficiency (EE) in China.
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2. Literature Review

EE evaluation methods can, in general, be divided into the stochastic frontier analysis
(SFA) and data envelopment analysis (DEA) approaches. SFA estimates a parametric
frontier of the best possible practices given a standard cost or profit function [31] and is
applied in EE measurement of some economic sectors [32–34]. However, as a parametric
method, it requires the evaluated parameters to be independent, which is very difficult to
keep consistent with reality [31,35–38].

The DEA method was established by Charnes et al. [39] and is a model for calculating
the efficiency score of a DMU; it does not require any prior assumption about the production
frontier and can deal with complex systems that have multiple inputs and outputs [23].
Hence, DEA is widely utilized in studying EE (Table 1). The traditional DEA models
can be divided into two categories: radial models, such as the CCR and BCC models,
and non-radial models. For instance, Fan et al. [40], Pai et al. [41], Moutinho et al. [42],
Rybaczewska-Błaże and Gierulski [43], and Shah and Dong [44] have applied the radial
models to calculate the EE at different spatial levels. However, such radial DEA models
fail to take the effect of nonradial slacks on the technical efficiency into account and cannot
realize the factor decomposition when calculating the technical efficiency, which can cause
biased estimation results [8]. To capture the slack factors, a non-radial DEA model called
the slack-based measure (SBM) was proposed by Tone [45]; however, it does not consider
undesirable outputs. In 2003, Tone proposed the SBM with an undesirable outputs model
that can capture slack factors and also incorporate pollutant emissions as the undesirable
output factor [46]. Therefore, the SBM with undesirable outputs model is the most common
in calculating EE across sectors and industries [47–49]. However, in the SBM methods, the
slacks are not necessarily proportional to the inputs or outputs, the DMU may lose the
proportionality in the original inputs or outputs [50]. Based on the shortcomings of the SBM
methods, Tone and Tsutsui [17] proposed the epsilon-based measure (EBM), which can take
radial and non-radial factors into account simultaneously. Yang et al. [16] applied the EBM
DEA model to calculate the ecological energy efficiency of in the Chinese 30 provinces from
2007 to 2015, but the pollutants, such as SO2 and NOx, were used as input indicators. To
estimate the Urban EE in China, Chen et al. [51] proposed the EBM model with undesirable
outputs, which can combine both radial and non-radial features into a composite model
and also deal with undesirable factors.

Table 1. Summary of data envelopment analysis (DEA) applications to the assessment of eco-efficiency.

Author Methodology Objects and Period Variables

Fan et al. [40] CCR and BCC DEA models The eco-efficiency levels of 40
Chinese industrial parks in 2012

Input: Land, Energy, Water
Desirable output:
Industrial value added
Undesirable output: Wastewater, Solid waste,
COD, SO2

Pai et al. [41] CCR and BCC DEA models Th eco-efficiencies of 60 industrial
parks in Taiwan

Input: Site area, Labor force, Electricity, Water,
Waste discharge, Airborne, Particles
Output: The overall operating
income

Moutinho et al. [42] BCC DEA model
The eco-efficiency of the 16 Latin
American countries from 1994 to
2013

Input: Population density, labor productivity,
Energy, Renewable energy, Gross capital
formation productivity
Output: The inverse ratio of carbon intensity

Rybaczewska-Bła˙
zejowsk and
Gierulski [43]

Life cycle assessment (LCA)
and BCC DEA model

Th eco-efficiencies of agricultural
production in 28 member states of
the European Union in 2015

Input: Labor, Capital, Energy
Desirable output: GDP
Undesirable output: SO2

Shah et al. [44] CCR and BCC DEA models

The eco-efficiency at the industrial
park/complex level of Ulsan
metropolis and Korea in 2005, and
2010, and 2015

Input: Land, Labor force, Energy Output:
Gross output
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Table 1. Cont.

Author Methodology Objects and Period Variables

Peng et al. [47] The SBM DEA model with
undesirable outputs

The eco-efficiency of the Huangshan
National Park in China from 1981 to
2014

Input: Average wage level of employees, New
fixed asset investment, Energy, Water,
Desirable output: Per capita tourism income
Undesirable output: Garbage, Sewage, Waste
gas

Ning et al. [48] The SBM DEA model with
undesirable outputs

The eco-efficiency of state-owned
forestry enterprises in Northeast
China from 2003 to 2015

Input: Labor, Capital, Land
Desirable output: Total output, Sale
Undesirable output: Effluent, Exhaust,
Solid-waste

Zheng et al. [49] The SBM DEA model with
undesirable outputs

The eco-efficiency of the Chinese 31
provinces from 2000 to 2015

Input: Water footprint;
Labor force; Capital, Cost of
resource and environment, Land
Desirable output: GDP
Undesirable output: Gray water footprint,
Environmental pollutants

Wang et al. [50] The SBM DEA model with
undesirable outputs

The eco-efficiency of regional
tourism in Chinese 31 provinces
from 1997 to 2016

Input: Labor, Capital, Water, Energy
Desirable output: Revenue from tourism
Undesirable output: Tourism effluent
discharge
Tourism waste discharge
Tourism SO2, Tourism CO2,

