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Abstract: Precision agriculture aims to use minimal inputs to generate maximal yields by managing
the plant and its environment at a discrete instead of a field level. This new farming methodology
requires localized field data including topological terrain attributes, which influence irrigation,
field moisture, nutrient runoff, soil compaction, and traction and stability for traversing agriculture
machines. Existing research studies have used different sensors, such as distance sensors and
cameras, to collect topological information, which may be constrained by energy cost, performance,
price, etc. This study proposed a low-cost method to perform farmland topological analytics using
sensor implementation and data processing. Inertial measurement unit sensors, which are widely
used in automated vehicle study, and a camera are set up on a robot vehicle. Then experiments
are conducted under indoor simulated environments that include five common topographies that
would be encountered on farms, combined with validation experiments in a real-world field. A data
fusion approach was developed and implemented to track robot vehicle movements, monitor the
surrounding environment, and finally recognize the topography type in real time. The resulting
method was able to clearly recognize topography changes. This low-cost and easy-mount method will
be able to augment and calibrate existing mapping algorithms with multidimensional information.
Practically, it can also achieve immediate improvement for the operation and path planning of large
agricultural machines.

Keywords: inertial measurement units; movements and monitor tracking; gyroscope; accelerometer;
multidimensional information

1. Introduction

Maintaining adequate food supply has become challenging due to worldwide pop-
ulation expansion and climate change [1,2]. With the advancement of technologies, such
as sensors, image processing techniques, and computing capability, precision agriculture
has been promoted. Precision agriculture aims to use minimal inputs to generate maximal
yields by taking into account the crop’s local field environment.

Precision agriculture includes precise irrigation quantity, correct and appropriate
application of chemicals, and weeding, for which the topological characteristics of the
crop field are a key component that needs to be considered. For instance, the quantity of
irrigation varies drastically due to the change of terrain slopes. Hussnain et al. [3] described
that low areas of the crop field are likely to collect more water from either the irrigation or
rainfall, meaning that irrigation for those areas should be less compared to that for other
areas with high slopes. Mareels et al. [4] concluded that precision agriculture especially for
the irrigation system relies heavily on the topological characteristics of the crop field.
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Topological terrain attributes also influence the efficiency of implementing large agri-
culture machines. Machine and tractor fleets used in agriculture improve the efficiency
of the farming process, while they also require appropriate terrain attributes to be able to
perform and maneuver [5]. Without information about the specific topological character-
istics of the field, large farming tractors and implements could become stuck in the field
or create unnecessary field ruts. Therefore, information collection for detailed topological
characteristics is essential in precision agriculture. This need will only be heightened as
farming transitions to autonomous vehicles.

Advanced sensors and computer vision techniques provide an opportunity to collect
the topological characteristics from the environment required by precision agriculture.
Sensors are becoming smaller and more powerful [6]. In addition, the costs of sensors
are decreased, enabling their widespread deployment in practice. The development of
computer vision technique has reached the level at which users can efficiently process
collected data for decision-making.

However, collecting all information from the crop field not only increases the burden
of memory needed by the equipment but also adds more useless information required to
be proceeded by the researchers. A method to extract critical and useful information from
the field is needed. We propose a method that combines the advanced sensors and inertial
measurement units (IMUs) as well as the algorithm to monitor the crop field in real time
at a low cost and in a practical manner. In addition, the automated monitor system also
performs a field analysis of the relationship between the topological characteristics and
crop growth to provide useful information for farmers to adjust their crop management
strategies accordingly and in a timely manner.

Thermal remoting sensing is another commonly used technique in this field. Different
from optical remoting sensing on the basis of reflected radiation, thermal remoting sensing
relies on the emitted radiation of the target objects [7]. It allows the farmers to collect
information such as temperature, crop stress, and crop diseases [8-10] so the corresponding
activities could be performed timely and accordingly.

Unmanned airborne vehicles (UAVs) has been extensively implemented in modern
agriculture due to their light weights and low costs, combined with remote sensing tech-
nologies. Honkavaara et al. [11] integrated UAVs and remoting sensing techniques to
realize consistent data collection and processing for wheat production. Costa et al. [12]
implemented UAVs and wireless sensor network to detect crop diseases and applied pes-
ticide, significantly minimizing the amount of pesticide inputs. Maes and Steppe [13]
combined thermal remoting sensing and UVAs for crop weed detection and achieved
favorable results.

