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Abstract: Unbalanced regional development is widespread, and the imbalance of regional develop-
ment in developing countries with rapid urbanization is increasingly apparent. This threatens the
sustainable development of the region. Promoting the coordinated development of the region has
become a hot spot of scientific research and a major practical need. Taking 99 counties of Jiangsu
Province China, a typical coastal plain region, as the basic research unit, this paper explores the
unbalanced development characteristics of the regional urban spatial form using three indicators:
urban spatial expansion size, development intensity, and distribution aggregation degree. Then,
their driving mechanisms were evaluated using spatial autocorrelation analysis, Pearson correlation
analysis, linear regression, and geographically weighted regression. Our results found that the
areas with larger urban spatial expansion size and development intensity were mainly concentrated
in southern Jiangsu, where there was a positive spatial correlation between them. We found no
agglomeration phenomenon in urban spatial distribution aggregation degree. From the perspective
of driving factors: economics was the main driving factor of urban spatial expansion size; urban-
ization level and urbanization quality were the main driving factors of urban spatial development
intensity. Natural landform and urbanization level are the main driving factors of urban spatial
distribution aggregation degree. Finally, we discussed the optimization strategy of regional coordi-
nated development. The quality of urbanization development and regional integration should be
promoted in Southern Jiangsu. The level of urbanization development should be improved relying
on rapid transportation to develop along the axis in central Jiangsu. The economic size should be
increased, focusing on the expansion of the urban agglomeration in northern Jiangsu. This study will
enrich the perspective of research on the characteristics and mechanisms of regional urban spatial
imbalance, and helps to optimize and regulate the imbalance of regional urban development from
multiple perspectives.

Keywords: regional imbalance; regional urban spatial form; expansion size; development intensity;
distribution aggregation

1. Introduction

The pace of global urbanization has increased since the industrial revolution. The
global average urbanization rate reached 55% in 2018 and is associated with widespread
regional imbalance. The regional imbalance is the inevitable result of urbanization and is the
driving force for the further reorganization of regional urban space. Developed countries
with high urbanization rates generally have regional imbalances. These imbalances vary
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within countries and at different spatial scales, including national, regional, urban and
rural-urban scales [1]. The United States has obvious regional development imbalances
caused by urban sprawl [2]. The Paris region master plan (SDAU) was launched in the
mid-1960s and the structure of the largest French urban agglomeration was changed,
leading to regional inequalities [3]. In London, UK, the imbalance is shown as a distinct
east–west divide [4]. In New Zealand, the development of rural areas on the east coast of
the North Island has gradually lagged behind that of other regions [5]. In Canada, there
has been a serious development gap between urban and rural areas, in terms of skills,
manpower, etc. [6]. As for developing countries, in the process of rapid urbanization, the
imbalance of regional development also has become increasingly apparent. In the post-
reform period, India has faced a very high regional disparity in its development [7,8]. There
also exist similar phenomena between the west and east Malaysia [9]. In east Poland, the
imbalance is shown evidently between counties [10]. In Paraguay, the imbalance between
rural and urban development is even more striking [11]. Regional imbalance in China has
attracted considerable scholarly attention [12–15]. The imbalance of regional development
will aggravate the gap between the rich and the poor in the region, which may bring a
series of problem, such as, the difficulties in equilibrium of infrastructure construction,
the imbalance of regional social public services, the loss of population in backward areas,
and so on. In other words, it will threaten the sustainable development of the region [1].
Therefore, characterizing the imbalance, clarifying the driving mechanism of imbalance
and exploring the method to promote regional coordinated development has become a
scientific research hotspot and urgently practical need.

Research on the imbalance of regional spatial development focuses mainly on the
unbalanced characteristics and dynamic mechanisms of regional urban spatial form. The
characteristics of urban spatial form imbalance are commonly considered using three
metrics: the urban spatial expansion size, urban spatial development intensity, and urban
spatial distribution aggregation. Among these, more studies have focused on urban spatial
expansion size when analyzing the imbalance of regional urban spatial form. Wei et al. [14]
found that the existence of regional inequality in urban land expansion was led by the
more rapid growth of urban land. Xu and Hou [12] constructed an index of population,
economy, and land for a comprehensive evaluation of urbanization, which indicated a
regional imbalance in the Yangtze River Delta, China. Bonilla-Bedoya et al. [16] analyzed
the interactive relationship between the uneven expansion size of different urban spatial
patches and its urbanization process. There are relatively few studies that describe the
characteristics of urban spatial form using the urban spatial development intensity and
distribution aggregation. Wang et al. [17] and Wang [18] both presented an index system for
the assessment of the level of urban development intensity from the perspective of land-use
intensity, economic intensity, and population intensity. Hu et al. [19] used the method of
spatial point pattern analysis to characterize the spatial agglomeration of different land uses
in Ningbo city. Overall, there are few studies on the comprehensive consideration of urban
spatial expansion size, urban spatial development intensity, and urban spatial distribution
aggregation that actually analyze the relationship between them. Thus, it is difficult to
properly understand the characteristics of regional imbalance of urban spatial form.

Natural resources [20], economic [21], infrastructure, and population [22] are com-
monly considered to be the driving forces in research on the regional urban spatial imbal-
ance. Jones and Henderson [23] demonstrated that the distribution of emerging industries
would further expand the gap of urban spatial expansion size between the relatively
prosperous coastal zone and the industrial hinterland in the Cardiff City-Region in South
Wales. Farmer [24] studied Chicago, USA, and demonstrated that the level of regional
infrastructure service, especially public transportation facilities, led to the uneven devel-
opment of urban spatial development intensity. Ye et al. [25] found that a Chinese urban
agglomeration is a capital-intensive region, but planning and governance have more influ-
ence than the market in the evolving process of urban agglomeration. Ebeke and Ntsama
Etoundi [20] demonstrated that an increase in the share of natural resources led to a rapid
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increase in urbanization and urban concentration in Africa. They used correlation analysis
to show that the spatial pattern of cities in underdeveloped areas mainly depended on
natural resources. In general, the current research on the driving mechanism of unbalanced
regional urban spatial form is mostly focused on single variables, such as natural, economic
or social variables, and there is still a lack of systematic and comprehensive analysis on the
selection and comparison of driving variables.

Common analysis techniques include correlation analysis, linear regression (ordinary
least squares (OLS)), geographic information systems (GIS), mapping, and geographically
weighted regression (GWR). Salvati et al. [26] used principal component analysis and
GIS techniques to explore regional differences in northern, central, and southern Italy.
Sangkasem and Puttanapong [27] used OLS and Moran’s I statistics and concluded that
regional imbalances in Bangkok have declined. Ansong et al. [28] used GWR to explore
the correlation between educational resource input and policies and regional development
imbalance in Ghana. Moreover, Oduro et al. [29] used two-stage least-square regression
to test the socioeconomic effects of urbanization levels, ecological factors, proximity to
national capitals, and proximity to interregional highway systems in Ghana. Falzetti
and Sacco [30] used the GWR and k-mean clustering to study the spatial variability of
the impact of educational resources on regional disparities in Italy. The heterogeneity
of spatial units within the region may lead to different degrees of influence on regional
development. Therefore, it may be difficult to model the formation mechanism of regional
urban imbalance in space through traditional regression analysis, and put forward the
differentiation strategies to promote regional coordinated development. Spatial statistics
provides modern techniques that can be used to study spatial heterogeneity of individual
variables [31,32] and to study spatial variability in the relationship between two or more
variables [33–35].