Yang et al. [16] The EBM DEA model
The ecological energy efficiency of
in Chinese 30 provinces from 2007
to 2015

Input: Labor, Capital, Energy, SO2, NOX
Desirable output: GDP

Chen et al. [51] The EBM DEA model with
undesirable outputs

The ecological efficiency of in
Chinese 259 cities from 2007 to 2016

Input: Labor, Capital, Energy, Water, Land
Desirable output: GDP
Undesirable output: Industrial
discharged wastewater, Industrial sulfur
dioxide emission, Industrial soot (dust)
emission

The mainstream methods for exploring the impact of EE are divided into two cate-
gories: one is the Tobit model, which is represented by a non-spatial panel data model, and
the other is the conventional spatial panel data model, which is represented by the Spatial
Lag Model (SLM) and Spatial Error Model (SEM). The Tobit model is applicable when the
dependent variable may be truncated [52]. Wang et al. [53], Ma et al. [54], Zhu et al. [55],
Liu et al. [56], Zhong et al. [57], and Dong et al. [58] have applied the Tobit method to
analyze related EE factors. However, according to the theory of the First Law of Geography,
everything is related to everything else, but near things are more related than distant
things [59]. Therefore, the non-spatial Tobit model omits the spatial correlation, and the
estimation results may exhibit some deviation from real results when there are spatial
correlations among variables [23,59]. The conventional spatial panel data models, such as
SLM or SEM, can consider the spatial factors. SLM is also known as a spatial autoregressive
model [60]. SLM contains a spatially lagged explained variable and hypothesizes that
the explained variable in the local area can be influenced by the explained variable in the
neighboring areas. SEM includes a lagged error term and hypothesizes that the errors in
neighboring areas are likely to interact [61]. The two spatial methods have been widely
employed in analyzing the causal factors of EE in different countries and regions [62–67].

This literature review shows that SLM or SEM have been the main methods used to
explore the factors influencing EE. However, SLM only contains the lag term of the spatial
explained variable, and SEM only introduces error terms into spatial autocorrelation [68].
Therefore, they cannot take the spatial interaction of explanatory variables into account.

The breakthrough of the research approach is as follows: Spatial Durbin model (SDM)
is applied to investigate the factors affecting EE. This was proposed by Lesage and Pace [27].
SDM contains both the spatially lagged dependent variable and independent variables, not
only taking the spatial dependence of the explained variable into account but also that of
the explanatory variables [27,68].
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3. Methodology
3.1. The EBM DEA Model with Undesirable Outputs

The DEA is a non-parametric analysis approach used to calculate the technical effi-
ciency of DMUs. The traditional DEA models are generally divided into two categories:
Radial models, such as CCR and BCC models, or Non-radial models, such as an SBM
model. Radial models ignore the slack variables and require that the inputs change in
the same proportion, which often does not conform with reality. Non-radial SBM models,
which capture the non-radial slacks, seek to maximize the input and output inefficiencies by
identifying the points farthest from the frontier [69]. However, they may lose the original
proportion of the input because of the slack variable. To resolve these problems, Tone and
Tsutsui [17] proposed the EBM (Epsilon-Based Measure) DEA model, which can combine
the advantages of both radial and non-radial DEA methods. The standard EBM model can
exhibit the proportionality between the target value and the actual value and adequately
reflect the contrast between the non-radial part of inputs or outputs [70]. This gives full
consideration to the undesirable output factors that are by-products accompanying the
economic output. Based on Chen et al. [51], and Wu et al. [69], and Ren et al. [71], the EBM
DEA model with undesirable outputs is expressed as

κ∗ = min

 α− εx ∑m
i=1

ω−i s−i
xi0

β + εy ∑S
r=1

ω
+g
r s+g

r
yr0

+ εb ∑
q
p=1

ω−b
p s−b

p
bp0

s.t.



n
∑

j=1
xijλj + s−b

i = αxi0 i = 1, 2, . . . , m

n
∑

j=1
yrjλj − s+g

r = βyr0 r = 1, 2, . . . , s

q
∑

j=1
bpjλj + s−b

p = βbp0 p = 1, 2, . . . , p

λj ≥ 0, s−b
i ≥ 0, s+g

r ≥ 0, s−b
p ≥ 0

(1)

Here κ* is the efficiency score, and it ranges from [0, 1]; Variables m, s, and q stand for
the numbers of inputs, desirable outputs, and undesirable outputs, respectively. Parameters
xi0, yr0, and bpo represent input i, desirable output r, and undesirable output k of the
decision-making unit0 (DMU0), respectively. s−i , s+g

r and s−b
p indicate the slacks of the ith

input, the rth desired output, and the pth undesired output, respectively. ω−i is ith input
weight, ∑ ω−i = 1

(
∀iω−i ≥ 0

)
. ω

+g
r and ω−b

p represent the desired output weight and the
undesired output weight, respectively. εy denotes the set of radial β and non-radial slacks;
εx and εy meet the conditions: 0 ≤ εx ≤ 1 and 0 ≤ εy ≤ 1.

