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Abstract: Laboratory apparatuses for the analysis of infiltration and runoff enable studies under
controlled environments and at reduced costs. Unfortunately, the design and construction of such
systems are complex and face difficulties associated with the scale factor. This paper presents the
design, construction, and evaluation of a portable rainfall and runoff simulator. The apparatus
allows the evaluation of unsaturated soils with and without vegetation cover, under a wide range of
simulation scenarios. The apparatus also enables the control of the intensity, size, and uniformity
of simulated raindrops for variable surface slope, specimen thickness, and length conditions. The
monitoring of the volumetric water content and matric suction and a rigorous computation of
water balance are ensured. The obtained results indicate that the automated rainfall generator
produces raindrops with Christiansen uniformity coefficients higher than 70%, and with an adequate
distribution of raindrop sizes under a range of rainfall intensities between 86.0 and 220.0 mm h−1.
The ideal rainfall generator conditions were established for a relatively small area equal to or lower
than 1.0 m2 and considering rainfall events with return periods of 10 to 100 years.

Keywords: infiltration; runoff; physical model; scale effect

1. Introduction

The in situ analysis of natural rainfall and associated hydrological and geotechnical
phenomena is a major challenge because the variables that characterize natural rainfall
cannot be controlled under such circumstances [1–3]. To address these limitations, rainfall
and runoff simulators (RSs) have been developed for laboratory and field analyses, enabling
the study of controlled events under different intensities and adequate raindrop uniformity,
diameters, velocities, and energy levels. RSs can also be used to evaluate soil behavior in
response to variations in the slope, moisture content, and suction during testing.

In this context, RSs are important instruments that can be used to simulate different
hydrological processes [4–11] and geotechnical systems [12–16], applied to numerous types
of natural and man-made structures. The use of RSs allows the simulation of multiple
phenomena, such as soil compaction due to the action of different raindrop sizes, erosion
processes, transport of sediments and contaminants, and slope stability. RSs also enable
the evaluation of water runoff and infiltration in soils with or without vegetation cover.

Several studies have presented the development, calibration, and use of RSs for a
wide range of purposes, such as agricultural research [17–22]; biomass studies [23,24]; infil-
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tration analysis [14,15,25,26]; urban hydrology simulation, including permeable pavement
performance [27], evaluation of processes of accumulation and transport of pollutants
on pavements and roof surfaces [28–32]; and rainwater quality research. RSs are fre-
quently used in geotechnical evaluations of soil loss and erosion [1,16,22,33–38], slope
stability [13,39,40] and infiltration, and percolation in unsaturated soils [12,14,15,41,42].

The performance of RSs must be evaluated considering various initial conditions,
boundary conditions, simulated rainfall characteristics, and the scale factor (i.e., the eval-
uation of the specimen geometry and dimensions). There have been numerous studies
on the limits and allowable tolerances in terms of the uniformity, droplet diameter, termi-
nal velocity, and kinetic energy of simulated rainfall events [2,3,14]. Unfortunately, the
available literature does not offer details in terms of the optimization of the RS geometry,
delimitation of the ideal operation conditions, and numerical modeling of the interaction
between rainfall and runoff, or rainfall–runoff–vegetation. Regarding the components and
structural parts of an RS, the publications available are often lacking, not permitting the
reproduction of the proposed apparatuses [14,43]. In addition, the available RSs are not
specifically designed to deal with high rainfall intensities over small surface areas that
impose the restriction of using a single rainfall simulation nozzle.

The objective of this paper is to present a new portable RS, which was idealized and
designed based on computer-based numerical studies presented by Mendes et al. [15] and
to verify its performance. The proposed apparatus was specifically designed to deal with
some specific rigorous conditions not met by existing RSs [2,3,13] including the simulation
of uniform rainfall on relatively small surface areas and under relatively high rainfall
intensity and the simultaneous monitoring of runoff and infiltration. To allow indoor testing
at reduced costs, the system was designed for a low height of application of simulated
rainfall and the use of a single spray nozzle. The RS was developed to test unsaturated
soil specimens with and without vegetation, overcoming limitations of hydrological and
geotechnical studies using previous apparatuses. As a result, additional objectives are to
demonstrate the applicability of the developed apparatus considering the simultaneous
monitoring of the hydrological variables and of the internal specimen conditions.

2. Materials and Methods

The proposed apparatus was designed based on interdisciplinary requirements asso-
ciated with the phenomena involving rainfall–runoff–vegetation interactions [15]. The RS
is able to represent many hydrological and geotechnical conditions, with soil specimens of
different geometry, slope and initial field state conditions (Figure 1). Some rainfall simu-
lators are designed for rainfall intensities between below 50 mm h−1 [17,20]. The design
presented herein enables the simulation of relatively higher rainfall intensities that are
representative of tropical regions. A resulting limitation of the presented RS is the inferior
performance for lower rainfall intensities, because parameters such as rainfall uniformity
are decreased under intensities lower than 50 mm h−1. It is also important to note that
the structural characteristics of the proposed design are adequate only for specimens with
maximum dimensions of 150 cm in length, 100 cm in width, and 50 cm in depth.

The proposed RS is composed of three main systems: (a) structural system (mechanical
and hydraulic); (b) rainfall system, encompassing the drive automation system that controls
pressure and rainfall duration; and (c) instrumentation and data acquisition system, which
is related to the monitoring of the water content and suction variations in the specimen.
The design of the RS involved the optimization of the dimensions of the components and
systems, including the structural weight, ease of assembly, transportation, operation, and
data acquisition.
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The dimensions of the specimen were optimized to avoid boundary effects by means
of numerical simulations of the unsaturated/saturate water flux. The numerical solution
for the unsaturated soil flow model was implemented using FlexPDE version 6, a general-
purpose partial differential equation solver based on the Finite Element Method [44]. The
numerical analysis exercises aimed to establish the behavior of the specimen in terms
of pore-water pressure, degree of saturation and runoff coefficient. The behavior of the
specimen was evaluated according to the variations in the specimen length, LD; thickness,
HD; and inclinations, αD. A detailed description of the numerical exercises is presented by
Mendes et al. [15].