In this paper, we take counties of Jiangsu Province China (Figure 1), a typical coastal
plain region, as the basic research unit. We aim to explore the unbalanced development
characteristics of regional urban spatial forms. The objectives of this paper are (1) to identify
the unbalanced development characteristics and compare the differences among the urban
spatial expansion size, development intensity, and distribution aggregation degree; (2) to
identify their different driving mechanisms by using modern spatial analysis tools and
data on physical geography, economy, and society; and (3) to put forward a differentiated
regional optimization adjustment strategy.

Figure 1. Location of Jiangsu Province and its prefecture-level city.
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2. Methods and Data Sources

Since districts and counties have the same administrative level in China, we took the
districts and counties of Jiangsu Province as the basic research unit, with a total of 99 spatial
samples. Jiangsu is located in the Yangtze River Delta, with flat terrain (see Figure A23 for
digital elevation model (DEM) in Appendix A), which covers an area of 107,200 km2. The
latest accessible year of land use data and point of interest (POI) data is 2015, and other
statistical data also has a certain lag. In order to match spatial data with social and economic
data, we selected 2015 as the study year. In 2015, Jiangsu Province had a total population
of 80 million, with a GDP of 7012 billion Chinese yuan (CNY). The area of the built-up
area, the proportion of built-up area, and the global Moran’ I of the built-up area of each
district and county were used to characterize urban spatial expansion size, development
intensity, and distribution aggregation degree. First, spatial autocorrelation analysis was
used to analyze the spatial distribution pattern and characteristics of urbanization in
Jiangsu Province. Then, the traditional statistical methods and spatial statistical methods
were combined to analyze 30 commonly considered potential driving variables related
to physical geography, economy, and society [12,36]. Pearson correlation analysis was
used to screen out the variables that were significantly related to the spatial pattern of
urbanization. Finally, linear regression (ordinary least squares: OLS) and geographically
weighted regression (GWR) were used to identify the driving variables that led to the
difference in urbanization spatial form.

2.1. Data

The data used in the study were obtained from the following sources. The physical
geography and remote sensing monitoring data of the status of land use in Jiangsu Province
in 2015 with a resolution of 1 km comes from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/; accessed date:
20 March 2020). It is based on Landsat 8 remotely sensed images and was generated by
human visual interpretation. The social and economic data came from the 2015 “Statistical
Yearbook of Jiangsu Province” (http://stats.jiangsu.gov.cn/2015/indexc.htm; accessed
date: 20 March 2020) and the statistical yearbook of each city. The population data came
from the sixth national census of the National Bureau of Statistics (http://www.stats.gov.
cn/tjsj/pcsj/rkpc/6rp/indexch.htm; accessed date: 20 March 2020). The point of interest
(POI) data came from the 2015 Gaode map. These data are listed in Table 1. We divided
potential influencing variables of urban spatial form into three types. The variables of
physical geography were mainly dependent on the natural background environmental
conditions, related to geographical location and formed naturally; the economic variables
were related to economic income and industrial development; the societal variables were
related to social and historical development, influenced by human beings and driven by
human development needs. This categorization and choice of variables reflect common
practice among researchers working on related studies [19–25,28,36].

We extracted the urban land from the remote sensing monitoring data of Jiangsu
Province in 2015 as the built-up area. The value of built-up area and non-built-up area
was recorded as 1 and 0, respectively. First, we calculated the area of the built-up area, the
proportion of the built-up area, and the global Moran’s I (see Section 2.1) of the built-up
area within each district or county. We used these three indicators to represent urban spatial
expansion size, development intensity, and distribution aggregation degree, respectively.

2.2. Methods

In this section, we present the statistical methods used in this paper for correlation
in and regression analysis. We first summarize the conventional, non-spatial approach
(correlation, regression) and then the associated spatial method (Moran’s I, GWR) and
explain their relevance in this study. We also provide references that readers can consult
for further details on the methods and applications.

http://www.resdc.cn/
http://stats.jiangsu.gov.cn/2015/indexc.htm
http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
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Table 1. Potential variables of urban spatial form.

Types of Variables Influencing Variables

Physical geography Area of districts and counties, average elevation, terrain undulation,
proportion of urban blue and green space, distance to Shanghai

Economy

GDP, per capita GDP, output value of primary industry, output of
secondary industry, output value of tertiary industry, proportion of
primary industrial output-value, proportion of secondary industrial
output-value, proportion of tertiary industrial output-value per capita
disposable income, total retail sales of consumer goods, total sales of
wholesale and retail, total export–import volume, number of national
and provincial development zones, income of national and provincial
development zones

Society

Total population, urban population, rural population, proportion of
population aged 15–59, proportion of population over 60 years old,
proportion of urban population, density of urban population, number
of colleges and universities, fixed asset investment, road density, and
total number of POI

2.2.1. Pearson Correlation Analysis

The Pearson product moment correlation coefficient [37,38] was used to evaluate the
linear correlation between two continuous variables.

Pearson r = ∑i(xi − x)(yi − y)√
∑i(xi − x)2 ∑i(yi − y)2

(1)

where x and y are the sample mean values of two continuous variables x and y, respectively,
and the value range of r is in [–1,1]. If r > 0, it means that the two variables are positively
correlated, if r < 0, then the two variables are negatively correlated, and if r = 0, it means
that there is no linear correlation between the two variables. Since r is estimated from a
sample, a hypothesis test is used to evaluate whether the true correlation, ρ, is significantly
different from zero.

As shown in Table 1, 30 potential variables that might have an impact on the regional
urban spatial form were selected. We then performed Pearson correlation analysis in
SPSS 24.0 to quantify the relationship between the three urban metrics and the 30 po-
tential driving variables. The units being evaluated were the districts and counties of
Jiangsu province.

2.2.2. Spatial Autocorrelation Analysis

Spatial autocorrelation is used to quantify the association between the attribute values
of nearby units [39]. In this study, the units were the counties and districts of Jiangsu
Province. Positive spatial autocorrelation indicates that counties with similar attribute
values are located close to each other and negative spatial autocorrelation indicates that
counties with different attribute values are located close to each other. If the spatial
autocorrelation is close to zero, then there is no spatial association. As with Pearson’s
correlation, this can be assessed using a hypothesis test. Spatial autocorrelation can be
evaluated using the Moran’ I index [31,39,40]. The value of I is between [−1,1], −1 indicates
perfect negative autocorrelation, and 1 indicates perfect positive autocorrelation, 0 means
no spatial autocorrelation. The formula for the global Moran’ I is shown below.