3.2. Global Moran’s I

The existence of spatial autocorrelation for EE can be verified by Global Moran’s I and
its formula is measured as follows:

Global Moran′ I =
∑N

i=1 ∑N
j=1 Wi,j

(
EEi,t − EEt

)(
EEj,t − EEt

)[
1
N ∑N

i=1
(
EEi,t − EEt

)2
]

∑N
i=1 ∑N

j=1 Wi,j

(2)

where W indicates spatial matrix; in this paper, if province i and j are adjacent, Wi,j = 1 and
not adjacent to 0. N represents the total amount of research provinces. EE represents the
mean value of the EE. The range of Global Moran’s I is [−1, 1]. When Global Moran’s I > 0
means that EE has a positive spatial correlation. If Global Moran’s I < 0, it indicates that the
stronger the negative correlation in the spatial distribution. When Global Moran’s I = 0, the
EE of different provinces demonstrates spatially as independent or random distributions.

The significance of Global Moran’s I can be examined by Z-test, which can be calcu-
lated as follows:

Z =
I − E(I)√

V − (I)
(3)
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where E(I) and V(I) stand for the expected value and variance of Global Moran’s I, respec-
tively. If |Z|> 1.96 or |Z|> 2.54, indicates spatial autocorrelation that is significant at the
0.05 or 0.01 confidence level, respectively.

3.3. Spatial Durbin Model

There are marked spatial correlations among adjacent geographical units with respect
to certain phenomena of economic geography or certain specific property values [59]. The
traditional spatial regression equation is constructed as follows:

Y = ρWY + βX + u
u = λWu + ε

ε ∼ N
(
0, σ2 In

) (4)

Here, ρWY refers to the spatial lag of the explained variable, ρ represents the spatial
autoregression coefficient, WY denotes the spatial lag explained variable, λWu is the
spatial error term, λ indicates the autoregressive parameter, and u and ε are both error
perturbations [30].

When ρ = 0 and λ = 0, model (4) is a conventional linear model, suggesting that the
explained variable has no relationship to the spatial effects. If ρ = 0 and λ 6= 0, model (4)
becomes the SEM, implying that an explained variable is randomly affected by adjacent
areas. When ρ 6= 0 and λ = 0, model (4) becomes the SLM. In this model, the spatial
autocorrelation can be explained by a spatially lagged dependent variable in the SLM.

However, there are obvious shortcomings in both SLM and SEM. The dependent
variable may be explained, not just through a lag effect of the dependent variable or spatially
autocorrelated error term, but also through a spatially lagged explained variable and
spatially lagged explanatory variables simultaneously. The SDM combines the characters
of SLM and SEM, can include the spatial interaction effects from both dependent and
independent variables [72], can also inspect the effect of the variable error on observation
values, and can then yield a more accurate result [27]. Therefore, this study applies the
SDM to analyze the influential factors of EE, which is presented in Equation (5):

Y = ρWY + βX + θWX + ε (5)

In Equation (5), W represents spatial matrix; θWX stands for the spatial lag of the spa-
tial lagged independent variables [30]; the definitions of the other variables in Equation (5)
are consistent with those in Equation (4).

4. Data Source and Indicator Selection

This study consists of evaluations of EE and influencing factors in China, using panel
data for 30 continental provinces from 2007 to 2018. Data from Tibet were not included. As
shown in Figure 2, the paper divides these provinces into four regions in accordance with
China’s National Bureau of Statistics.

4.1. Indicators of EE Evaluation

Following Fan et al. [40], Zhang et al. [73], Yang and Zhang [74], and Yu et al. [75], the
study chooses capital stock, the total number of employees, total water consumption, and
total energy consumption as input indicators. Chinese agencies have not published data on
provincial capital stock, and these data must, therefore, be calculated. To do so, the paper
applied the perpetual inventory method as follows: Ci,t = Ii,t + (1 − δ)Ci,t − 1. C and I
represent the capital stock and gross fixed capital formation, respectively. The subscripts
i and t indicate the province i and year t, respectively, and δ is the depreciation rate of
capital stock. Consistent with Zhang [76], the paper suggested the value of δ is 9.6% and
calculated capital stock in 2010 as equal to the value of the gross fixed capital formation
in 2004 divided by 10%. The capital stock data were converted into 2008 constant prices.
The data on gross fixed capital formation, the total number of employees, and total water
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consumption, and urban construction land were taken from the China Statistical Yearbook
(CSY) (2009–2018) [76]. The data on energy consumption come from the China Energy
Statistical Yearbook (2009–2018) [77].

Figure 2. The schematic diagram of four economic zones of China.

The article selected GDP as the desired output. According to the total major pollutant
emission reduction assessment methods published by the State Council of China in 2007,
SO2, smoke and dust, COD (Chemical Oxygen Demand), and ammonia nitrogen are the
key monitoring pollutants; CO2, a major cause of greenhouse gas, is also a cause of climate
change and global warming. Therefore, the paper identified them as undesirable outputs.
The data on CO2 were collected from China Emission Accounts and Datasets (2020) [78].
The other data on pollution emission were collected from the CSY (2009–2018) [76]. Table 2
shows the summary statistics of the variables.