However, in addition to the above remoting sensing and 3D maps that researchers
build based on cameras [14], additional information such as the landform and more
accurate topography is still a requisite. The terrain will not only affect the growth of plants
but also the management process by robot farmers. For example, it significantly increases
the processing time and fuel cost for a large machine if there are a lot of turns, and an
unbalanced landform could result in different soil and water conservation. Moreover, the
algorithms for map maintenance [15] are susceptible to adverse surface conditions, such as
unexpected pits, washouts from precipitation, steep slopes, or barriers. These drawbacks
can limit the ability of autonomous mapping and further lead to the failure of localization.
As a result, high-quality map building is challenging when attempting to include all these
details [16]. Moreover, different landforms may result in various growing statuses [17], for
example, steep slopes have a higher chance of causing severe erosion processes.

Energy costs associated with sensors constrain their applications. Traditional sensors,
such as stereo vision cameras or LiDAR, can provide accurate prediction of the images
collected from the fields, but their high power consumptions are too high to be implemented
for the needs of large farmland (hundreds and thousands of acres) monitoring. Differently,
the IMU sensor is a perfect substitute to be deployed in large farmland monitoring with a
tradeoff between performance and energy costs. Table 1 lists the power consumption and
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market price for different types of sensors, showing that IMU sensors have advantages
over other types of sensors with super low energy consumption and market price.

Table 1. Power consumption and market price of different types of sensors.

Sensor Type Power Consumption (W/V) Market Price (USD) Model
Stereo vision camera 20 200 Nerian SceneScan Pro
Laser scanner 2 500 Keyence Laser Scanner
Infrared light 0.04 50 Seco-Larm E-931-S35RRQ
LiDAR 10 500 Velarray H800
Laser range finder 30 450 Leupold RX-2800
IMU 3x107° 5 Bosch BMI270

IMU, inertial measurement unit.

To solve these problems, we propose an approach that addresses the proper hardware
implementation and associate algorithms for the sensors data as shown in Figure 1. This
work aims to augment the dimensional information of the existing farm mapping system.
The hardware implementation includes the sensors’ selection, application, and configura-
tion. We build upon this hardware with a customized data fusion algorithm to process the
collected data.
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Figure 1. Architecture of multiple-sensor-based sensing algorithm.
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First, IMU sensors [18] are used as the main tool for data collection, especially in
autonomous vehicle areas. Many existing solutions for motion tracking and gesture
recognition rely on the IMU sensors’ built-in mobile devices [19]. Magnetic sensor [20,21]
readings are used to determine device orientation changes, and in future may be applied to
detect the detailed environment. Then, certain frames [22] can be captured with a trigger
mechanism by the camera sensor mounted in the front of the robot for future analytics.

Next, analysis and data fusion are conducted on motion sensors’ data in real time
with moving robot vehicles. The use of multiple sensors, such as a gyroscope [23] and an
accelerometer [24], is advantageous because of the low-cost and easy combination, which
makes it possible to collect continuous motion data in real time. With the data fusion
algorithm, we can judge the topological information in real time according to the robot
vehicle’s motion. If topological features change significantly, which we name it as an
“event”, the camera is woken up to capture frames and saved them in association with the
location on the map. This is for future reference of the current environment.

2. Related Work
2.1. Remote Monitoring

Agriculture industries traditionally implement optical and multispectral techniques
on the images collected by satellites to analyze and evaluate the plant growth condition
and yields [25]. The existence of chlorophyll, for instance, could be revealed by the light
absorption from the leaf and, hence, determines plant health. It is of importance since
decisions, such as fertilizing the soil and spreading insecticide or fungicide, should be
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taken based on this information. The treatments should be applied in time to ensure
their functionality, requiring the filed information to be collected and analyzed frequently,
which challenges the traditional method [26]. In addition, traditional monitoring methods
are expensive to be implemented with regard to time efficiency. Remote sensing plays
a critical role in precision agriculture by allowing farmers to collect various types of
information to help improve the quality and yields of crops [27]. Optical remoting sensing,
taking advantages of collected images by using visible and near infrared sensors to detect
different target objects on the ground based on the radiation variation, has been utilized
in many aspects of crop production [28]. Frolking et al. [29] developed new maps by
combining the optical remote sensing and ground census data to investigate the diversity
of rice production. Hall et al. [30] reviewed the applications of optical remoting sensing in
viticulture by taking advantage of the information, such as soil structure and vine shape
and size, from the collected images to ensure the quality and yields.