Rainfall intensity requirements must be carefully established based on natural rainfall
characteristics, among other factors. Tropical and equatorial regions are characterized by
high rainfall intensities. For Goiania, GO, Brazil, for example, return periods between 10
and 100 years correspond to rainfall intensities between 86 and 220 mm h−1, considering
typical rainfall durations [45]. Return periods between 10 and 100 years are relevant
because they are frequently adopted for the design of several types of hydraulic systems.
The proposed apparatus is also intended for the study of erosion processes, therefore
requiring runoff generation. However, the saturated hydraulic conductivity of typical soils
in the region is relatively high [46–48]. Therefore, runoff is generated only during high
intensity events. For this reason, generating relatively high rainfall intensities is a primary
requirement for the proposed RS.

2.1. Construction of the Components of the RS

The apparatus is composed of three main systems. The structural frame of the RS is
responsible for receiving and carrying the entire load exerted by the soil specimen. The
rainfall generator employs an automated control and hydraulic actioning system. The
instrumentation and data acquisition system is responsible for monitoring and storing the
soil parameter variations during the rainfall tests.

2.1.1. Structural Frame and Specimen Container

The structural frame of the RS supports the required loads and allows a range of
slope angles, from 0 to 50 degrees. The system, shown in Figure 2, is composed of a
metallic structure and an acrylic specimen container, with dimensions established based on
numerical simulations on the scale factor, as developed and proposed by Mendes et al. [15].
Based on numerical simulations, a 10 mm thick transparent acrylic box was chosen, with
0.5 m in length, 0.5 m in width, and 0.3 m in height. The structure for the runoff flow
recipient was also made of transparent acrylic with a thickness of 4 mm and dimensions
of 0.05 m in length, by 0.05 m in width, by 0.5 m in height. Its duct is 50 cm in length and
5 cm in width and height (Figure 3).
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The metallic structural design was developed using the STRAP software, version 2009.
Structural stresses and bending moments resulting from the active loads and overloads
were considered. The RS frame was made of A36 steel profiles, as indicated in Figure 2. The
metal structure is composed of two side supports of 120 cm on top of two lower U-shaped
supports, 120.5 cm long and 46.0 cm wide. Two vertical A-brackets are connected to the
lower U-brackets, with two rails, 130 cm long. An upper lateral U-shaped support was
installed, 120 cm long and with 75 cm in height. To hold the acrylic box, a tilt grille table
was built, consisting of two U-shaped tilting table stands, 115 cm long and 15 cm wide,
with two side supports along the metal box, 130 cm long and 3 cm wide, and five support
bars, 109 cm long. Two tilt bars, with 83 cm in length, were also installed.
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The runoff collection gutter (Figure 3a) has six exits, positioned to assist and guarantee
the shortest drainage time of the runoff to the gutter and to prevent sediment accumulation
from occurring. The developed crosshead connection, indicated in Figure 3a, is responsible
for directing and conducting the drained volume to be measured with the flow sensors
and precision scales.

The instrumentation ports, designated in Figure 3b as points 1, 2, 3, 4, and 5, were
carefully planned to meet the requirements of (a) elucidating the evolution of interception–
infiltration–runoff at the vegetation–soil–root interface; (b) preventing any overlapping
of the area of influence of volumetric water content (VWC) sensors, thus preventing two
or more sensors from measuring the same areas (blue circles in Figure 3b); (c) attaining
symmetric representativeness of the specimen; and (d) allowing easy installation and
avoiding partial sample alteration, mainly the uppermost superficial part (volume increase
due to the introduction/insertion of the sensors).

2.1.2. Rainfall Generator

The rainfall generator is composed of an automated electronic controller responsible
for the speed of the centrifugal pump, which maintains the pressure of the hydraulic
network that produce the artificial precipitation events. RS also includes a hydraulic
system consisting of a reservoir, weldable PVC pipes, pressure sensors, sprinkler nozzle,
and another centrifugal pump.

The electronic controller has a proportional, integral, and derivative (PID) speed adjust-
ment system, developed using an Arduino Mega processor and a Bluetooth driver/control.
It can generate service pressures in the hydraulic network ranging from 0 to 150 kPa, in
addition to controlling the opening and closing of the solenoid valve that feeds water to the
sprinkler nozzle, to generate rainfall. Both the duration and intensity of the artificial rainfall
can be adjusted in a constant or variable manner. The main components are the pressure
sensor, solenoid valve, frequency inverter, PID controller, and finally, an application for an
Android Bluetooth-enabled smartphone.

The hydraulic system has a reservoir of 200 L, a three-phase single-stage centrifugal
water pump with a power of 0.5 kW, capable of generating an adequate service pressure
(0 to 200 kPa), plumbing made of weldable PVC standards, dry pressure gauges (0 to
1000 kPa), and a sprinkler nozzle. The entire hydraulic design followed ASME technical
recommendations, mainly regarding the proper installation distance of the connections,
i.e., farther than 40 free upstream diameters and 10 free downstream diameters for any
pipe, limiting the undesirable flow effects.

A pressure gauge was installed at the same position of the pressure sensor, for redun-
dancy and validation purposes. Another important hydraulic component evaluated was
the sprinkler nozzle, which is responsible for the type of jet (artificial rain) to be applied
to the soil specimens, depending also on the height and service pressure. Two sprinkler
nozzles, 1

4 ”-10SQ-HHSQ, and 1
2 ”-29SQ-HHSQ, were evaluated in this study, regarding

the produced water drop distribution uniformity, drop size distribution, intensity, and
generated rainfall.