Table 2. EE measurement index system.

Primary
Indicators Secondary Indicators Mean Std. Dev Min Max

Inputs

Capital stock (unit: 108 yuan) 68,357.9 46,755.2 5832 231,280
Labor force (unit: 104) 2666.7 1744.7 301 6767

Total energy consumption (unit: 104 tons
of SCE)

13,624.5 8157.9 1135 38,899

Total water consumption (unit: 108 L) 201 142 22.3 591.3
Urban construction land (unit: sq.km) 1567.1 1078.1 109 5577

Desired
outcomes GDP (unit: 108 yuan) 18,559.3 15,297.9 1019 80,956

Undesired
outcomes

CO2 emissions (unit: 106 tons) 300.5 192.2 25 842
SO2 emissions (unit: 104 tons) 63 40.7 1.43 182.7

Smoke and dust emissions (unit: 104 tons) 58.9 43. 5.75 198.3
COD emissions (unit: 104 tons) 43.4 31.1 1.47 179.8

Ammonia nitrogen (unit: 104 tons) 6.25 4.51 0.56 23.09

4.2. Factors Influencing EE

The higher the regional economic development level, the greater is the capacity for
environmental governance. Consulting Zhu et al. [55], Dong et al. [58] Xu [79], and
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Liu et al. [80], the article selected GDP per capita to represent the level of economic
development. The data on GDP per capita were converted into the 2008 constant price.
The anticipation is positive.

The index of the industrial structure reflects the distribution of industry in an area. The
higher the level of industrial structure, the more effective is the allocation of resources. Ra-
tional allocation of resources, to an extent, promotes stable and healthy development in the
regional ecological environment. Therefore, with reference to Zhu et al. [55], Zhou et al. [81],
and Shi and Wang [82], the study has selected the ratio of the tertiary industry to provincial
GDP as the index for measuring industrial structure and expect that this has positive effects
on EE.

Developing foreign trade can effectively encourage mechanisms of competition, pro-
mote rational allocation of resources, and improve technical progress in local enterprises.
Following Ma et al. [54], Xu [79], Liu et al. [80], and Zhou et al. [83], the study selected the
ratio of the total foreign trade volume to the provincial GDP to evaluate dependence on
foreign trade.

Advanced production technology can improve the efficiency of resource utilization,
optimize industrial infrastructure, and improve EE. The scale and intensity indicators of
research and development (R&D) activities are generally used to measure the strength
and core competitiveness of science and technology. Based on the work of Dong et al. [58],
Liu et al. [80], and Zhou et al. [84], the study selected the ratio of R&D expenditure to
provincial GDP for measuring the level of technological progress.

As a consequence of urbanization, the demand for energy and resources increases,
resulting in more emissions of pollutants. This, in turn, becomes a barrier to improving
EE [85,86]. Therefore, the influence of urbanization on EE should be negative.

Population density exerts important impacts on the regional economy and environ-
mental protection. An increase in population density increases the labor force and the
number of consumers, which can promote economic growth; however, it also results in
greater consumption of resources and increases the pressure on the ecological environ-
ment. Following Guan and Xu, [62], Zhou et al. [80], Díaz-Villavicencio et al. [87], and
Chen et al. [88], the study selected population density as a control variable (Table 3).

Table 3. Influencing factors.

Explanatory Variable Variables’ Definition and Unit Key References Pre-Judgment

Economic development
level (EDL) GDP per capita (104 RMB) [55,58,79,80] Positive

Industrial structure (IS)
The proportion of the added value of

the tertiary industry to provincial GDP
(%)

[55,81,82] Positive

Foreign trade
dependence(FTD)

The proportion of the total import and
export trade to provincial GDP (%) [54,79,80,83] Unknown

Technological progress
(TP)

Proportion of R&D expenditure to
provincial GDP (%) [58,80,84] Positive

Urbanization level (UL) The proportion of city population in
total population (%) [85,86] Negative

Population density(PD) Ratio of the total regional population to
regional area (person/sq.km) [62,84,87,88] Unknown

5. Empirical Analysis
5.1. Overall Characteristics of Chinese EE

The EE of each province from 2008 to 2017 was calculated using the EBM model with
undesirable outputs, and results are shown in Table 4.

Table 4 shows the indices for the EEs of the 30 provinces of China for the period 2008
to 2017. From the table, we can see that the overall development level of EE in China is
relatively low that the average EE of the 30 provinces in China is 0.674, which does not
reach the efficiency frontier, and there is considerable room for development. In comparing
regions, one observes that the Eastern area is the most highly developed region, the Central
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area is the second most highly developed, and it is followed by the Western area, and the
Northeast area is the lowest; (Figure 3).

Table 4. EE of 30 provinces in China from 2008 to 2017.

