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Abstract: New guidelines and suggestions for taking reliable effective relative permeability mea-
surements in heterogeneous rocks are presented. The results are based on a combination of high
resolution of 3D core-flooding simulations and semi-analytical solutions for the heterogeneous cores.
Synthetic “data sets” are generated using TOUGH2 and are subsequently used to calculate effective
relative permeability curves. A comparison between the input relative permeability curves and
“calculated” relative permeability is used to assess the accuracy of the “measured” values. The results
show that, for a capillary number (Ncv = kLpc*A/H2µCO2qt) smaller than a critical value, flows
are viscous dominated. Under these conditions, saturation depends only on the fractional flow as
well as capillary heterogeneity, and is independent of flow rate, gravity, permeability, core length,
and interfacial tension. Accurate whole-core effective relative permeability measurements can be
obtained regardless of the orientation of the core and for a high degree of heterogeneity under a range
of relevant and practical conditions. Importantly, the transition from the viscous to gravity/capillary
dominated flow regimes occurs at much higher flow rates for heterogeneous rocks. For the capillary
numbers larger than the critical value, saturation gradients develop along the length of the core and
accurate relative permeability measurements are not obtained using traditional steady-state methods.
However, if capillary pressure measurements at the end of the core are available or can be estimated
from independently measured capillary pressure curves and the measured saturation at the inlet and
outlet of the core, accurate effective relative permeability measurements can be obtained even when
there is a small saturation gradient across the core.

Keywords: relative permeability; small-scale heterogeneity; CO2 sequestration; capillary number;
flow-rate dependency

1. Introduction
1.1. Literature Review

Saline aquifers have the largest potential capacity to store CO2 [1]. However, compared
with oil and gas reservoirs, where a century of experience exists regarding multiphase
displacement processes, our understanding of the fate and transport of CO2 and brine in
saline aquifers is still limited. When CO2 migrates through a saline aquifer, the interplay
between viscous, capillary, and buoyancy forces, as well as structural heterogeneities,
will determine how far and how fast the plume will move, how much CO2 will dissolve,
and how much will be immobilized by residual trapping [2,3]. Figure 1 illustrates the
conceptual CO2 migration in deep saline aquifers. Three physical forces dominate CO2 flow
behavior in different flow regimes. Characterizing different flow regimes by two transition
points is important and very useful for upscaling. Scaling from one system (core scale) to
another (field scale) is possible by using a dimensionless group to study the multiphase
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flow system. The relative permeability of CO2/brine systems is an essential element to
determine CO2 injectivity and migration, as well as to assess the safety of potential CO2
sequestration sites. Multiphase flow parameters (relative permeability) are best understood
in the viscous dominated regime.
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Currently, there are limited laboratory data on CO2–brine relative permeability 
[16,23–30]. However, the reliability of such published relative permeability is directly 
affected by the quality of the measured relative permeability curves, as recently 
highlighted in reviews of published relative permeability measurements [31–33]. In 
particular, factors that could affect these measurements are (a) the core heterogeneity that 
may be responsible for flow rate dependency and incomplete fluid displacement; (b) 
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An increasing number of studies based on numerical simulations at both the reser-
voir [4–7] and core scale [8–11] are being widely applied to describe and quantify these
processes: critical input parameters to any simulation are the multiphase flow properties
for the CO2/brine/rock system, such as the capillary pressure and the relative permeability
curves. The latter, specifically the drainage relative permeability, is the main subject of the
literature review below.

There are two main categories of laboratory techniques to measure relative perme-
ability curves: steady-state methods [12–17] and unsteady-state methods [18–21]. In the
unsteady-state method, only a single phase is injected into the core to displace in situ fluids.
Saturation equilibrium is not attained and thus it can significantly reduce the time needed
to measure the relative permeability curves. In the steady-state method, two fluid phases
are injected simultaneously at a fixed volumetric ratio and constant rate until saturation
and differential pressure along the core become constant. Although the attainment of
equilibrium for steady-state method might be time consuming, the data can be interpreted
directly with the multiphase flow extension of Darcy’s law using the measured saturation
and pressure drop [15,22]. In this review, we focus on the steady-state relative permeability
measurement technique.

Currently, there are limited laboratory data on CO2–brine relative permeability [16,23–30].
However, the reliability of such published relative permeability is directly affected by the
quality of the measured relative permeability curves, as recently highlighted in reviews
of published relative permeability measurements [31–33]. In particular, factors that could
affect these measurements are (a) the core heterogeneity that may be responsible for flow
rate dependency and incomplete fluid displacement; (b) capillary end effects that are not
properly accounted for; and (c) gravity segregation that may occur when relatively long
cores are used in a horizontal core-flooding system. In the following, the above mentioned
issues are discussed in more detail.

One of the biggest concerns about relative permeability measurements is the capillary
end effect [34]. Whenever a capillary pressure gradient exists along the porous medium,
traditional approaches to calculate the relative permeability are insufficient. One of the
standard techniques used to minimize the capillary end effect is injecting a high flow
rate as the capillary forces are small compared with viscous forces at high flow rates.
The influence of the end effect on relative permeability becomes significant at low rates
or for low pressure gradients as saturation gradients increase with the decreasing flow
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rate [13,14,34–37]. On this basis, early studies have argued that relative permeability should
be independent of flow rates and that, if flow rate dependency is observed, this should
be attributed to the boundary effect [14,38,39]. However, there are a number of research
papers in the literature suggesting that relative permeability does depend on the flow rate
even when the end effect is carefully avoided [22,35,40–42]. Flow rate dependent relative
permeability curves are attributed not only to inadequacy of the multiphase extension of
Darcy’s law for transient flow, but also upscaling (volume averaging) of heterogeneous
rocks with capillary heterogeneity [42–49].