I =
N

∑ij wij

∑i ∑j wij(x(si)− x)
(
xj − x

)
∑i (xi − x)2 (2)

where s indicates location and i, j identify specific spatial units; wij is the spatial connectivity
matrix. If two geographic units are adjacent, the value is 1, and if the two geographic units



Sustainability 2021, 13, 3121 6 of 39

are not adjacent, the value is 0; xi and x are the value of the attribute in the i-th geographic
unit and the mean value of the study area; N is the total number of geographic units. The
formulation is similar to Pearson’s r; however, we only consider one variable rather than
two and evaluate how observations of that variable are related to observations of the same
variable at adjacent locations.

There is also a local version of Moran’s I, which calculates the statistic at location si

I(si) = N
(xi − x)∑j wij

(
xj − x

)
∑i (xi − x)2 (3)

Global statistics evaluate the spatial autocorrelation over the whole study area. They
assume that the autocorrelation is constant over the study area but, in reality, it can
vary in space. Local statistics calculate the spatial autocorrelation around a specific
spatial unit [31,32,41]. These local statistics are called local indicators of spatial asso-
ciation (LISA) [41] and they have been used in both environmental and social-science
studies [27,31,32] to evaluate local patterns. Here, we used ArcGIS 10.6 to calculate the
local Moran’s I, and identify high-value clusters (H-H), low-value clusters (L-L), outliers
with high values mainly surrounded by low values (H-L), and outliers with low values
mainly surrounded by high values (L-H). We implemented spatial autocorrelation analysis
in software GeoDa [42].

We used the global Moran’s I, calculated for the built-up area within each county or
district, to define the urban aggregation degree.

2.2.3. Linear Regression (Ordinary Least Squares Regression: OLS)

Linear regression analysis is often used to study the relationship between the variable
of interest (the response variable) and one or more covariates. It can also be used for
prediction [37,43]. It can be expressed as:

yi = β0 +
p

∑
k=1

βkxki + εi, (4)

where yi is the value of the response variable associated with the ith observation and
β0 is the constant (intercept) term; βk is the regression coefficient, and εi is the residual,
which represents the difference between the fitted value and the true value. In the most
simple case, p = 1 and there is only one covariate, xi. In this paper, we evaluated multiple
covariates (Table 1) for predicting the three characteristics of urban form: urban spatial
expansion size, urban spatial development intensity, and urban spatial distribution. The
analysis was restricted to linear regression. OLS refers to the method used to estimate
the regression coefficients using the data. It is based on minimizing the sum of squares
of the residuals (hence “least squares”) [43]. We used IBM SPSS statistic 24.0 to establish
an OLS regression equation with variables that were significantly related to urban spatial
expansion size, development intensity, and distribution aggregation degree and used the
stepwise method to automatically eliminate variables with strong collinearity to obtain the
final OLS regression equation.

2.2.4. Geographically Weighted Regression

Geographically weighted regression (GWR) [44] extends the linear regression model
and uses the local weighted least square method to calculate the regression coefficient. In
other words, the weight is determined according to the Euclidean distance between the
spatial position of the estimated point and the spatial position of other observation points,
so that the regression coefficient of the model is no longer a single global value, but can
vary in geographic space [34]. The estimated parameter values at different geographical
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locations describe the spatially varying nature of the relationship between y and x. The
structure of the model is as follows:

y(si) = β0(si) + ∑
k

βk(si)xk(si) + εi (5)

where y(si) is the response variable of the i-th sample at location si; xk(si) is the value of
the k-th covariate at the i-th location; (si) is the coordinate of the i-th point; βk(si) is the
local regression coefficient at si; and εi is the residual. The key difference between GWR
and OLS is that the regression coefficients can vary in space. Hence, it is necessary to
indicate the location (si) of each observation and associate regression coefficient (compare
Equations (4) and (5)).

GWR has been used to model spatially varying relationships in both the social [44]
and environmental sciences [34]. This gives more flexibility compared to linear regression
(OLS) because the regression coefficients (βk in Equation (5)) can vary in space. Exploring
the spatial variability in the relationship between the response variable and covariates can
give more insights into the process [33] Note that GWR does not automatically lead to an
improvement compared to OLS. This needs to be evaluated.

We used covariates from the OLS model and put them into the GWR model to explore
the spatial structure in the driving forces of regional imbalance in urban spatial form. GWR
was implemented in ArcGIS 10.6.

We computed the following statistics for the OLS and GWR mode: the standard error
of the residuals, σ̂; the coefficient of determination, R2; the adjusted-R2 and the adjusted
Akaike information criterion (AICc) [37]. The standard error of the residuals quantifies the
variability of the residuals around the fitted regression line. The coefficient of determination
quantifies the proportion of the variability in the response variable that is explained by
the model and take as a value between 0 and 1 (larger is better). The adjusted-R2 is the
R2 adjusted for a number of covariates. Adding covariates to a linear regression model
will not reduce the R2, but does increase the model complexity. Hence, the adjusted-R2

supports evaluating whether adding a covariate is sufficiently useful to justify the increase
in model complexity. AICc is commonly used to compare models. It gives a trade-off
between goodness-of-fit and model complexity. A lower AICc indicates a better model.

3. Results
3.1. Spatial Pattern and Spatial Autocorrelation of Urban Form in Jiangsu Province

The area of all districts and counties in Jiangsu Province was between 11 and 142 km2

(Figure 2). Figure 2 shows that the districts and counties with larger spatial expansion
sizes were mainly distributed in southern Jiangsu. Most districts and counties (52 out of
99) had a built-up area in the range 25–50 km2. Most (87%) of the districts and counties’
size were less than 75 km2. As shown in Figure 3, the proportion of the built-up area in the
districts and counties in Jiangsu Province varied greatly, ranging from 0.0042 to 0.7286. The
counties with urban development intensity >0.05 were mainly concentrated in southern
Jiangsu. Most (59%) districts and counties had a development intensity ≤0.05. The urban
aggregation degree (Figure 4) of built-up area did not show a distinct pattern. The values
ranged from 0.14 to 0.71, with the largest values in the south and the north-east.

As shown in Table 2, the global Moran’ I index of urban spatial expansion size,
development intensity, and distribution aggregation degree were 0.212, 0.394, and 0.076,
respectively, and all, except distribution aggregation degree, were significantly different
from zero. These positive spatial correlations show that the urban size and development
intensity were spatially correlated, hence the districts and counties with similar urban
expansion size and development intensity tend to be clustered. For distribution aggregation
degree, the p-value is relatively large (0.081) indicating that Moran’ I index of urban spatial
distribution failed the significance test. This suggested that there was no clear evidence of
global spatial autocorrelation and no agglomeration phenomenon in the urban aggregation
degree of districts and counties in Jiangsu Province.
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Figure 2. Urban spatial expansion size of districts and counties in Jiangsu Province.