Regions Provinces 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean

East

Beijing 1 1 1 1 1 1 1 1 1 1 1
Tianjing 1 1 1 1 1 1 1 1 1 1 1
Hebei 0.751 0.696 0.732 0.738 0.69 0.666 0.634 0.643 0.641 0.593 0.678
Shanghai 1 1 1 1 1 1 1 1 1 1 1
Jiangsu 0.889 0.884 0.893 0.855 0.811 0.789 0.78 0.761 0.773 0.75 0.818
Zhejiang 1 1 1 0.905 0.874 0.814 0.805 0.861 0.893 0.831 0.898
Fujian 1 1 1 0.852 0.792 0.771 0.755 0.743 0.778 0.7 0.839
Shandong 0.772 0.759 0.8 0.783 0.734 0.738 0.697 0.695 0.713 0.682 0.737
Guangdong 1 1 1 1 1 1 1 1 1 1 1
Hainan 0.569 0.645 0.607 0.635 0.631 0.581 0.589 0.509 0.558 0.56 0.588
Mean 0.898 0.898 0.903 0.877 0.853 0.836 0.826 0.821 0.836 0.812 0.898

Central

Shanxi 0.66 0.619 0.633 0.662 0.614 0.597 0.57 0.564 0.546 0.517 0.598
Anhui 0.535 0.543 0.591 0.62 0.605 0.597 0.569 0.582 0.591 0.558 0.579
Jiangxi 0.623 0.624 0.659 0.684 0.649 0.632 0.622 0.612 0.619 0.581 0.631
Henan 0.703 0.686 0.706 0.708 0.662 0.644 0.614 0.622 0.652 0.626 0.662
Hubei 0.565 0.59 0.599 0.635 0.613 0.625 0.574 0.618 0.626 0.563 0.601
Hunan 0.657 0.625 0.69 0.736 0.713 0.706 0.68 0.715 1 0.661 0.718
Mean 0.624 0.614 0.646 0.674 0.643 0.633 0.605 0.619 0.672 0.584 0.624

West

Inner Mongolia 0.666 0.665 0.661 0.674 0.639 0.632 0.604 0.637 0.699 0.658 0.653
Guangxi 0.55 0.607 0.639 0.664 0.601 0.582 0.567 0.566 0.565 0.525 0.587
Chongqing 0.629 0.616 0.649 0.68 0.702 0.705 0.672 0.666 0.678 0.647 0.664
Sichuan 0.655 0.637 0.672 0.703 0.672 0.661 0.63 0.627 0.616 0.58 0.645
Guizhou 0.551 0.549 0.619 0.622 0.588 0.573 0.554 0.544 0.527 0.469 0.56
Yunnan 0.598 0.598 0.623 0.617 0.6 0.604 0.564 0.555 0.538 0.491 0.579
Shaanxi 0.683 0.782 1 1 0.718 0.682 0.654 0.664 0.682 0.621 0.749
Gansu 0.508 0.51 0.546 0.557 0.541 0.542 0.512 0.523 0.524 0.507 0.527
Qinghai 0.604 0.6 0.633 0.654 0.599 0.538 0.499 0.49 0.502 0.475 0.559
Ningxia 0.364 0.368 0.413 0.413 0.397 0.391 0.377 0.366 0.364 0.343 0.38
Xinjiang 0.472 0.477 0.499 0.502 0.472 0.452 0.424 0.422 0.423 0.392 0.454
Mean 0.571 0.583 0.632 0.644 0.594 0.578 0.551 0.551 0.556 0.519 0.571

Northeast

Liaoning 0.565 0.578 0.615 0.639 0.618 0.605 0.59 0.597 0.592 0.55 0.595
Jilin 0.51 0.511 0.541 0.539 0.535 0.55 0.54 0.539 0.552 0.526 0.534
Heilongjiang 0.552 0.561 0.607 0.628 0.605 0.591 0.559 0.56 0.571 0.544 0.578
Mean 0.542 0.55 0.588 0.602 0.586 0.582 0.563 0.565 0.572 0.54 0.542

Average EEs in Chinese provinces 0.688 0.691 0.721 0.724 0.689 0.676 0.654 0.656 0.674 0.632 0.680

Figure 3. Average EE values in 30 Chinese provinces (2008–2017).
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During the period considered, the overall national mean EE and those for the western
and northeastern regions demonstrate inverted V-shaped trends with maxima realized in
2011. The eastern region shows a downward trend, while the eastern region presents an
M-shaped fluctuation trend with two high points in 2011 and 2016 (Figure 4).

Figure 4. The evolutionary trend of EE in China and four regions from 2008 to 2017.

5.2. Regional Characteristics of EE
5.2.1. Eastern Area

Levels of EE are especially high in the eastern part of China. The efficiency values
of Beijing, Tianjing, Shanghai, and Guangdong have always been 1. The eastern area has
a better economic basis and enjoys geographical advantages. Since the economic reform,
the Chinese government promotes an unbalanced development strategy in which the
capital and policy considerations were focused on the Eastern area [89]. Meanwhile, new
foreign production technologies and management methods were actively brought into the
region [54], and these have had a positive effect in increasing technology stocks. With the
exceptions of Hebei and Hainan, each province in the region has a high EE value far above
the national average. Because of efforts to disperse non-capital functions, many secondary
industries exhibiting high pollution and high energy consumption were transferred from
Beijing to Hebei, leading to increases in production emissions in Hebei [23]. Hainan officials
have failed to do the work of reducing emissions: emissions of CO2, SO2 and COD, and
ammonia nitrogen in Hainan rose from 2008 to 2014, which inhibited improvement in the
EE. Hainan showed a fluctuating trend in EE scores, while Hebei, Jiangsu, Zhejiang, Fujian,
and Shandong exhibit decreasing trends during the study period.