2.1.3. Instrumentation and Data Acquisition System

The RS instrumentation and data acquisition module is responsible for collecting and
storing the soil monitoring data before, during, and after the rainfall tests. This system
consists of three parts, and each part has a specific data logger. Figure 4 shows how the
three parts are arranged in the RS, their interconnections, and components.
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The first part is composed of five volumetric moisture sensors, model EC-5 (Decagon
Devices, Pullman, WA, USA), to determine the volumetric water content (VWC) of the soil
and a data logger model Em-50 (Decagon Devices, Pullman, WA, USA). The second part
is composed of five mini-tensiometers model T5 (UMS, Munich, Germany), for negative
pore-water pressure determination, and a model GP2 data logger (Delta-T, Cambridge,
UK). The third part includes the acquisition of flow and ground erosion data via a precision
scale, with the data logger adjusted to operate with an open-type Arduino microprocessor.

The EC-5 volumetric water content sensors operate based on the dielectric constant
principle of the medium. This type of sensor belongs to the class of frequency domain
sensors because it operates at a fixed frequency of 70 MHz, selected to reduce the effects of
salinity and texture, thus providing a higher precision. Figure 5b shows the sensor and
its dimensions, with the VWC measured along the entire length of the probe, which has a
volume of influence of 0.3 L [49].
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The T5 tensiometer measures the soil–water tension (Figure 5a). The voltage of the
pressure transducer in contact with the water is converted into a continuous electrical
signal, measured or transmitted by a power supply. The sensor principle is based on
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the piezoresistive effect of the silicon semiconductors, whereby their specific electrical
resistance is affected by deformation, processed to obtain the voltage from a Wheatstone
bridge. The deformation is caused by the pressure (or water stress) on the silicon chip,
which is very thin and therefore extremely sensitive to pressure variations. The pressure
transducer is calibrated to 10.6 Vdc and therefore requires a regulated power supply,
obtaining signals ranging from 0 hPa ≈ 0 mVdc to 1000 hPa ≈ 103 mVdc [50].

For the monitoring and data acquisition of the drained flow over time, a precision
microprocessor-connected scale programmable in Arduino was adopted, which allows
data transmission of the water mass drained from the surface of the soil specimen at
programmable time intervals, in this case, every 5 min during the artificial rainfall events.

Both the manometer and pressure transducer in the proposed RS (Figure 4) were
calibrated and had an accuracy error of 1.1% (with a tolerance limit of 1.6%). The pres-
sure transducer was calibrated in the apparatus itself based on the previously calibrated
gauge readings.

2.2. Calibration of the Rainfall and Runoff Simulator
2.2.1. Calibration of the Rainfall Generator

A specific combination of apparatus specifications was designed to allow testing
under the required high intensity rainfalls (up to 220 mm h−1) and using a single nozzle,
which is a constraint imposed by the surface area of the specimens, between 0.25 and 1 m2.
For the proper operation of the RS, the simulated rainfall should be as similar as possible
to natural rainfall. Based on the size, mass, volume and speed of droplets, most rainfall
characteristics, such as the intensity, height and kinetic energy, can be derived from these
properties [38,51]. To evaluate the uniformity of the raindrop distribution, the Christiansen
Uniformity Coefficient (CUC), defined by Equation (1), was adopted:

CUC = 100

1 −

n
∑

i=1

∣∣Xi − X
∣∣

ncX

 (1)

where Xi is the mean precipitation in each collector [L], X is the precipitated mean line [L]
and nc is the number of collectors.

Meyer and Harmon and Tossell et al. [52,53] considered CUC values above 80% to be ac-
ceptable for a uniform raindrop distribution of RSs; however, according to Sousa Júnior et al.
and Miguntanna [3,32], a value of CUC above 70% is sufficient, which is the value consid-
ered in this work.

For the determination of the distribution of the raindrop diameter (DSD), the flour pel-
let method was selected. This method was originally developed by Bentley [54], thereafter
reviewed by Hudson [55,56] and implemented by Rahardjo et al., Herngren, Egodowatta,
Miguntanna, Kincaid et al. and Pérez-Latorre et al. [26,28,29,32,57,58]. For this procedure,
a 0.05 m2 tray with uncompacted wheat flour was exposed to the simulated rain at the
center of the simulator for 1 s in triplicate. Then, the flour was dried for 24 h at ambient
temperature and with a heater, and the formed granules were separated by a series of
sieves (4.75 mm, 3.35 mm, 2.36 mm, 1.18 mm, and 0.85 mm), then weighed on an analytical
balance, as suggested Sousa Júnior et al. [3]. Thus, the median diameter of the simulated
rain drops (D50) of each class was determined from the distribution curve of the accumu-
lated volume of the drops as a function of the average diameter of the drops per sampled
class [14]. This test was performed for operating pressures of 70, 100, and 150 kPa.

The terminal velocity and energy can be determined from the raindrop uniformity
and drop diameter as shown in Figure 6.
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velocity of raindrop [58,59].