Figure 3. Urban development intensity in districts and counties of Jiangsu Province.
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Figure 4. Urban aggregation degree of districts and counties in Jiangsu Province.

Table 2. Global spatial autocorrelation of urban form indicators in Jiangsu Province.

Urban Spatial Form Indicators Moran’ I Z Value p-Value

Spatial expansion size 0.212 3.5868 0.003
Development intensity 0.394 6.7049 0.001

Distribution aggregation degree 0.076 1.4222 0.081

The LISA (Local Moran’s I) cluster map of local hot spots is shown in Figures 5 and 6.
For the urban expansion size (Figure 5), the districts and counties with high-high aggrega-
tion all appeared in southern Jiangsu; the districts and counties with high-low or low-high
aggregation appeared in central Jiangsu; and the districts and counties with low-low aggre-
gation appeared in northern Jiangsu. This indicated that the built-up areas were generally
more clustered in southern Jiangsu than those in northern Jiangsu. Central Jiangsu acted
like a transition region. As for urban development intensity, there were three types of
aggregation in Jiangsu: high-high, low-low, and low-high. Both the districts and counties
with low-high and high-high aggregation areas were distributed in the center and south
of Jiangsu Province. The districts and counties with low-low aggregation were all in the
middle and north of Jiangsu Province. This indicates a regional imbalance in the urban
development intensity in Jiangsu Province.
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Figure 5. Local indicators of spatial association (LISA) (Local Moran’s I) cluster map of urban
expansion size in Jiangsu Province.

Figure 6. Local indicators of spatial association (LISA) (Local Moran’s I) cluster map of urban
development intensity in Jiangsu Province.
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3.2. Correlation Analysis of Covariates of Urban Spatial Form in Jiangsu Province

As shown in Table 3, among the 30 potential variables, there were 23 that were
significantly related to the urban expansion size, of which 20 variables were positively
correlated. The three variables with the largest correlation coefficients were GDP, output
of the secondary industry, and total numbers of POIs. On the other hand, the proportion
of the over 60-year-old population, proportion of primary industrial output value, and
the distance to Shanghai were negatively correlated to the urban spatial expansion size.
Meanwhile, there were 19 variables that were significantly related to the urban development
intensity, 12 of which were positively correlated. The variables with the largest correlation
coefficients were road density, urban population density, and urban population ratio. Seven
variables were negatively correlated and the three variables with the largest correlation
coefficient were the proportion of the output value of the secondary industry, the area
of the districts and counties, and rural population. There were 17 variables significantly
correlated with the urban distribution aggregation degree, 10 of which were positively
correlated. The variables with the largest correlation coefficient were proportion of urban
population, the density of urban population, and the density of roads. The three variables
with the largest negative correlation coefficient were the output value of the primary
industry, area of districts and counties, and rural population.

The urban spatial expansion size had a strong correlation with the size indicators of
social and economic development, while the urban spatial development intensity and the
spatial distribution aggregation degree had a strong correlation with indicators of density or
proportion such as road density, urban population density, and urban population proportion.

3.3. Driving Force Analysis of Urban Spatial Form in Jiangsu Province
3.3.1. Driving Force Analysis of Urban Spatial Expansion Size

Compared to the OLS model parameters of influencing variables of urban spatial
expansion size, GWR model almost has the same parameters (Table 4). According to the
results of OLS (Table 5), there were five variables affecting the urban spatial expansion size.
The standardized regression coefficient reflected the degree of influence without dimension,
which was in the order of output of the secondary industry, total number of POI, proportion
of population over 60 years old, income of national and provincial development zones,
and total export–import volume. Most of the variables had a positive relationship with the
urban spatial size except the influence of proportion of population over 60 years old and
total export–import volume. Therefore, the higher the secondary output value, the more
POI’s, the larger the income of the development zone, the less aging population, and the
lower the total import and export volume, the larger the built-up area.

Table 6 shows the estimated GWR coefficients. From Appendix A Figures A1–A10,
we could see the spatial differences between the estimated coefficient and the influencing
variables. The spatial influence degree of proportion of population over 60 years old, total
number of POIs, and total import and export amount in space showed a decreasing trend
from north to south Jiangsu, while the influence degree of the output value of secondary
industry to the built-up area was opposite. In addition, the impact of income of the
development zone showed a trend that decreased from west to east.

The statistics given in Table 4 show that the σ̂, R2, and adjusted R2 were similar for
OLS and GWR. The AICc was larger for GWR than for OLS, reflecting the greater model
complexity. We concluded that there is no benefit to using GWR rather than OLS. Put
another way, the variability in the urban spatial expansion size is sufficiently explained by
OLS without needing to allow the regression coefficients to vary in space. This allows a
simpler interpretation of the model results.
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Table 3. Correlation coefficients of 30 potential variables of urban spatial form in Jiangsu Province.

Potential
Variables

The Urban Spatial Expansion Size The Urban Development
Intensity

The Urban Distribution
Aggregation Degree

Pearson
Correlation

Significance Test
(Two-Sided)

Pearson
Correlation

Significance Test
(Two-Sided)

Pearson
Correlation

Significance Test
(Two-Sided)

Area of districts and counties 0.028 0.784 −0.633 ** 0.000 −0.394 ** 0.000
Average elevation 0.003 0.976 0.069 0.500 −0.127 0.212
Terrain undulation 0.239 * 0.017 −0.126 0.215 −0.213 * 0.035

Proportion of urban blue and green space 0.208 * 0.039 −0.125 0.218 −0.037 0.713
Distance to Shanghai −0.299 ** 0.003 −0.182 0.071 −0.113 0.265

GDP 0.794 ** 0.000 0.042 0.681 0.030 0.765
Per capita GDP 0.455 ** 0.000 0.233 * 0.021 0.036 0.720

Output value of primary industry −0.022 0.829 −0.609 ** 0.000 −0.417 ** 0.000
Output of the secondary industry 0.780 ** 0.000 −0.173 0.086 −0.064 0.531
Output value of tertiary industry 0.683 ** 0.000 0.359 ** 0.000 0.183 0.070

Proportion of primary industrial output-value −0.334 ** 0.001 −0.563 ** 0.000 −0.341 ** 0.001
Proportion of secondary industrial output-value 0.281 ** 0.005 −0.654 ** 0.000 −0.336 ** 0.001

Proportion of tertiary industrial output-value −0.114 0.261 0.783 ** 0.000 0.408 ** 0.000
Per capita disposable income 0.402 ** 0.000 0.668 ** 0.000 0.369 ** 0.000

Total retail sales of consumer goods 0.514 ** 0.000 0.559 ** 0.000 0.340 ** 0.001
Total sales of wholesale and retail 0.537 ** 0.000 0.393 ** 0.000 0.287 ** 0.004