5.2.2. Central Area

The mean EE value for the six provinces of central China is 0.624, which is close to the
national average. The mean EE value in Hunan is higher than the national average. For
Henan, it is the lowest, with an average value smaller than 0.6 during the study period, even
though the EE exhibits an ascending trend until 2016. The cause of this phenomenon is that
Henan did not succeed in reducing emissions until 2016. Shanxi also presents a downward
trend. Shanxi has huge energy resources, and particularly possesses an abundance of
coal; the traditional economic model brings severe environmental pollution and ecological
damage to Shanxi [90,91]. The EE values of Anhui and Jiangxi were initially rising and
then declined, with the maximum EE appearing in 2011. Though pollutant emissions in
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Anhui and Jiangxi were largely under control after 2011, CO2 emission remains high and
exerts some restraint on the EE. The other two provinces in the central part of China show
fluctuating trends during the study period.

5.2.3. Western Area

China’s Western area has a comparatively low EE overall, with an average score of
0.571. The EE level of Shaanxi is above the national mean, while Ningxia and Xinjiang have
the lowest EE levels in the country. This is the result of their unfavorable geographical
situations and obsolete modes of production, technology, and management. The majority of
the western provinces are important providers of resources and suffer from the inadequate
accumulation of technology. Therefore, their economic development depends heavily
on the consumption of resources and energy. In 2000, the State Council of China issued
the “Western Development Strategy.” Various preferential policies were implemented by
the western provinces to attract industrial investment. Eastern provinces and foreign
enterprises transferred many of their industries to the western area, and these are mainly
labor and resource-intensive industries [92]. As a result, the economic growth pattern for
the region has distinctive features of high investment growth, high consumption support,
and high emission maintenance, and these exert negative impacts on regional EE.

5.2.4. Northeastern Area

The average EE value of the Northeastern area is 0.542, which is below the national
average. The mean EE values of the region initially exhibit increasing trends and then
suffer subsequent declines. In the observation period, the average EE values of Liaoning,
Jilin, and Heilongjiang were 0.595, 0.534, and 0.578, respectively. The EE in Liaoning
and Heilongjiang first rose and then declined, and the maximum EE appeared in 2011.
Because of resource exhaustion, eco-environmental pollution, and the traditional economic
structure, the Northeast area experienced a recession in the 1990s. As a result, in 2003 the
Chinese central government implemented a strategy designed to revive the old Northeast
industrial base and prescribed an array of preferential policies in the Northeastern area.
However, the economic recovery of the region was still heavily dependent on fossil fuels
and the release of pollutants [93].

5.3. Regression Results and Analysis
5.3.1. Smulticollinearity Test

According to the correlation coefficient matrix between variables (Table 5), the correla-
tion coefficients of some independent variables are greater than 0.7, which means that there
may be significant multicollinearity among the variables concerned. Hence, a variance
inflation factor (VIF) test is necessary. As shown in Table 6, all the values of VIF are less
than 10, which indicates that there is no significant multicollinearity between the variables.

Table 5. The correlation test.

InEE InDEL InIS InFTD InTP InUL InPD

InEE 1
InDEL 0.5409 *** 1
InIS 0.3723 *** 0.5964 *** 1
InFTD 0.7037 *** 0.5694 *** 0.5214 *** 1
InTP 0.6892 *** 0.6621 *** 0.5329 *** 0.6349 *** 1
InUL 0.5991 *** 0.9122 *** 0.6726 *** 0.7089 *** 0.7090*** 1
InPD 0.6723 *** 0.4279 *** 0.4240 *** 0.6707 *** 0.7078*** 0.5293 *** 1

Note. *** indicates significance at the 1% level.

5.3.2. Spatial Autocorrelation Test

The study applied the Global Moran’s I index to determine whether there was a spatial
correlation in the EE values. The results are presented in Table 7, and the values of the
index are positive and statistically significant at the 5% level during the observation year,
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which means that the EE values of Chinese provinces exhibit a significantly positive spatial
autocorrelation. In more concrete terms, provinces with high EE tend to be adjoining, while
provinces with low EE adjoin other provinces with low EE.

Table 6. The variance inflation factor (VIF) test.

InDEL InIS InFTD InTP InUL InPD Mean VIF

VIF 6.63 1.86 2.80 3.01 9.66 2.51 4.41
1/VIF 0.150881 0.537701 0.357327 0.331950 0.103474 0.398968

Table 7. Value of Moran’s I of provincial EE in China (2008–2017).