2.2.2. Calibration of the Soil Volumetric Water Content Sensors

Calibration of VWC probes was performed for each of the five sensors. Initially, a
sample of the same soil used in pilot tests was compacted in the acrylic container, which has
a port allowing the insertion of the soil moisture sensor. The selected soil has an optimal
water content of 18% and the corresponding void ratio for the standard Proctor effort is
1.0, compatible with the samples to be tested in the RS. After the initial sensor reading
was recorded, water was slowly added to the soil, thus increasing the soil water content.
Soil samples were later collected for the determination of the final water content. The
sensor readings were recorded as water was added to the container, thereby establishing
moisture content calibration points. Figure 7 illustrates the calibration process of the
moisture sensors.
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2.2.3. Saturation of the Tensiometers

The tensiometer has an acrylic rod with a tip consisting of a porous stone. The acrylic
rod must be filled with distilled water, with its tensile stress being measured by the pressure
transducer. For the proper operation of the tensiometer, air bubbles must be removed
from the body of the acrylic rod, ensuring complete saturation of the tensiometers. For the
saturation process, distilled water was poured into the body and stem of the tensiometer. A
suction pump was used to remove the bubbles in the water, thereby saturating the porous
stone tip (Figure 8). To confirm the correct saturation state, portable tension measurement
equipment was used to assess the response time of the readings, accuracy and limits
established, which should not exceed −2000 hPa.
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2.3. Operation
2.3.1. Apparatus Module

Before placing the sample in the RS, it is necessary to prepare markers to guide the
positioning of the spray nozzle, ensuring that it is centralized and aligned with the center
of the sample. Spray nozzle positioning depends on the specimen slope. A centering
plumb and a bubble level were used. With the sample in place, the RS was locked and
the equipment setup process was continued, with the insertion of water content sensors
and tensiometers.

2.3.2. Monitoring Module

Because of the degree of compaction of the specimen, accessories were required to
create a driving path for the installation of the soil instrumentation devices. The cavities
created were slightly smaller than the dimensions of the sensors to allow insertion and a
tight fit in the soil sample, without losing contact or causing damage to the instruments.

2.3.3. Rainfall Generator Module

Initially, it was necessary to purge air from the hydraulic network by activating the
spray nozzle, applying five bursts of water or more under a high pressure of approximately
150 kPa, until all air was removed. A diversion funnel was used to prevent any simulated
rainfall from reaching the specimen. Then, the pressure was adjusted to the service pressure
(70 kPa), and the total time and the opening and closing periods of the sprinkler nozzle
solenoid valve (constant or pulsed rain) were configured. All commands are applied
through Bluetooth communication for Android (Figure 9).
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The water containers were placed on an electronic balance for the collection of sedi-
ment, and flow sensors that monitored the water mass and superficial flow of water over
the specimen at predefined 5 min intervals were inserted. The specimen table was adjusted
to the desired slope with the use of safety locks, and the test was started.

3. Results and Discussions

This paper is not intended to present all the results and the detailed analysis on the
experimental tests carried out but only to demonstrate the applicability and functioning of
the developed RS, both for hydrological and geotechnical studies.

3.1. Evaluation of the Intensity and Uniformity of the Simulated Rainfall

The characteristics of the simulated rainfall are influenced by the sprinkler nozzle
used and are a function of the service pressure and height of the sprinkler. The sprinkler
nozzle for the RS was selected via an extensive literature review of the various types of
sprinklers used in previous RS models. The review focused on the form of the sprinkler
(e.g., hollow cone, full cone, or square), ease of acquisition and maintenance, required
service pressure and technical data availability.

There are several rainfall apparatuses capable of simulating rainfalls with coeffi-
cients of uniformity (CUC) higher than 70%, such as those presented by Miller [60],
Aksoy et al. [1,61], and Sousa Jr. et al. [3]. However, the high CUC values observed in
these studies were obtained for apparatuses with relatively high surface areas (from 2.0 to
7.0 m2), which allowed the use of multiple nozzles. The use of multiple nozzles allows the
application of relatively high rainfall intensities and results in higher CUC values [1,3,62].
The RS developed here was designed for testing relatively small surface areas under high
rainfall intensities. The use of a single nozzle imposed by specimens with smaller areas,
such as those presented herein, makes it possible to obtain higher CUC values. However,
the rainfall characteristics degrade when high rainfall intensities are applied using a sin-
gle nozzle, including inadequate raindrop size and kinetic energy. To improve raindrop
characteristics, changes must be made to the system parameters. Unfortunately, these
same changes tend to decrease CUC. In summary, the multiple variables involved affect
the rainfall characteristics in a way that requires a balance among nozzle characteristics,
nozzle elevation, and service pressure. A specific combination of conditions designed to
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allow testing under the required high intensity rainfall conditions using a single nozzle
was developed.

Evaluation of the simulated rainfall was first performed via analysis of the distribution
uniformity of the raindrops by considering CUC [63], and the intensity of the simulated
rainfall for the specified service pressures (i.e., 70, 100, and 150 kPa), which guarantees a
D50 diameter representative of natural rainfall, ranging from 2.0 to 2.5 mm. The obtained
value of D50 was subsequently used to evaluate the terminal velocity [51,64–66] and kinetic
energy of the raindrops [51,66]. The height of the simulated rainfall for the determination
of CUC was 1.89 m at 1, 2, and 5 min, over a sampling area of 1.0 m2, using 25 collectors.
The end collectors were placed 10 cm away from the edge of the specimen and the other
collectors 20 cm apart from each other.

Figure 10 shows that for the determination of CUC, three tests were performed under
each applied service pressure. The 1

2 ”-29SQ-HHSQ sprinkler nozzle (Figure 10b) provided
higher CUC values, ranging between 78% and 86%, while the 1

4 ”-10SQ-HHSQ sprinkler
nozzle (Figure 10a) provided CUC values ranging between 60% and 71%. Although the
1
2 ”-29SQ-HHSQ sprinkler nozzle attained a higher uniformity, the actual rainfall intensity
produced was relatively high (approximately 200.0 mm h−1). However, the 1

4 ”-10SQ-
HHSQ sprinkler nozzle satisfied the uniformity requirement proposed by Miguntanna [32],
with a real intensity that is appropriate for rainfall intensities approximately 100 mm h−1.
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Figure 10. Evaluation of Christiansen Uniformity Coefficient (CUC) as a function of the service pressure and rainfall
intensity, for the 1.00 m2 surface: (a) 1

4 ”-10SQ-HHSQ sprinkler nozzle; (b) 1
2 ”-29SQ-HHSQ sprinkler nozzle.