Total export-import volume 0.615 ** 0.000 0.058 0.572 0.128 0.206
Number of national and provincial development zones 0.358 ** 0.000 −0.347 ** 0.000 −0.030 0.766
Income of national and provincial development zones 0.654 ** 0.000 −0.198 0.050 −0.015 0.886

Total population 0.581 ** 0.000 −0.104 0.304 −0.017 0.869
Urban population 0.573 ** 0.000 0.376 ** 0.000 0.302 ** 0.002
Rural population 0.258 ** 0.010 −0.622 ** 0.000 −0.391 ** 0.000

Proportion of population aged 15–59 0.479 ** 0.000 0.473 ** 0.000 0.349 ** 0.000
Proportion of population over 60 years old −0.400 ** 0.000 −0.227 * 0.024 −0.262 ** 0.009

Proportion of urban population 0.082 0.418 0.784 ** 0.000 0.518 ** 0.000
Density of urban population −0.052 0.606 0.884 ** 0.000 0.507 ** 0.000

Number of colleges and universities 0.410 ** 0.000 0.371 ** 0.000 0.247 * 0.014
Fixed asset investment 0.655 ** 0.000 −0.263 ** 0.008 −0.183 0.070

Road density 0.036 0.727 0.955 ** 0.000 0.475 ** 0.000
Total number of POI 0.756 ** 0.000 0.137 0.177 0.159 0.115

* The correlation is significant in 0.05 confidence interval. ** The correlation is significant in 0.01 confidence interval.



Sustainability 2021, 13, 3121 13 of 39

Table 4. Summary of ordinary least squares (OLS) and geographically weighted regression (GWR)
model of influencing variables of urban spatial expansion size in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ̂ 13.0042 13.0043
2 AICc 794.68 797.92
3 R2 0.8157 0.8157
4 R2-adjusted 0.8058 0.8058

Table 5. Estimated coefficients of OLS regression model for influencing variables of urban spatial expansion size in
Jiangsu Province.

Influencing Variables Coefficient Standard Error Standardized
Coefficient t p-Value

Constant 44.0779 7.2639 6.068 0.0000
Proportion of population over 60 years old −223.3734 40.1911 −0.273 −5.558 0.0000

Income of national and provincial development zones 3.97 × 10−7 0 0.2102 3.514 0.0007
Total number of POI 0.0015 0.0003 0.3454 5.916 0.0000

Output value of secondary industry 0.0527 0.0081 0.5412 6.517 0.0000
Total export–import volume −0.0518 0.0214 −0.1857 −2.425 0.0173

Table 6. Estimated coefficients of GWR regression model for influencing variables of urban spatial expansion size in
Jiangsu Province.

Statistics Constant
Proportion of

Population over
60 Years Old

Income of National
and Provincial

Development Zones

Total Number
of POI

Output Value of
Secondary
Industry

Total
Export–Import

Volume

Minimum 44.0583 −223.4729 3.9565 × 10−7 1.5014 × 10−3 5.2697 × 10−2 −5.1828 × 10−2

Lower quartile 44.0726 −223.4334 3.9575 × 10−7 1.5017 × 10−3 5.2708 × 10−2 −5.1817 × 10−2

Median 44.0865 −223.4089 3.9579 × 10−7 1.5018 × 10−3 5.2715 × 10−2 −5.1809 × 10−2

Upper quartile 44.0919 −223.3459 3.9585 × 10−7 1.5022 × 10−3 5.2719 × 10−2 −5.1793 × 10−2

Maximum 44.1005 −223.2773 3.9598 × 10−7 1.5026 × 10−3 5.2724 × 10−2 −5.1770 × 10−2

3.3.2. Driving Force Analysis of Urban Development Intensity

Compared to the OLS model parameters of influencing variables of urban develop-
ment intensive, GWR model has higher R2 and R2-adjusted value (Table 7). The results of
OLS (Table 8) showed that the four main variables influencing urban development were
road density, urban population density, per capita GDP, and distance to Shanghai. The
standardized coefficient for the absolute value of road density was the largest, followed by
urban population density, per capita GDP, and the distance to Shanghai, while the influence
of per capita GDP was negative. Therefore, as road density, urban population density, and
distance to Shanghai increased and per capita GDP decreased, the urban development
intensity also increased.

Table 7. Summary of OLS and GWR model of influencing variables of urban development intensive
in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ̂ 0.0388 0.0380
2 AICc −357.45 −357.24
3 R2 0.9468 0.9513
4 R2-adjusted 0.9445 0.9469
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Table 8. Estimated coefficients of OLS regression model for influencing variables of urban develop-
ment intensive in Jiangsu Province.

Influence Variables Coefficient Standard
Error

Standardized
Coefficient t p-Value

Constant −0.0697 0.0182 −3.8328 0.0002
Road density 4.82 × 10−5 0.0000 0.8238 16.257 0.0000

Urban population density 8.74 × 10−6 0.0000 0.2114 4.4897 0.0000
Per capita GDP −2.80 × 10−7 0.0000 −0.0711 −2.2198 0.0288

Distance to Shanghai 6.10 × 10−5 0.0000 0.0592 1.9864 0.0499

Table 9 shows the estimated GWR coefficients for influencing variables of urban
development intensive. From the spatial difference of the estimated coefficients and
influencing variables of the GWR model (Appendix A Figures A11–A18), the estimated
coefficients of road density and distance to Shanghai showed an increasing trend in space
along the southeast direction. The urban population density was the smallest in central
Jiangsu, increasing along the northwest and southeast directions. Meanwhile, the per
capita GDP was increasing along the northeast direction.

Table 9. Estimated coefficients of GWR regression model for influencing variables of urban development intensive in
Jiangsu Province.

Statistics Constant Road Density Urban Population Density Per Capita GDP Distance to Shanghai

Minimum −0.1083 4.2908 × 10−5 8.5359 × 10−6 −2.9358 × 10−7 −3.7536 × 10−6

Lower quartile −0.0887 4.7198 × 10−5 8.8612 × 10−6 −2.6391 × 10−7 5.4025 × 10−5

Median −0.0769 4.8200 × 10−5 8.9572 × 10−6 −2.4282 × 10−7 8.5492 × 10−5

Upper quartile −0.0659 4.8845 × 10−5 9.2030 × 10−6 −2.2128 × 10−7 1.1813 × 10−4

Maximum −0.0387 4.9247 × 10−5 1.0515 × 10−5 −1.8915 × 10−7 1.6948 × 10−4

The model statistics are given in Table 7. These were almost identical for OLS and GLS
and indicate that there was no benefit to choosing GWR rather than OLS. The variability in
the urban development intensity attributable to these four covariates could be explained
using the simpler OLS model.

3.3.3. Driving Force Analysis of Urban Distribution Aggregation Degree

Compared to the OLS model parameters of influencing variables of urban distribution
aggregation degree, GWR model almost has the same parameters (Table 10). The results
of the OLS and GWR models (Tables 11 and 12) showed that there were two variables,
terrain undulation and the proportion of urban population, affecting the urban distribution
aggregation degree. The terrain undulation had a greater effect. Therefore, the flatter
the terrain and the higher the population urbanization rate, the greater the distribution
aggregation degree of built-up areas in the districts and counties.