Year Moran’s I Z-Score p-Value

2008 0.423 *** 3.696 0.000
2009 0.417 *** 3.653 0.000
2010 0.299 *** 2.682 0.007
2011 0.257 ** 2.364 0.018
2012 0.381 *** 3.406 0.001
2013 0.343 *** 3.102 0.002
2014 0.380 *** 3.411 0.001
2015 0.318 *** 2.890 0.004
2016 0.285 ** 2.591 0.010
2017 0.327 *** 2.977 0.003

Note: *** and ** indicate significance at the 1%, and 5% levels, respectively.

5.3.3. LM and Robust LM Tests

The tests described above confirm a notable autocorrelation phenomenon for EE in
China. In such a case, the application of non-spatial panel data analysis methods might
exhibit some biases [94]. With an abundance of caution, a series of statistical tests were
carried out for deciding the appropriate model for empirically investigating the main
determinants of EE.

The paper prepared the non-spatial panel models and performed the corresponding
(robust) Lagrange multiplier (LM) lag and LM error tests. Table 8 presents the test results.
In the LM tests, the null hypothesis of the non-spatially autocorrelated error term is rejected
(statistics: 189.649, p = 0.000). The null hypothesis of the non-spatially lagged response
variable is also rejected (statistics: 50.831, p = 0.000). In the robustness LM tests, the null
hypothesis of the non-spatially autocorrelated error term is rejected (statistics: 139.848,
p = 0.000), while the null hypothesis of the non-spatially lagged response variable is not
rejected. Obviously, these results indicate that the spatial panel models are superior to
non-spatial panel models. To ascertain the robustness of the model selection, the Wald and
LR tests are applied subsequently.

Table 8. The results of Lagrange multiplier and Robust Lagrange multiplier test.

Spatial Error: Spatial Lag

Moran’s I 3.707 ***
Lagrange multiplier 189.649 *** 50.831 ***
Robust Lagrange multiplier 139.848 *** 1.030

Note: *** indicates significance at the 1% level.

5.3.4. Wald and LR Tests

The test results implied that the test statistics in Wald-lag, LR-lag, Wald-error, and
LR-error are statistically significant (Table 9), which means that SDM was more appropriate
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than SLM or SEM. The Hausman test indicates that fixed effects are not rejected. As shown
in Equation (5), the explicit regression equation for SDM with fixed effects is:

InEEi,t = ρWInEEi,t + β1DELi,t + β2ISi,t + β3FTPi,t + β4TPi,t +
β5ULi,t + β6PDi,t +θ1WDELi,t +θ2WISi,t + θ3W*FTDi,t +θ4WTPi,t +

θ5WULi,t +θ6WPDi,t +εi,t εi,t ~ N(0, σ2
i,t In),

(6)

where t stands for the year; i denotes the province; EE represents the eco-efficiency; ρ in-
dicates the spatial autoregressive coefficient of dependent variables; β is the unknown
parameter; θ is the spatial autocorrelation vector of the explanatory variable; DEL, IS, FTP,
TP, UL, EA, and PD express economic development level, industrial structure, foreign
trade dependence, technological progress, urbanization level, and population density,
respectively; ε is the stochastic disturbance item.

Table 9. The regression results of Likelihood ratio test and Wald test.

Fixed Effects Random Effects

Wald test spatial lag 501.84 *** 127.34 ***
LR test spatial lag 134.89 *** 134.89 ***
Wald test spatial error 22.27 *** 7.13 ***
LR test spatial error 30.65 *** 30.65 ***

Note: *** indicates significance at the 1% levels.

The estimation results of the three fixed-effects models are displayed in Table 10. The
LR test was applied to choose the most applicable model. The null hypothesis of the the
spatial fixed effects are jointly insignificant is rejected at the 1% significance level. Moreover,
The null hypothesis that the time fixed effects are jointly insignificant is rejected at the 1%
significance level. Therefore, we choose SDM with spatial and time fixed-effects as the final
empirical model for analyzing the factors affecting EE.

Table 10. The regression results of spatial Durbin model (SDM).

Spatial Fixed-Effects Time Fixed-Effects Spatial and Time Fixed-Effects

InDEL 0.397 *** 0.053 0.402 ***
InIS 0.091 ** −0.200 *** 0.092
InFTD 0.026 * 0.124 *** 0.027 *
InTP 0.080 * 0.078 0.080 *
InUL −0.105 0.125 −0.127
InPD −0.046 *** −0.040 * −0.044 ***
WInDEL −0.306 *** −0.064 −0.259
WInIS −0.008 0.141 −0.003 ***
WInFTD −0.024 −0.095 *** −0.041
WInTP −0.067 −0.037 −0.045
WInUL −0.046 −0.035 −0.012
WInPD 0.069 *** 0.042 0.055
Spatial rho 0.772 *** 0.684 *** 0.701 ***
Variance sigma2_e 0.005 0.010 0.005
R-squared 0.775 0.640 0.672
Log-likelihood 335.771 249.772 338.962

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

5.3.5. Analysis Results

The economic development level played a significant role in promoting EE in China,
which is consistent with the work of Zhu et al. [55], Dong et al. [58], and Liu et al. [80]. With
improvements in economic development levels, local areas have more money to develop
new technology and new products, introduce advanced technology and qualified personnel,
upgrade product technology, and improve pollution disposal technology and management.