Because it met the rainfall requirements, the uniformity assessment (CUC) of the fulljet
1
4 ”-10SQ-HHSQ sprinkler nozzle was further evaluated. Additional tests were performed
at a 1.59 m rain application height and, a service pressure of 50, 70, or 100 kPa over an area
of 0.25 m2 and with a simulation time of 1 min under constant rainfall conditions. These
specifications were designed to improve the rainfall uniformity. Only a simulation time of
1 min was considered, because it significantly affected the CUC (60 to 67%) under a service
pressure of 70 kPa (Figure 10a).

Figure 11 depicts the results of the additional rainfall simulation tests, highlighting that
the uniformity of the simulated rainfall increased 18% on average, exhibiting a CUC greater
than 70% and meeting the requirements suggested by Miguntanna [32]. However, the
problem of a high simulated average intensity again occurred due to the small sampling
area, which made it necessary to generate pulsed and variable rainfall to decrease the
simulated average intensity. The CUC results in this work (Figures 10b and 11) agreed very
well with those reported by Spohr et al. [2] and Sousa Júnior et al. [3] for areas close to
1.0 m2.
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Figure 11. Evaluation of CUC as a function of the service pressure and rainfall intensity, for the
0.25 m2 surface using the fulljet 1

4 ”-10SQ-HHSQ square cone jet sprinkler nozzle.

Based on the premise that the CUC value obtained with the 1
4 ”-10SQ-HHSQ spray

nozzle and the 0.25 m2 experimental plot was satisfactory (i.e., higher than 70%) under the
given service pressure and application height, simulated rainfall needed to be generated at
a lower rainfall intensity that was more consistent with most real field conditions (80 to
220 mm h−1), as presented in Section 2. To this end, the production of variable simulated
rainfall was evaluated, that is, pulsed rainfall via short opening (ta) and closing (tf) time
intervals of the solenoid valve supplying the water flow to the sprinkler nozzle. These
setting ensured that a constant rainfall was maintained while more closely simulating
natural rainfall (Table 1). This procedure is common in sprinkling RSs over small exper-
imental plots, lower-intensity simulated rainfalls are required, as seeing in Spohr et al.,
Sousa Júnior et al., Alves Sobrinho et al., and Abudi et al. [2,3,19,20].

Table 1. Results of the experiments performed with the RS (fulljet 1
4 ”-10SQ-HHSQ square cone jet sprinkler nozzle) to

calibrate the real intensity of the simulated rainfall for different ta and tf values.

ta (s) tf (s) train (min) Ir (mm h−1) HL (mm) Vc (L) Qc (L min−1) Qc5 (L min−1) ξr (%)

2 3
5 137 16 0.277 0.055 0.040 27.8

10 120 20 0.477 0.048 0.050 4.8
30 116 58 1.314 0.044 0.043 1.8

2 5
30 86 43 0.857 0.029 0.028 2.0
60 86 86 1.601 0.027 0.026 2.6

3 2
15 188 47 0.876 0.058 0.057 2.4
30 174 87 3.127 0.104 0.103 1.2

5 1
30 234 117 5.103 0.170 0.166 2.4
60 227 227 8.082 0.135 0.115 14.6

5 10
30 92 46 0.915 0.031 0.032 4.9
60 91 91 1.892 0.032 0.031 1.7

where ta, tf and train are the opening, closing and total times, respectively, of the solenoid valve controlled with the PID; Ir is the simulated
real intensity; HL is the water depth measured in the 0.25 m2 experimental plot; Vc and Qc are the volume and flow, respectively, measured
in the RS channel for the rainy season; Qc5 is the flow rate measured in the RS channel at 5 min test intervals; and ξr is the relative average
error between Qc and Qc5.

Tests were performed at different ta, tf and train values for the solenoid valve. The
actual simulated intensity was verified during these tests (Table 1), as suggested by Sousa
Júnior et al. [3]. It is important to mention that at least two repetitions were performed
for each level of ta and tf, and Table 1 only lists the average values of each simulated
scenario. The real simulated rainfall intensities shown in Figure 11 and listed in Table 1,
corresponding to the 1

4 ”-10SQ-HHSQ sprinkler nozzle, produced using pulsed rainfall,
cover a wide range of high rainfall intensities. Widening the range of rainfall intensities to
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86 to 234 mm h−1 also includes rainfalls events with shorter return time. Therefore, the
developed RS is capable of addressing a wide range of rainfall intensities.

The spatial distribution of the simulated rainfall under pressures of 70, 100, and
150 kPa exhibited a similar pattern, as shown in Figure 12 for the 1

4 ”-10SQ-HHSQ sprinkler
nozzle. For the developed RS, no major variations occurred in the distribution patterns of
the simulated rainfall under a service pressure of 70 kPa, with CUC ranging from 71 to 74%.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 22 
 

and flow, respectively, measured in the RS channel for the rainy season; Qc5 is the flow rate measured in the RS channel at 
5 min test intervals; and ξr is the relative average error between Qc and Qc5. 

The spatial distribution of the simulated rainfall under pressures of 70, 100, and 150 
kPa exhibited a similar pattern, as shown in Figure 12 for the ¼″-10SQ-HHSQ sprinkler 
nozzle. For the developed RS, no major variations occurred in the distribution patterns of 
the simulated rainfall under a service pressure of 70 kPa, with CUC ranging from 71 to 
74%. 