2.2. Motion Sensing

With the advancement of precise Global Positioning System (GPS) equipment and cam-
eras detecting structures, various autonomous machines are employed in the agriculture
sector [31]. The QUAD-AV project tested the performance of using microwave radar, stereo
vision, LiDAR, and thermography to detect obstacles in the context of agriculture [32]. The
project concluded that stereo vision stands out for its accuracy in ground and non-ground
classification. Zhao et al. [33] proposed a method to gather road information on a large
scale through the combination of phase cameras and motion sensors. An environment
map was developed [34] for detecting the relative positions of nearby objects with multiple
phone cameras. In addition, the turning movement of vehicles was captured by comparing
the centrifugal force with a reference point. Then the authors extended this work by design-
ing an efficient algorithm to reduce the computing time. Non-vision sensors are utilized
in [35] to realize the detection of vehicle maneuvers, including lane changing, turning, and
moving on a curvy path. Qi et al. [36] proposed to utilize the front- and rear-mounted
cameras in a phone to identify dangerous road conditions. Chen et al. [37] developed
a multiview 3D network to detect objects on the road, combined with a sensory-fusion
framework to analyze data collected by LiDAR and cameras.

2.3. Robot Vehicles with Autonomoust Driving Techniques in Agriculture

Robots are gaining interest in precision agriculture due to the potential capability
to automatically remove weeds and minimize the usage of pesticides and herbicides in
crop production [38]. Different from the traditional methods that treat the whole field
uniformly, robots apply resources to the target plants individually and, therefore, improve
the resource efficiency. For this sake, the datasets focus on providing the field data to those
who design automatic systems with robots to perform activities, such as classification,
navigation, and mapping in modern agriculture [39].

2.4. Sensor Data Fusion in Agriculture

Fusion of sensor data has proved its capability in agriculture. Fusion of GPS and
machine vision is leading the way to improve the applications of large machine guidance
systems in agriculture. Plants cultivated in patterns facilitates the usage of autonomous
machine systems with satisfying accuracy. However, the adverse environments where trees
might disable the GPS signal negatively impact the system’s efficiency [40]. Acceleration
data provided by the IMU devices compensate the impact of signal loss of GPS and ensure
the accuracy of guidance systems. Therefore, the combination of GPS and IMU sensors can
be implemented.
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3. Methodology
3.1. IMU Sensor-Based Data Collection Approach

Two IMU sensors, a gyroscope, and an accelerometer were used to measure the
attitude of an agricultural robot [41]. Inertial sensors come with intrinsic noises. To
improve their usability and accuracy, we designed a coordinate alignment algorithm
on both sloped surface and flat surface to detect sensor orientation changes and model
stability. The proposed that the slope-aware algorithm first conduct coordinate alignment
and estimate linear acceleration via dynamically withdrawing the gravity effect on recorded
accelerometer readings. Then, it uses a clustering technique to identify relative orientation
changes.

A gyroscope is an inertial sensor for measuring orientation based on the principles
of angular momentum. However, because of noise jamming, temperature variation, and
unstable force moment, algorithm drift error will occur and increase with time. Therefore, a
gyroscope may have noise during a long period of data collection. A supplementary option
is to use an accelerometer, which is a device that measures proper acceleration. When the
accelerometer is motionless, the attitude angles can be calculated based on the acceleration
of the gravity component in every axis via trigonometric functions.

Slope-Aware Alignment

The accuracy of coordinate alignment is mainly affected by the slope of the field.
Hence, we developed a slope-aware coordinate alignment method to reduce or eliminate
the negative effects caused by the slope. Traditional approaches fail to consider the slope,
because they make the assumption that all the motion data is through the origin motion data
point, and calculate the fit curve based on all motion data [42]. However, these approaches
could encounter chaos with a random rough surface. Therefore, our slope-aware approach
dynamically segments the whole path into pieces and uses each piece of the path as an
independent input. Due to forces created by slopes, readings from each path deviate from
the origin point. If we combine all the paths, we can estimate the slope and further improve
the alignment accuracy. A rotation matrix will be derived by combining sensor readings
from all paths. To derive the rotation matrix, we fitted the curve to find the direction unit
vector. Different from traditional approaches, we trained the horizontal unit vector for
each segment and combined them by assigning different weights for each segment. One
segment will be selected if the recorded data indicates the car is in motion. The more data
points we can include in this segment, the more we can increase the statistical power of the
measurement.