The correlation coefficient determined for industrial structure and EE was 0.092, but
it did not pass the test of significance, which shows that the development of the tertiary
industry had no significant effects on EE. With industrial transformation and upgrading in
China, the correlation degree between industrial structure and environmental pollution
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gradually weakened, which caused the effect of industrial structure on the emission
reduction to be insignificant [95].

The impact of foreign trade dependence on EE is significant and positive. This illus-
trates that pursuing foreign trade can improve EE, which is consistent with our expectations
as well as with the results of Xu [79], Liu et al. [80], and Zhou et al. [81]. In order to surpass
the green barrier successfully and enter a broader international market, local Chinese
enterprises continue to carry out multi-directional innovation in areas such as strategy,
management, and technology, and this had a significant positive effect on EE.

Technological progress has a significant positive influence on EE at the 10% level,
this is consistent with the work of Dong et al. [58], Zhou et al. [81], and Ahmad et al. [96],
and with our expectations. However, the regression coefficient is not very high, which
indicates that the promoting role of technological progress on EE in China is not high and
has considerable room for improvement [97]. The proportion of R&D expenditures in GDP
have risen from 1.54% to 2.13% during the study period [77], which leaves a gap with the
2.5% needed for an innovative country [98].

The regression coefficient for the level of urbanization is −0.127, but it is not evident.
The gathering of production elements brought about by urbanization can trigger techno-
logical innovation [99], which can neutralize the adverse effects of pollution to some extent.
At this stage of China’s rapid urbanization, the national urbanization level has grown
from 17.9% in 1978 to 58.5% in 2017, while the global urbanization level has also increased
from 38.6% to 54.8% over the same period [7]. Therefore, China inevitably faces many
ecological–environmental problems and should steadily promote urbanization to realize
the fullest utilization of materials, energy, and information.

Population density has a significant negative impact on EE. This conclusion is consis-
tent with the work of Zhu et al. [55], Diaz-Villavicencio et al. [87], and Ahmad et al. [92]. It
shows that the population density has also brought more negative impacts on the ecological
environment in China. A large number of people flowed into the eastern coastal areas
after China issued the reform and opening policy, and efforts to protect the ecological
environment in these areas should be further enhanced.

6. Conclusions and Policy Suggestions

The environmental harm caused by human activities constitutes a global challenge
and requires a global response [100]. The article has used the EBM model with undesirable
outputs, which can compensate for the weakness of radial and non-radial DEA methods,
to evaluate Chinese EE and obtain more results than previous studies [16]; thus, we get a
more accurate understanding of the overall level of the Chinese EE levels. Most provinces
in China have a low level of EE; the EE in the east is the highest, followed by those in the
middle and west, while that of the northeast is the lowest. These results agree with those
of Dong et al. [54] and Liu et al. [76]. However, of greater concern, the paper finds that the
mean EE values for 30 provinces in China exhibit decreasing trends since 2011, and CO2
emissions continue to show an increasing trend during the period. This presents us with a
warning: China is facing unusually severe environmental pollution, and the ongoing work
of energy-saving and emission reduction must be continued, so there is a need to explore
more effective measures for reducing emissions.

As shown above, establishing the key measures for conserving energy and reducing
emissions is crucial. The article has explored the factors influencing EE in China using SDM
regression, which showed that economic development level, foreign trade dependence, and
scientific and technological progress all have noticeably positive effects on EE. Conversely,
population density has significantly negative influences on EE. Based on these regression
results, the paper offers some suggestions. As the high level of economic development
provides a forceful guarantee for developing EE, the government should change the mode
of economic growth and take the green development road. As for the policies of industrial
structure, the Chinese government should optimize and upgrade industrial infrastructure.
For instance, the government can guide the orderly transfer of industries, and forcefully
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develop new and high-tech industries and modern service industry based on resource
and environmental carrying capacity and regional functions. As for foreign trade, it is
important to recognize that different foreign trade policies should be applied in different
regions. With a high degree of dependence on foreign trade, the eastern region should
increase the export of environmentally-friendly products and make them the primary
export commodities. While vigorously developing international trade, the central, western,
and northeast regions should pay attention to environmental protection, and increase
the financial expenditure on industrial pollution control. Since technological progress
can also help develop EE, governments and enterprises should implement a strategy of
innovation-driven development and spend more on R&D. As for urbanization policy, it
is important to accelerate reforms in urban land use and establish a rigorous farmland
protection plan to increase urban land use efficiency. In the end, it is important to rationally
control the regional scale of the population and optimize the structure of the population.

However, this study still contains some deficiencies that should be addressed in a later
study. First, the paper focuses on the EE levels of administrative spaces, and future work
should focus on the EE levels of specific industries or sectors such as agriculture, mining,
manufacturing, construction, power generation, and transport. Moreover, the ultimate
goal of EE research is to enhance the overall level of regional EE and achieve balanced
and sustainable development among the economy, resources, and environment. Therefore,
further research is needed on the convergence analysis of EE in China, and this will provide
a theoretical basis for implementing regional balance and harmonious development.
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