To summarize, the proposed RS was capable of producing rainfall with relatively 
high intensities (from 86 to 200 mm h−1). Other RSs presented in the literature [2,3,19,62] 
are capable of producing similar intensities, but not under the imposed constrains of in-
door testing using a single jet nozzle. It is also important to point out that the obtained 
CUC varied between 71 and 74%, a range that is superior to the minimum values recom-
mended by Miguntanna [32]. 

3.2. Evaluation of the Simulated Raindrop Characteristics 
Regarding the distribution of raindrop diameter, the flour pellet method was em-

ployed for the same height as that in the uniformity test (i.e., 1.89 m), but with a rainfall 
simulation time of 1 s over a 0.15 m2 metallic plate. Generally, superior results may be 
obtained using disdrometers or imaging techniques. However, the decision to adopt the 
flour pellet method was based on recommendations from Kathiravelu et al. [67], who re-
ported that results obtained using that method are adequate for raindrops between 0.3 
and 6 mm in diameter. The raindrops produced by the proposed apparatus fall within 
that range. It is also important to note that high rainfall intensities degrade the quality of 
measurements using the disdrometers or imaging techniques, due to background noise 
[67]. 

  

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 22 
 

  

Figure 12. Spatial distribution patterns of the simulated rainfall under 70 and 100 kPa (¼″-10SQ-HHSQ sprinkler nozzle): 
(a) 70 kPa and area of 0.25 m2; (b) 70 kPa and area of 1.0 m2; (c) 100 kPa and area of 0.25 m2; (d) 100 kPa and area of 1.0 m2. 

After spray application under each service pressure (i.e., 70, 100, and 150 kPa), with 
three repetitions under each respective service pressure, the pellets were air dried for 24 
h and then oven-dried for another 24 h. Figure 13 presents the obtained distribution of the 
simulated raindrop diameter. The highest raindrop amount production, considering all 
diameter ranges, was achieved with the ½″-29SQ-HHSQ sprinkler nozzle, under all the 
service pressures tested. Figure 13a,b show that the service pressure of 70 kPa was respon-
sible for reproducing the largest raindrop diameter range (i.e., 2.0 to 2.5 mm), which is 
recommended by Mingutanna [32] for natural rainfall. The ¼″-10SQ-HHSQ sprinkler noz-
zle produced smaller raindrop diameters under all service pressures (Figure 13c,d), even 
though the pressure of 70 kPa produced raindrops ranging from 2.0 to 2.5 mm, in addition 
to generating an appropriate CUC value. In general, it was observed that the air-drying 
method followed by oven-drying generated a larger number of drops mainly for diameter 
classes smaller than 2.36 mm due to the high oven temperature (105 °C), which may have 
resulted in grain fragmentation. 

  

Figure 12. Spatial distribution patterns of the simulated rainfall under 70 and 100 kPa ( 1
4 ”-10SQ-HHSQ sprinkler nozzle):

(a) 70 kPa and area of 0.25 m2; (b) 70 kPa and area of 1.0 m2; (c) 100 kPa and area of 0.25 m2; (d) 100 kPa and area of 1.0 m2.

To summarize, the proposed RS was capable of producing rainfall with relatively high
intensities (from 86 to 200 mm h−1). Other RSs presented in the literature [2,3,19,62] are
capable of producing similar intensities, but not under the imposed constrains of indoor
testing using a single jet nozzle. It is also important to point out that the obtained CUC
varied between 71 and 74%, a range that is superior to the minimum values recommended
by Miguntanna [32].

3.2. Evaluation of the Simulated Raindrop Characteristics

Regarding the distribution of raindrop diameter, the flour pellet method was employed
for the same height as that in the uniformity test (i.e., 1.89 m), but with a rainfall simulation
time of 1 s over a 0.15 m2 metallic plate. Generally, superior results may be obtained
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using disdrometers or imaging techniques. However, the decision to adopt the flour pellet
method was based on recommendations from Kathiravelu et al. [67], who reported that
results obtained using that method are adequate for raindrops between 0.3 and 6 mm in
diameter. The raindrops produced by the proposed apparatus fall within that range. It is
also important to note that high rainfall intensities degrade the quality of measurements
using the disdrometers or imaging techniques, due to background noise [67].

After spray application under each service pressure (i.e., 70, 100, and 150 kPa), with
three repetitions under each respective service pressure, the pellets were air dried for 24 h
and then oven-dried for another 24 h. Figure 13 presents the obtained distribution of
the simulated raindrop diameter. The highest raindrop amount production, considering
all diameter ranges, was achieved with the 1

2 ”-29SQ-HHSQ sprinkler nozzle, under all
the service pressures tested. Figure 13a,b show that the service pressure of 70 kPa was
responsible for reproducing the largest raindrop diameter range (i.e., 2.0 to 2.5 mm), which
is recommended by Mingutanna [32] for natural rainfall. The 1

4 ”-10SQ-HHSQ sprinkler
nozzle produced smaller raindrop diameters under all service pressures (Figure 13c,d),
even though the pressure of 70 kPa produced raindrops ranging from 2.0 to 2.5 mm, in
addition to generating an appropriate CUC value. In general, it was observed that the
air-drying method followed by oven-drying generated a larger number of drops mainly for
diameter classes smaller than 2.36 mm due to the high oven temperature (105 ◦C), which
may have resulted in grain fragmentation.
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(b) 1
2 ”-29SQ-HHSQ sprinkler nozzle air dried; (c) 1

4 ”-10SQ-HHSQ sprinkler nozzle air dried and with a heater; (d) 1
4 ”-10SQ-

HHSQ sprinkler nozzle air dried.