As shown in Figure 2, the vector [V3, V,, V3] represents the orientation of a gyroscope
sensor and [V;/, V,/, V3] represents the orientation of a robot vehicle. The rotation matrix
R = [R;, R}, R¢] can be estimated during the coordinate alignment process. In the rotation
matrix R, R;, R;, and Ry are the unit coordinate conversion vectors along each demission,
such that [Vll, Vz’, V3/] = [Vl/ Vs, V3] X [Ri/ Rj, Rk] .

Figure 2. Slope-aware rotation alignment concept.
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3.2. Motion Pattern Recognition

Different field surfaces can lead to various accelerations and further affect the moving
speed and motion patterns. Hence, recognizing motion patterns can help us understand
the running environment of the robot vehicle. In this work, we use the dynamic time
warping (DTW) algorithm to identify similar robot motions with varying speeds and
further detecting running environments. The DTW algorithm is well known for evaluating
the similarity between two temporal sequences. To measure the similarity, temporal
sequences are “warped” by shrinking or stretching in the time domain. To achieve the best
performance, the training set should be carefully prepared and include representatives of
different types of events as much as possible. In order to improve detection accuracy, we
chose to loosen some of the constraints of the DTW matching algorithms during the training
process and also when conducting evaluations. As a theoretical result, our DTW algorithm
was able to identify all the motions. There were four categories of motion patterns in our
study as shown in Figure 3a—d.

(a) (b)

A ANAN
Vi

\/\/

(c) (d)

Figure 3. Motion sensor theoretical patterns: (a) moving on a flat field; (b) moving over a slope; (¢) moving across a

depression; (d) moving on a muddy field.

3.3. Data Fusion Approach

The sensor fusion method avoids the measurement limitations of using only a camera.
An advanced data fusion method was used to integrate data from the camera, accelerometer,
and gyroscope [43]. In this study, two methods were discussed and compared. One is a
self-adaptive complimentary principal component analysis (PCA) and the other one is the
DTW.

Data collected from different sensors need to be synchronized as the clock on each
device is different. After clock synchronization, we used principal component analysis
(PCA) to speed up the data analysis process and detect various activities promptly as shown
in Algorithm 1. PCA is able to extract the most important features from the collected dataset
and convert a high-dimensional dataset to one with lower dimensions. PCA simplifies the
dataset by discarding the least important features while maintaining the interpretability of
variables.
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Algorithm 1. Pseudo-code of the algorithm for generating principal components

DTW (a, g) contains:
#A=(ay,...,ay)is the accelerometer data. G = (g1, ..., gm) is the gyroscope
data collected with continuous time series
-> Here, we claim M [0, ... ,n, 0, ..., m] is a 2D data matrix which stands
for the similarity measures between the 2 timeseries.
# Data matrix initialization
->MI[0,0]: =0
->Fori=0tom Step 1 Do:
-> M0, i]: = Infinity
->End
->Fori: =1 ton Step 1 Do:
->M i, 0]: = Infinity
->End
# Calculate the similarity measures between the 2 different time-series into M [n, m]
->Fori:=1tonStep 1 Do:
->Forj:=1tom Step 1 Do:
#Evaluate the similarity of the two points
->diff : = din (A(D), G(j))
->MIi, j] : = diff + Min (M [i-1, j], M [i, j-1], M [i-1, j-1])
->End
->End
-> Return M [n, m]

Additionally, PCA also combines original variables in such a way that only the most
valuable features are retained. Hence, we extract features from our accelerometer and
gyroscope dataset using the PCA algorithm. The algorithm is described by the following
steps.