Table 10. Summary of OLS and GWR model of influencing variables of urban distribution aggregation
degree in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ̂ 0.1137 0.1137
2 AICc −146.54 −144.11
3 R2 0.3174 0.3174
4 R2-adjusted 0.3032 0.3032
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Table 11. Estimated coefficients of OLS regression model for influencing variables of urban distribution aggregation degree
in Jiangsu Province.

Influence Variables Coefficients Standard Error Standard
Coefficients t-Test Significant

Constant 0.2831 0.0427 6.6229 0.0000
Terrain undulation 0.3546 0.0573 0.5218 6.1872 0.0000

Proportion of urban population −3.8107 × 10−4 0.0001 −0.2209 −2.6194 0.0102

Table 12. Estimated coefficients of GWR regression model for influencing variables of
urban distribution aggregation degree in Jiangsu Province.

Statistics Constant Terrain Undulation Proportion of Urban Population

Minimum 0.2830 −3.8156 × 10−4 3.5453 × 10−1

Lower quartile 0.2830 −3.8114 × 10−4 3.5459 × 10−1

Median 0.2830 −3.8101 × 10−4 3.5464 × 10−1

Upper quartile 0.2831 −3.8088 × 10−4 3.5468 × 10−1

Maximum 0.2832 −3.8067 × 10−4 3.5472 × 10−1

According to the spatial distribution of the estimated GWR coefficients and variable
(Appendix A Figures A19–A22), the estimated coefficient of terrain undulation showed an
increasing trend along the southeast direction, and the influence was greater in the areas
with smaller terrain undulation in coastal areas. The estimated coefficient of population
urbanization rate was the largest in the south of Jiangsu Province, and it was relatively
small in the north of Jiangsu Province.

Table 10 shows that the σ̂, R2, and adjusted-R2 were the same for OLS and GWR. The
AICc was actually slightly larger for GWR compared to OLS. These results indicated that
there was no benefit to using GWR rather than OLS. Note also that the R2 = 0.32 (2 DP)
was low. This model explained 32% of the variability in urban distribution aggregation
degree. By comparison, the first two models explained a large proportion of the variability
in urban spatial expansion size (R2 = 0.82) and urban development intensity (R2 = 0.95).

4. Discussion
4.1. Statistical Methods for Studying Regional Urban Spatial Form

In this study, we applied methods from spatial statistics (Moran’s I, GWR) as well
as conventional statistical methods. The use of spatial statistics allowed exploration and
explanation of spatial patterns in the data which could not be obtained using conventional
statistics. This is illustrated clearly in Figures 5 and 6 (Section 3.1), which showed the
clusters of low and high areas for urban spatial expansion size and urban spatial devel-
opment intensity. The analysis for GWR did show patterns in the regression coefficients
(Section 3.3); however, the actual variability in the coefficient was very small. This rein-
forced the results from the diagnostic statistics (Tables 4, 7 and 10), which showed that
GWR did not yield a better fit to the data than linear regression (OLS). This means that
the patterns in urban spatial expansion size, urban development intensity, and urban
distribution aggregation degree could be explained by the simpler OLS model. Hence,
interpretation was not straightforward. Other studies (e.g., [28]) have found that GWR
yielded improved results. The fact that OLS was sufficient in our study may reflect the
availability of rich covariate information (Table 1) that could explain the spatial variability.

4.2. Unbalanced Development Characteristics of Regional Urban Spatial Form

Using the three dimensions of urban spatial expansion size, development intensity, and
distribution aggregation degree, the characteristics of unbalanced regional urban spatial
forms can be elucidated and understood. Due to data availability, we could only work
with data from 2015. Hence, we cannot comment on the most recent situation. Studying
the current and long-term unbalanced urban development is important and remains a
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topic for further research. The regional urban spatial form in Jiangsu Province will present
different spatial patterns such as gradients, cluster, or random when we use different
indicators. There is an apparent spatial correlation between urban spatial expansion size
and development intensity (Figures 1 and 2). In areas with larger urban spatial expansion
size, the development intensity tends to be larger, resulting in the formation of urban
agglomerations. For example, southern Jiangsu demonstrated this pattern vividly as both
its urban spatial expansion size and development intensity were high. In contrast, in
northern Jiangsu, where both the two indicators’ values are relatively low, there was a low
density and scattered urban patches and the urban spatial expansion mainly occurred on
the edges of the built-up areas. When the urban spatial distribution aggregation degree
was used to measure the imbalance of regional urban spatial form, the results appeared
to be random. Considering the spatial expansion size and density, we found that the
development of urban clusters had reached a relatively mature stage in southern Jiangsu
where the central cities being were linked with the surrounding towns. This was also
illustrated in Figures 5 and 6 when considering the high-high and low-low clustering of
urban expansion size and urban development intensity.

4.3. Driving Mechanism of Unbalanced Regional Spatial Urban Form

We combined traditional statistical methods and spatial statistical methods and we
explored the driving mechanism of unbalanced regional spatial urban form in detail. The
economy was the fundamental driving variable of urban spatial expansion size [45,46] in
Jiangsu Province. The counties or districts with larger industrial production and larger
labor force are more likely to have more developed high-tech industries and bigger foreign
trades, which will in turn enlarge the size of urban spatial expansion. In central Jiangsu,
where there is a moderate size of urban spatial expansion, manufacturing and heavy
industry are the region’s leading industries. Scientific and technological development
stay in an early stage. Meanwhile, industrial development in northern Jiangsu is still
resource-dependent and the industry and urban area are limited and scattered in space.
Urbanization level and urbanization quality play major roles in driving the urban spatial
development intensity in Jiangsu Province. With higher levels of urbanization, there will
be higher transportation accessibility and closer connections of the population, which will
in turn intensify the spatial development in the urban areas. The development intensity
of urban space in southern Jiangsu was relatively high due to the good transportation
network supporting tight population connections among the cities [47]. Central and
northern Jiangsu have not yet formed mature regional transportation networks, resulting
in relatively low development intensity. From the perspective that per capita GDP has a
negative influence on urban spatial development intensity, perhaps there is also evidence
that richer people prefer a less built-up living environment (e.g., house/villa rather than
apartment). Moreover, according to Table 3, there was not a significant correlation between
distance to Shanghai and urban development intensity. However, distance to Shanghai
was a significant variable of urban development intensity in the OLS and GWR models.
Shanghai is a coastal city, which is not only an important port but also an important
economic gateway. It plays a unique leading role in the Yangtze River Delta and has a
great impact on Jiangsu Province. Considering the variable of “distance to Shanghai”, we
can not only consider the distance between districts and counties from the coastline to a
certain extent but also reflect the influence of the developed surrounding metropolis on
Jiangsu Province. Detailed results of models comparison can be seen in the Appendix A.2.
Natural landform and urbanization level are major drivers of urban spatial distribution
aggregation degree [48]. Complex topographies were associated with low urbanization
levels and dispersed urban spatial layouts. These driving variables interacted and shared
some correlation as well.
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4.4. Optimization Strategies for a Balanced Development of Regional Urban Spatial Form