Notably, both irrigation sprinklers have technical characteristics recommended for
the simulation of artificial rainfall and produce results very close to those found by Sousa
Júnior et al. [3], in terms of the uniformity, intensity, DSD, terminal velocity, and kinetic
energy. However, Sousa Júnior et al. [3] used two 1

2 ”-SS-HH-40 cone sprinkler nozzles that
are different from those used in the RA presented herein. The 1

2 ”-29SQ-HHSQ square cone
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sprinkler nozzle adopted herein generated a higher rainfall intensity, with more kinetic
energy and a larger coverage distance (greater than 1.0 m2). In contrast, the 1

4 ”-10SQ-HHSQ
square cone sprinkler nozzle, also evaluated herein, produced a lower-intensity artificial
rainfall with lower kinetic energy and covered an area smaller than 1.0 m2.

After verifying the adequate rainfall intensity and CUC, for the various service pres-
sures (i.e., 70, 100, and 150 kPa) considering both spray nozzles (i.e., 1

4 ”-10SQ-HHSQ,
1
2 ”-29SQ-HHSQ), the obtained droplet diameter distribution (Figure 13) was used to deter-
mine D50, according to the methodology proposed by Mendes [14]. The obtained value of
D50 was 2.4 mm for a service pressure of 70 kPa. This service pressure resulted in the most
uniform droplet diameter distribution, with values similar to those presented by Sousa
Júnior et al. [3] using less rigorous conditions, including the use of two spray nozzles.

The terminal velocity of the simulated raindrops was calculated for each diameter class.
A computer model developed in MATLAB, version R2015a, was used for the numerical
solution of the partial differential equations developed by Pérez-Latorre et al., and Li
and Kawano [58,64]. The fourth-order Runge–Kutta method was adopted, with initial
conditions established by the RS itself and by the sprinkler nozzle, such as the falling
height and initial speed (exit) of the drops from the sprinkler. Wind effects were neglected
considering the experiments were performed indoors. The Torricelli equation was adopted
to determine the initial raindrop speed upon leaving the spray nozzle as follows:

vi = Cd
√

2gPSER (2)

where vi is the initial drop speed exiting the sprinkler [LT−1]; Cd is the flow or discharge
coefficient, which is the relation between the actual flow produced by the spray nozzle
under a given service pressure and the measured flow; g is the gravity acceleration [LT−2];
and PSER is the operating pressure [L] at steps of 1 kPa or 0.1 m of a water column.

Figure 14 illustrates the behavior of the speed of the simulated raindrops for each aver-
age diameter class as a function of the time and distance. These results correspond to rain-
drops generated by the 1

4 ”-10SQ-HHSQ spray nozzle at PSER = 70 kPa and vi = 11.25 m s−1.
It is important to note that the assumption of a spherical raindrop shape is only satisfactory
for small raindrop diameters [66]. When the raindrop diameter increases, its shape tends
to change (Figure 15) to minimize the drag resistance force of the air. For this reason,
the numerical results of the terminal velocity for large diameters (>5.0 mm) should be
cautiously evaluated. Fortunately, this not the case for the simulated rainfalls presented
herein, with raindrop diameters generated by the RS being smaller than 5.0 mm.

The kinetic energy produced by the raindrops was calculated from the speed values
for the simulated raindrops when reaching the ground. The methodology of Brodie and
Rosewell [68] was employed, expressed in terms of the specific energy of the volume, i.e.,
KEp (J m−2 mm−1). The calculated KEp value was 38.5 J m−2 mm−1, which represents 154%
of the kinetic energy produced by natural rainfall events with a pluviometric intensity
higher than 40.0 mm h−1, at 25.0 J m−2 mm−1 [51]. Simulated rainfall produced with ade-
quate characteristics can attain up to 94% of the terminal velocity of natural rainfall [3,69]
as long as it is of the same intensity. Thus, as will be shown below, the high kinetic energy
developed by the RS helped to more easily investigate the effects of the inclusion of a
vegetation cover as soil protection.

Figure 16 shows the percentage of the kinetic energy produced for each raindrop diam-
eter class generated by the 1

4 ”-10SQ-HHSQ spray nozzle at a height of 1.58 m. Raindrops
with a diameter between 1.7 and 3.35 mm produced 60.26% of the total kinetic energy.
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Figure 16. Percentage of kinetic energy produced by each of drop diameter class for the 0.25 m2

experimental area using the fulljet 1
4 ”-10SQ-HHSQ sprinkler nozzle.

The droplet velocity and kinetic energy using the 1
4 ”-10SQ-HHSQ spray nozzle and a

service pressure of 70 kPa was 38.5 J m−2 mm−1, which is higher than the value obtained
by Van Dijk et al. [51], of about 25.0 J m−2 mm−1 for lower intensity rainfalls of 40 mm h−1.
These results are associated with the relatively low height of the spray nozzle in the
proposed apparatus (i.e., 1.59 m above the specimen surface). It is important to note that
there is a lack of published research considering high rainfall intensities, with Lassu et al.
and Fernández-Raga et al. [37,66] presenting some of the main previous results. Finally, the
relatively high kinetic energy produced by the proposed RS may be considered a limiting
factor, but the obtained value may be adjusted by changing the spray nozzle heigh.

3.3. Evaluation of the RS under Real Testing Conditions

Tests were conducted on samples with and without vegetation, as shown in Figure 17,
respectively. The grass species Paspalum notatum was used as the soil vegetation cover.
Figure 17 shows that in specimens without vegetation, erosion occurred due to the high
kinetic energy of the simulated raindrops, which was higher than that of natural raindrops.
In the samples with vegetation, this erosion process did not occur, indicating the impor-
tance of vegetation in the processes of infiltration, percolation, erosion control, and solids
transport, in addition to reducing the total surface runoff. It should also be noted that the
rainfall intensity greatly influenced the total runoff and solids transport measured during
the experimental tests performed with the RS without considering the vegetation cover.