1. Data Normalization
— 1
: M

where y is the mean and J is the standard deviation of all the data.
2. Covariance Matrix Calculation

. . | Var[Xq] Cov[X7, Xa]
Matrix(Covariance) = Cov[Xo, X1]  Var[Xa)] 2)
where X; represents the accelerometer readings and X, represents the gyroscope
readings. Note that Var[X;] = Cov[X3, X;] and Var[X,] = Cov[X, X3].

Matrix(Covariance) is the covariance matrix, which is a d x d matrix. The covariance
matrix stores the covariance between two features. Once the covariance is established, PCA
will perform the eigen decomposition on it. The covariance matrix can be calculated using
the equations below:

Cov[Xj, Xi] = —— - (xij — x7) (xix — %) &)

_T _
Matrix(Covariance) = % ((X -X) (X— X)) 4)

where X represents the mean vector, and it can be calculated using the following equation:

— n

X = % Y x;. The mean vector (d-dimensional vector) stores the mean of each feature
i=1

column in the dataset.

3.  Eigenvalue and Eigenvector Calculation
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Next, we need to calculate the eigenvalues and eigenvectors for the covariance matrix.
The covariance matrix is a square matrix, so the eigenvalue can be calculated using the
characteristic equation below:

det(xI — A) = 0 )

where, X represents the eigenvalue for matrix A, I is an identity matrix which has the same
dimension as A to satisfy the requirement of matrix subtraction. ‘det’ is the determinant
of the matrix. We can find a corresponding vector V for each eigenvalue X by solving the
following equation:

(XI-A)V=0 (6)

4.  Principal Component Selection

The eigenvalues are sorted in descending order such that they reflect the significance of
the components. The eigenvector that has the highest eigenvalue is the principal component
of the dataset. Given that our dataset contains two variables (accelerometer and gyroscope),
we should have two eigenvalues and two eigenvectors. We use a feature vector (V1, V) to
store the two eigenvectors.

5. Principle Component Formation

The eigenvectors represent the direction of the principal components. The original
data need to be re-oriented to the new coordinate system using the eigenvectors. To re-
orient the data, the original data were multiplied by the feature vector, and the re-oriented
dataset is called a score as shown in Equation (7).

Sc = [Orig.data] x [V] (7)

As discussed in previous sections, we built an event library (different motion patterns
listed in Figure 3) using motion data collected by different robot vehicles. The motion data
contain all the typical events. When a new event is detected, the corresponding motion
data will be processed using the PCA algorithm and compared with all the predefined
events in the event library. We used the DTW algorithm to evaluate the distance between
the new event temporal sequence and all temporal sequences in the library. Based on the
derived distance, a k-nearest neighbor algorithm was used to predict a label for the new
event.

To evaluate the distance between two vectors, we used the following distance metrics.
Euclidean distance—the root sum of squared differences:

K

Ain (X,Y) = 2 (xk,m - yk,n) * (xk,m - yk,n) 8)
k=1

Manhattan distance—the sum of absolute differences, also known as the Manhattan,
city block, taxicab, or ¢; metric:

K
dmn (X/ Y) = Z ’xk,m ~ Yk
k=1

K
= Z \/(xk,m - yk,n) * (xk,m - yk,n) )
k=1

Squared distance—the square of the Euclidean metric:

K

dmn (X/ Y) = 2 (xk,m - ]/k,n) * (xk,m - ]/k,n) (10)
k=1
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Symmetric Kullback-Leibler metric distance—only valid when X and Y are real and
positive numbers:

K
mn X Y Z Xkm — Yikon (10gka logyk,n) (11)

4. Experiment Design and System Implementation
4.1. System Design

A robot machine usually has limited battery capacities, so it is important to reduce
unnecessary operations as much as possible if the machine is expected to do long-term
work. Hence, it is better not to use the camera to monitor the machine during the whole
trip, we only need to focus on some specific environmental images when an unusual
topography is detected. Keeping this in mind, our algorithm leverages inertial sensors to
continuously detect robot vehicle movement, only collecting corresponding camera data
once an unusual motion pattern is detected. This, in addition to the fact that IMU sensors
consume much less power than cameras, can dramatically decrease the energy requirement
and the computing overhead of the whole algorithm.