In southern Jiangsu, with its large urban spatial expansion size, high development
intensity, and urban agglomeration, the economy and urbanization levels were relatively
mature. In the future, measures that improve the spatial urban layout, i.e., promoting
regional integration and urban–rural joint development, should be emphasized [49]. The
urban integration of Nanjing City with Suzhou City, Wuxi City, and Changzhou City, which
have distinctive and complementary advantages, should be encouraged to enhance the
overall competitiveness of the region. Meanwhile, the transportation network and public
infrastructure development should be planned and shared with a collaboration among the
four key cities. This would form a mega-city area in the southern Jiangsu region. In central
Jiangsu, where the urban spatial expansion size and distribution aggregation degree were
relatively moderate and the urban spatial development intensity was relatively low, the
future development strategy for Nanjing should focus on enhancing the intensity of urban
development. The local government should make full use of the local coastline resources to
promote the port and logistics industry development. At the same time, urban construction
and upgrading can be promoted through industrial development. In northern Jiangsu
where there was a scattered and small size of urban expansion and development intensity,
measures to accelerate the improvement of the local economy should be prioritized. The
emphasis should be put on some larger cities in the region, including Xuzhou City, Huaiyin
City, Yancheng City, and Lianyungang City, which have the potential to become leading
forces to accelerate the local urban spatial expansion as well as the public infrastructure
and transportation network. This will, in turn, promote the growth of urban clusters with
the central cities as cores [50].

5. Conclusions

Based on the general concern of unbalanced inter-regional development, this study
aimed to reveal the characteristics and driving mechanism of unbalanced regional urban
spatial form. In particular, we have used multiple indices. In terms of indicators of un-
balanced development characteristics of urban spatial form, most previous studies still
use a single indicator and lack multiple indicator analysis. As for driving mechanisms,
comparison of the influencing variables of multiple unbalanced development characteris-
tics is rare. Furthermore, in terms of research methods, the traditional statistical analysis
does not allow the full exploration of spatial patterns in the data. In order to fill these
research gaps, we used three indicators of urban spatial expansion size, development
intensity, and distribution aggregation degree. In addition, spatial analysis tools and tradi-
tional statistical analysis tools were combined in this study. First, spatial autocorrelation
analysis was used to analyze the characteristics of the unbalanced spatial form of towns
in Jiangsu province. It was found that there is a positive spatial correlation between the
urban spatial expansion size and development intensity. Specifically, the regions with
large values of both were mainly in southern Jiangsu, while the regions with small values
are mainly in northern Jiangsu. While the spatial distribution of cities and towns has no
agglomeration phenomenon. Secondly, the Pearson Correlation Analysis, OLS, and GWR
Analysis were applied to reveal the correlations and differences between various driv-
ing mechanisms, namely, economy, urbanization quality, urbanization level, and natural
landform. It was found that urbanization level can lead to inter-regional imbalances of
urban spatial development intensity and distribution aggregation degree at the same time.
Finally, the optimization strategies were formulated to promote balanced development
between regions in Jiangsu Province. Southern Jiangsu should focus on improving the
urbanization quality and promote regional integration. Central Jiangsu should improve the
urbanization level and develop along the axis relying on rapid transportation. Northern
Jiangsu should expand the economic scale and build the urban agglomeration with central
cities as the core.
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Many variables affect the unbalanced development of inter-regional urban space and
this study could not cover all possible variables. The significantly correlated variables
could change over time. These two points should be considered in future studies.
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Appendix A

Appendix A.1. Spatial Distribution Map of Influencing Variables and Their Estimated Coefficients

Figure A1. Spatial distribution map of estimated coefficient of proportion of the population over
60 years old on urban spatial expansion size in Jiangsu Province.
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Figure A2. Spatial distribution map of proportion of the population over 60 years old in
Jiangsu Province.

Figure A3. Spatial distribution map of estimated coefficient of the total number of point of interest
(POI) on urban spatial expansion size in Jiangsu Province.
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Figure A4. Spatial distribution map of proportion of the total number of POI in Jiangsu Province.

Figure A5. Spatial distribution map of estimated coefficient of the output of secondary industry on
urban spatial expansion size in Jiangsu Province.
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Figure A6. Spatial distribution map of proportion of the output of secondary industry in Jiangsu
Province.

Figure A7. Spatial distribution map of estimated coefficient of total export–import volume on urban
spatial expansion size in Jiangsu Province.
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Figure A8. Spatial distribution map of total export–import volume in Jiangsu Province.

Figure A9. Spatial distribution map of estimated coefficient of income of national and provincial.
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Figure A10. Spatial distribution map of income of national and provincial development zones in
Jiangsu Province.

Figure A11. Spatial distribution map of estimated coefficient of road density on urban development
intensive in Jiangsu Province.
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Figure A12. Spatial distribution map of road density in Jiangsu Province.

Figure A13. Spatial distribution map of estimated coefficient of urban population density on urban
development intensive in Jiangsu Province.
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Figure A14. Spatial distribution map of urban population density in Jiangsu Province.

Figure A15. Spatial distribution map of estimated coefficient of distance to Shanghai of districts and
counties on urban development intensive in Jiangsu Province.
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Figure A16. Spatial distribution map of distance to Shanghai of districts and counties in
Jiangsu Province.

Figure A17. Spatial distribution map of estimated coefficient of per capita GDP on urban develop-
ment intensive in Jiangsu Province.
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Figure A18. Spatial distribution map of per capita GDP in Jiangsu Province.

Figure A19. Spatial distribution map of estimated coefficient of terrain undulation on urban distribu-
tion aggregation degree in Jiangsu Province.
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Figure A20. Spatial distribution map of terrain undulation in Jiangsu Province.

Figure A21. Spatial distribution map of estimated coefficient of proportion of urban population on
urban distribution aggregation degree in Jiangsu Province.
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Figure A22. Spatial distribution map of the proportion of urban population in Jiangsu Province.

Figure A23. Spatial distribution map of the mean digital elevation model (DEM) in Jiangsu Province.
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Appendix A.2. Models Comparison Results of Influencing Variables of Urban Spatial
Development Intensity

Compared with the model in Section 3.3.2, OLS and GWR model 2-1 remove distance
to Shanghai, OLS and GWR model 2-2 remove distance to Shanghai and per capita GDP,
and OLS and GWR model 2-3 remove per capita GDP. Among these models, OLS model
2-2 was clearly the worst performing model since AIC is the largest and R2 and adjusted R2

are the lowest. According to AIC, OLS and GWR model in 3.3.2 was the best performing,
although R2 and adjusted R2 were similar to model 2-1. Therefore, it is better to choose the
model in 3.3.2 for OLS.