For the test without vegetation cover (Figure 18), with PP = 86.0 mm h−1, e0 = 1.0 and
αD = 15◦, the water rapidly reached the lower soil layers, while in the test with vegetation
cover (Figure 19), water redistribution occurred in the soil, thus resulting in a slow and
gradual behavior of the pore-water pressure in the lower layers. In this last case water
reached point 5 only after 68 min, which was 8 min after the end of the rainfall test.

The evolution of the internal conditions of the specimen in terms of the volumetric
water content soil was evaluated by Egeli and Pulat and Greco et al. [13,70], but using other
types of RSs, in the context of slope stability studies and disregarding the effect of vege-
tation. It is noteworthy that these studies used RSs with distinct technical characteristics
when compared to the RS presented herein. The apparatuses presented is previous studies
used a greater number of sprinkler nozzles, significantly different rainfall intensities, slopes
angles, and surface area dimensions.
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Egeli and Pulat [13] did not monitor soil suction, hindering the estimation of the soil–
water characteristic curve, which is the most important soil information for the numerical
modeling of infiltration and water percolation. Greco et al. [70] monitored both volumetric
water content and matric suction. The authors did not consider the effect of vegetation,
but the obtained results were similar to those presented in Figure 18. The soil suction
range was similar, from 20 to 80 kPa, and a sudden advance of the wetting front was also
observed, main for probes close to the specimen surface.



Sustainability 2021, 13, 3060 19 of 22

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 22 
 

 
Figure 18. Evolution of the pore-water pressure at all monitored points in the test without vegetation, from the tensiome-
ters, considering αD = 15°, PP = 86.0 mm h−1, and e0 = 1.0. 

 
Figure 19. Evolution of the pore-water pressure at all the monitored points in the test with vegetation, from the tensiom-
eters, considering αD = 15°, PP = 86.0 mm h−1, and e0 = 1.0. 

The evolution of the internal conditions of the specimen in terms of the volumetric 
water content soil was evaluated by Egeli and Pulat and Greco et al. [13,70], but using 
other types of RSs, in the context of slope stability studies and disregarding the effect of 
vegetation. It is noteworthy that these studies used RSs with distinct technical character-
istics when compared to the RS presented herein. The apparatuses presented is previous 
studies used a greater number of sprinkler nozzles, significantly different rainfall intensi-
ties, slopes angles, and surface area dimensions. 

Egeli and Pulat [13] did not monitor soil suction, hindering the estimation of the soil–
water characteristic curve, which is the most important soil information for the numerical 
modeling of infiltration and water percolation. Greco et al. [70] monitored both volumetric 
water content and matric suction. The authors did not consider the effect of vegetation, 
but the obtained results were similar to those presented in Figure 18. The soil suction 
range was similar, from 20 to 80 kPa, and a sudden advance of the wetting front was also 
observed, main for probes close to the specimen surface. 

4. Conclusions 
A newly developed portable rainfall simulator (RS) was introduced. The apparatus 

was designed to allow the simulation of rainfall events of relatively high intensities over 
small specimen surface areas and under laboratory conditions. The difficult balance of 
rainfall generation parameters using a single nozzle was evaluated. Because of the high 
rainfall intensities enabled by the proposed RS, it can be used in hydrological and geotech-
nical studies, including the study of rainfall–runoff interactions and the study of erosion 
processes. Special attention was given to the independent evaluation of runoff and infil-
tration, including the monitoring of internal specimen conditions. The characteristics of 

Figure 19. Evolution of the pore-water pressure at all the monitored points in the test with vegetation, from the tensiometers,
considering αD = 15◦, PP = 86.0 mm h−1, and e0 = 1.0.

4. Conclusions

A newly developed portable rainfall simulator (RS) was introduced. The apparatus
was designed to allow the simulation of rainfall events of relatively high intensities over
small specimen surface areas and under laboratory conditions. The difficult balance
of rainfall generation parameters using a single nozzle was evaluated. Because of the
high rainfall intensities enabled by the proposed RS, it can be used in hydrological and
geotechnical studies, including the study of rainfall–runoff interactions and the study of
erosion processes. Special attention was given to the independent evaluation of runoff and
infiltration, including the monitoring of internal specimen conditions. The characteristics
of the proposed device address rigorous conditions required by relatively small portable
apparatuses that combine the assessment of hydrological and geotechnical characteristics
of both bare soils and vegetated surfaces in erosion studies.

The presented results demonstrate that it is possible to simulate rainfall events under
the imposed constraints. Suitable uniformity was achieved, with CUC values greater
than 70%. An adequate distribution of the raindrop size was reproduced, with a large
number of drops, between 2.0 and 2.5 mm. Rainfall intensities ranging between 86.0 and
220.0 mm h−1 were obtained, meeting the RS specification goals.

The use of a PID system in Arduino (via Bluetooth) enabled the automatic control
and monitoring of the service pressure of the rainfall generator, thus ensuring a greater
uniformity control of the raindrop distribution and artificial rainfall intensity. Finally, the
1
4 ”-10SQ-HHSQ square cone sprinkler nozzle is recommended, because it produces artificial
rainfall with characteristics that are closer to those of natural rainfalls for areas smaller
than 1.0 m2 and for an application height of 1.59 m at an intensity that is more consistent
with that of rainfall events occurring over 10 to 100 years. The recommended specifications
allow the testing of specimens under more realistic in situ conditions and the evaluation of
surface and internal flow, slope stability, erodibility and other geotechnical aspects.
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