4.2. System Implementation

Processing motion sensor data in real time is very important for our method. Addi-
tionally, capturing the associated environment images in time also offers accurate reference
data for future analysis. Moreover, we also plan to add a real-time image processing
function in future research. To achieve the best performance and extensibility, we chose
an embedded computing platform and optimized the inference engine as the hardware
container [44]. Our inference engine is optimized to run on this specific embedded comput-
ing platform [45,46]. In this work, we choose the NVIDIA Jetson TX2 embedded computer
as the embedded computing platform. The Jetson TX2 has a hexcore ARMv8 64-bit CPU
complex and a 256-core Pascal GPU. Our system is built upon the multithread framework,
written in C and C++. We use independent pipelines to manage different tasks, e.g., we
created a pipeline to collect data from motion sensors and monitor various events and
implemented another pipeline to collect environment images. Each pipeline consists of
a series of elements. The element is where a data stream is processed. In the hardware
platform for small agricultural machine development, size and price are the two main
parameters that must be considered in the design idea. In this study, we used a small-sized
and low-cost IMU to capture acceleration and angular speed change.

4.3. Simulation Experiment Scenarios

In this study, we wanted to test our proposed algorithms and have precise control
on knowing the terrain. Therefore, a simulation was built using a sand table that could
easily create different terrain conditions. The sand table is a narrow rectangle that is like a
downscaled racing track. During the data collection, we counted each run from one end of
the sand table to the other end as one instance. To augment the datasets, we collected data
with both ends as starting points and the other ends correspondingly as the end points.
The different setups for each kind of terrain conditions as shown in Table 2 were chosen
for the experimental tests. These simulated field conditions mainly included dry flat path,
slope, depression, and muddy path. Each scenario was set up on the sand table. The
lengths of these four experimental scenarios were approximately 2-3 m. Table 2 shows
detailed information about each scenario. While the tested speeds of the robot vehicle in
different scenarios vary according to the roughness of the fields, these speeds are helpful in
guaranteeing high-quality data with proper passing period of each topography.
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Table 2. Indoor experiment scenarios.

Category Distance (m) Description
Flat 2 Flat board with a layer of soil
Single slope 2 Wood chip covered; angle 30 degree
Depression 2.5 5-8 cm irregular shapes
Muddy 2.5 With small water pit and mud

4.4. Real-World Validation Experiment Scenarios

In this study, we collected the real-world field data with the vehicle (2019 Tacoma
TRD Sport 4 x 4) as shown in Figure 4.

Figure 4. The vehicle used for data collection.

Data collection activities included investigating and selecting locations of experiment
scenarios in the field and collecting sensor data for various types of experiment scenarios.
After the investigation in the field, four types of experiment scenarios were determined
by researchers as shown in Table 3 with an IMU sensor. When collecting data for each
experiment scenario, the researchers set the vehicle with a constant throttle to move straight
forward with a fixed steering. The driving distance for each experiment scenario per trail
was about 60 feet. Vehicle motion data in terms of gyroscope and acceleration (without g)
were collected.

Table 3. Real-world experiment scenarios.

Experiment Scenarios Features

Single Slope The gradient of the single slope was stable.
The depression and soil erosion contain multiple soil
erosion gullies.
Rough Field The surface of rough field contains mixtures of sand and gravel.
Flat Field vs. Muddy Field The vehicle drove from a flat field through a muddy field to
collect data.

Depression or Soil Erosion

5. Result and Discussion

We demonstrate and discuss the performance of our approach in recognizing dry
flat surface field, slope, depression, and muddy field separately. In each scenario, a
motion pattern and corresponding topological feature are plotted and discussed together
in the following subsections. For different scenarios, we applied different speed and data
collection rate setups for better quality data, and we also conducted some data processing,
such as normalization, denoising, etc. Because the vehicle size and topological scale used
for the simulated environment and the real-world field are significantly different, the
ranges and slopes of both gyroscope and acceleration vary. However, our algorithm can
still recognize the patterns with a data processing step.
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5.1. Single Slope

As is shown in Figure 5, the field slopes were estimated using a gyroscope via coordi-
nate alignment. The downslope with a sharply increasing incline and the downslope with
a deep decrease are also marked. The derivative could easily address the gradient of the
slope. If the gyroscope value drops down fast, then the slope is steep, while the slope has a
minor gradient if the gyroscope value change is gradual. The results in Figure 5a give us an
accordant pattern of slope detection in practice to the theoretical pattern. If, in some cases,
the collected data could not perfectly match the pattern, the estimated linear acceleration
was calculated as alignment using the accelerometer to reduce noise in the sensor data as
shown in Figure 6. However, in most cases, the single slope could be recognized only using
gyroscope data.