For GWR, AIC of model 2-2 was similar to the model presented in Section 3.3.2,
but model 2-2 is more simple because it only has two covariates. The spatially varying
coefficients in GWR allowed us to account for variability in urban development intensity
without adding more covariates. Therefore, these results show that adopting model 2-2
could be justified, but there are also other reasonable choices, in particular the model
adopted in Section 3.3.2. The sign of the estimated coefficient of distance to Shanghai is
positive in GWR for model 2-3. This model does not include the covariate of per capita GDP,
which suggests that the sign change in the model presented in Section 3.3.2 may be caused
by the co-effect of per capita GDP. Note also that the bivariate correlation between urban
development intensity and distance to Shanghai (Table 3) was not significantly different
from zero.

Table A1. Summary of OLS and GWR model 2-1 of influencing variables of urban development
intensive in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ 0.0394 0.0394
2 AICc −355.3750 −352.7313
3 R2 0.9446 0.9446
4 R2 Adjusted 0.9428 0.9428

Table A2. Estimated coefficients of OLS regression model 2-1 for influencing variables of urban development intensive in
Jiangsu Province.

Influence Variables Coefficients Standard Error Standardized
Coefficients t p-Value

Constant −0.0388 9.5918 × 10−3 −4.0490 0.0001
Road density 4.7599 × 10−5 1.1112 × 10−7 0.8131 −3.6487 0.0004

Urban population density 8.9568 × 10−6 1.9739 × 10−6 0.2166 4.5376 0.0000
Per capita GDP −4.0544 × 10−7 2.9950 × 10−6 −0.1029 15.8927 0.0000

Table A3. Estimated coefficients of GWR regression model 2-1 for influencing variables of urban
development intensive in Jiangsu Province.

Statistics Constant Road Density Urban Population
Density Per Capita GDP

Minimum −3.8846 × 10−2 4.7591 × 10−5 8.9546 × 10−6 −4.0557 × 10−7

Lower quartile −3.8840 × 10−2 4.7597 × 10−5 8.9558 × 10−6 −4.0548 × 10−7

Median −3.8837 × 10−2 4.7599 × 10−5 8.9564 × 10−6 −4.0542 × 10−7

Upper quartile −3.8834 × 10−2 4.7601 × 10−5 8.9570 × 10−6 −4.0535 × 10−7

Maximum −3.8823 × 10−2 4.7604 × 10−5 8.9589 × 10−6 −4.0516 × 10−7
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Table A4. Summary of OLS and GWR model 2-2 of influencing variables of urban development
intensive in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ 0.0419 0.0386
2 AICc −344.3910 −356.1783
3 R2 0.9368 0.9479
4 R2 Adjusted 0.9355 0.9451

Table A5. Estimated coefficients of OLS regression model 2-2 for influencing variables of urban development intensive in
Jiangsu Province.

Influence Variables Coefficients Standard Error Standardized
Coefficients t p-Value

Constant −6.6062 × 10−2 6.4024 × 10−3 −10.3183 0.0000
Road density 4.2090 × 10−5 2.7475 × 10−6 0.7190 15.3195 0.0000

Urban population density 1.1679 × 10−5 1.9411 × 10−6 0.2824 6.0170 0.0000

Table A6. Estimated coefficients of GWR regression model 2-2 for influencing variables of urban
development intensive in Jiangsu Province.

Statistics Constant Road Density Urban Population Density

Minimum −0.0819 4.1303 × 10−5 1.0126 × 10−5

Lower quartile −0.0736 4.2338 × 10−5 1.0790 × 10−5

Median −0.0673 4.2584 × 10−5 1.1688 × 10−5

Upper quartile −0.0594 4.2778 × 10−5 1.2219 × 10−5

Maximum −0.0507 4.3181 × 10−5 1.2914 × 10−5

Table A7. Summary of OLS and GWR model 2-3 of influencing variables of urban development
intensive in Jiangsu Province.

ID Statistics OLS Model Parameters GWR Model Parameters

1 σ 0.0396 0.0402
2 AICc −354.3870 −349.3812
3 R2 0.9440 0.9435
4 R2 Adjusted 0.9423 0.9406

Table A8. Estimated coefficients of OLS regression model 2-3 for influencing variables of urban development intensive in
Jiangsu Province.

Influence Variables Coefficients Standard Error Standardized
Coefficients t p-Value

Constant −1.0106 × 10−1 1.1696 × 10−2 −8.6409 0.0000
Road density 4.5714 × 10−5 2.7983 × 10−6 0.2426 16.3360 0.0000

Urban population density 1.0035 × 10−5 1.8958 × 10−6 0.7809 5.2935 0.0000
Distance to Shanghai 9.5004 × 10−5 2.7158 × 10−5 0.0922 3.4983 0.0007
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Table A9. Estimated coefficients of GWR regression model 2-3 for influencing variables of urban
development intensive in Jiangsu Province.

Statistics Constant Road Density Urban Population
Density

Distance to
Shanghai

Minimum −0.1210 4.3721 × 10−5 9.3556 × 10−6 4.5310 × 10−5

Lower quartile −0.1111 4.5522 × 10−5 9.7236 × 10−6 8.9686 × 10−5

Median −0.1048 4.5832 × 10−5 1.0202 × 10−5 1.1073 × 10−4

Upper quartile −0.0960 4.6080 × 10−5 1.0530 × 10−5 1.2704 × 10−4

Maximum −0.0750 4.6463 × 10−5 1.0984 × 10−5 1.5359 × 10−4

Figure A24. Standard error map of GWR model for influencing variables of urban development
intensive in Jiangsu Province (model 2-1).
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Figure A25. Spatial distribution map of estimated coefficient of road density on urban development
intensive in Jiangsu Province (model 2-1).

Figure A26. Spatial distribution map of estimated coefficient of urban population density on urban
development intensive in Jiangsu Province (model 2-1).



Sustainability 2021, 13, 3121 34 of 39

Figure A27. Spatial distribution map of estimated coefficient of per capita GDP on urban develop-
ment intensive in Jiangsu Province (model 2-1).

Figure A28. Standard error map of GWR model for influencing variables of urban development
intensive in Jiangsu Province (model 2-2).
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Figure A29. Spatial distribution map of estimated coefficient of road density on urban development
intensive in Jiangsu Province (model 2-2).

Figure A30. Spatial distribution map of estimated coefficient of urban population density on urban
development intensive in Jiangsu Province (model 2-2).
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Figure A31. Standard error map of GWR model for influencing variables of urban development
intensive in Jiangsu Province (model 2-3).

Figure A32. Spatial distribution map of estimated coefficient of road density on urban development
intensive in Jiangsu Province (model 2-3).
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Figure A33. Spatial distribution map of estimated coefficient of urban population density on urban
development intensive in Jiangsu Province (model 2-3).

Figure A34. Spatial distribution map of estimated coefficient of distance to Shanghai of districts and
counties on urban development intensive in Jiangsu Province (model 2-3).
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