Figure 5b shows the real-world observed downslope from the field using a gyroscope
via coordinate alignment. The climbing movement starts from around data point 100 and
ends at around data point 175. The pattern is obvious and could be easily detected, but the
noise from the observation, particularly at the end of the process, is significant. The results
regarding the linear acceleration in Figure 6b, however, produce an unclear pattern of the
downslope compared with the results from the gyroscope.

0.1

0.0

Gyroscope (rad/s)

—+— x-value
~e— y-value

= z-value

o 100

Figure 5.

Acceleration (rn.fsz)

—= x-vilue |
-1

—a— y.value | /
zvalue b4

200 300 400 500 600 700

0 25 50 75 100

Data points

(b)

125 150 175 200

Data points

(a)
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Figure 6. Field slope with segmental linear acceleration data: (a) simulated result estimate; (b) real-world observed.

5.2. Depression or Soil Erosion

The depression can be identified from changes of values along the z-axis as shown
in Figure 7. If the z-axis readings stay somewhat stable, then it should be a smooth
field without bumps or depressions. If the readings start fluctuating, then there might
exist a bump or depression. If the magnitude of readings along the z-axis changes from
positive to negative, and readings of the x and the y axis also change, then it is very
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Gyroscope (rad/s)

likely there is a depression. Similar patterns are also revealed by the real-world observed
segmental gyroscope data collected from the experiments. The depression location starts
from data point 100 and ends at around data point 270. The depressions between simulated
environment and real-world environment are a little different in slope and distribution, so
the valleys and peaks have different ranges. For example, the second valley in Figure 7a,b
is different, but it was still recognized as similar to the second drop down according to
pattern recognition.
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Figure 7. Field depression with segmental gyroscope data: (a) simulated result estimate; (b) real-world observed.
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5.3. Rough Field

The rough field is indicated by a continuous occurrence of bumps or depressions as
shown in Figure 8a. If continuous peaks and valleys can be observed from z-axis values,
then it is highly likely that there is a rough patch of the field. It can be divided into several
depressions, which means the pattern of the rough field is a combination of depression
patterns. The same pattern appears in the real-word observed segmental gyroscope data
collected from the rough roads, shown in Figure 8b. With a short segment of the flat road
before and after the rough segment, the fluctuations from all the directions continuously
occur and show a clear pattern as estimated.
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Figure 8. Rough field with segmental gyroscope data: (a) simulated result estimate; (b) real-world observed.

5.4. Flat Field vs. Muddy Field

A muddy field could cause sudden deceleration as shown in Figure 9, where the
muddy field starts from 9 s. The deceleration can be inferred from changes in readings
along the y-axis. As we can see from this example, there is a deep valley at around 12 s, and
the readings of both the x- and the z-axis are also fluctuating. Similar real-world results are
shown in Figure 9b.
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Figure 9. Deceleration happens with the field surface changes: (a) Simulated result estimate; (b) real-world observed.

6. Conclusions and Future Work

Precision agriculture requires maps with localized topographies to properly adjust
irrigation, route planning, and other crop management practices. Current approaches to
this problem include the use of cameras and advanced computer vision algorithms or using
distance sensors for gathering depth information for 3D map construction. Both methods
are power-expensive, constraining their use. Our work presents an alternative method
using a sensing algorithm with a low-cost, robot-vehicle-mounted, multidimensional map
augmentation method that can track robot vehicle movements, monitor the surrounding
environment by collecting key images, and link all the factors to the existing map, thereby
providing useful analytics for task planning, route planning, and robot operators. The
method leverages IMU sensors to gather mobility data for the robot vehicle. We also present
data fusion techniques to detect topological changes in the field that could potentially
cause a negative influence on farm machines. The results indicate this method works well
and should lend itself to many useful agricultural applications.

In the future, we will continue exploring algorithms that can improve the robustness
of this sensing method. Additionally, a deep neural network (DNN)-based mechanism
will be developed that enables the algorithm to detect some categories of environmental
objects alongside with the map points under good lighting conditions.
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