Another method to minimize the capillary end effect is to increase the length of the
core. However, experiments carried out with long cores in a horizontal core-flooding
set-up may encounter the issue of gravity segregation [50]. Gravity segregation needs
to be considered when working with a fluid pair characterized by a significant density
difference, such as the oil/gas or supercritical CO2/brine system [2,51–53], as the large
density difference can lead to gravity override based on the high Bond number, and
hence causes both horizontal and vertical saturation gradients. Although using vertical
experiments to measure relative permeability can avoid gravity segregation [54], the use of
a vertical arrangement would make the use of X-ray CT (Computed Tomography) scanning
to observe fluid saturation quite challenging without purpose-designed equipment.

In addition, spatial variation of rock properties affects both the capillary pressure
and relative permeability–saturation relations [44,55,56], but it also influences the spatial
distribution of saturation [8,10,16,57]. Various degrees of heterogeneity affect CO2 trapping
capacity [58] and may cause flow rate dependency, high residual water saturation, and
low end-point relative permeabilities observed from the CO2/brine core flood experi-
ment [16,23,29,30,59–61]. It has been shown that including heterogeneity characteristics in
numerical simulator grid blocks can improve the accuracy of simulation prediction and
enable reliable relative permeability measurements [8,9,42,44].

Based on this literature review, the following conclusions can be drawn:

• Although there is an increasing number of measurements of multi-phase flow of CO2
and brine in reservoir rocks [16,17,23,24,59,62], given the emerging importance of
this topic, studies are needed to develop a strong scientific foundation to support
sequestration in saline aquifers;

• The large body of multiphase flow studies, particularly relative permeability in
oil/water and gas/liquid systems, provides a good starting point for understanding
CO2/brine systems;

• As the fluid properties of the CO2/water system are very different from those of the
oil/water system, and because of the fundamentally empirical nature of the relative
permeability concept, studies are needed to establish similarities and differences
between multiphase flow oil/water and CO2/brine systems;

• Potential and unresolved influences of flow rate, capillary number, and small-scale
heterogeneity on relative permeability in CO2/brine systems need to be investigated;

• The end effect is an important factor that could lead experimental error. If we want to
investigate the flow rate dependence on relative permeability curves, the end effect
must be carefully understood and compensated for;

• Based on recent studies of heterogeneity, the effect of heterogeneity may be the reason
for the observed dependence of relative permeability on flow rate;

• As the experiments to measure the influence of heterogeneity on relative permeability
are time consuming, numerical simulations can be used to simulate, understand, and
interpret laboratory experiments of multiphase flow in typical reservoir rocks.

Motivated by the previous multiphase flow literature regarding CO2/brine core flood
experiments, the issues described above are addressed in this paper. This work builds on
two studies of the influence of flow rate, gravity, and capillarity on brine displacement
efficiency in homogeneous porous medium [11] and heterogeneous porous media [60]. 3D
numerical modeling and 2D theoretical analysis were perfomed to understand and predict
the combined influences of viscous, gravity, and capillary forces in heterogeneous rocks
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over the range of conditions relevant to storage of CO2 in deep underground geological
formations (Figure 2). The proposed 2D semi-analytical technique predicts the brine
displacement efficiency for 3D two-phase flow simulations very well when the Bond
number ranges from 0.02 to 0.2 and the degree of heterogeneity σlnk/ln(kmean) is smaller
than 0.5. The system considered in this series of work is supercritical CO2/water and, most
significantly, drainage displacements.
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1.2. Summary of the Previous Work

A new criterion to identify different flow regimes at the core scale was developed.
Ninety-five percent fractional flow of CO2 and five percent brine injected simultaneously
into a simulated core at a wide range of flow rates (around 0.001 mL/min to 24 mL/min)
were performed. Average CO2 saturations for homogeneous and heterogeneous cores (only
the high contrast model is shown here) over a wide range of flow rates are analyzed in
terms of gravity number Ngv (LHS of Figure 3) and capillary number Ncv (RHS of Figure 3),
respectively. It was shown that, when the effect of gravity is important for the multiphase
flow system, we should use the gravity number Ngv (Equation (1)) to analyze the saturation
data, for example, for the homogeneous and mildly heterogeneous cores [11]. On the other
hand, when the capillary heterogeneity is taken into account, the impact of gravity is much
smaller and the capillary number Ncv (Equation (2)) is a better dimensionless number to
characterize our system [60]. The advantage of using appropriate dimensionless numbers
can be easily seen from Figure 3. The balance of viscous, gravity, and capillary forces
can be properly captured through these dimensionless numbers and flow regimes can be
characterized by two critical numbers.

gravity number Ngv =
∆ρgkeffL
HµCO2

A
qt

, (1)

capillary number Ncv =
keffLp∗c
H2µCO2

A
qt

, (2)

Bond number NB =
∆ρgH

p∗c
, (3)

where ∆ρ is the density difference between CO2 and brine; g is acceleration; qt is the total
volumetric flow rate; keff is the effective permeability of the core; µCO2 is CO2 viscosity;
L is the core length; H is the core height; and A is the core area. pc* is the characteristic
capillary pressure of the medium, chosen as a so-called displacement capillary pressure.
The displacement capillary pressure is a capillary pressure value at the brine saturation Sw
equal to 1, and it is tangent to the major part of the capillary pressure data. The pc* value
for our core is about 3000 Pa, shown in Figure 4.



Sustainability 2021, 13, 2744 5 of 26

Sustainability 2021, 13, 2744 5 of 26 
 

capillary pressure of the medium, chosen as a so-called displacement capillary pressure. 
The displacement capillary pressure is a capillary pressure value at the brine saturation 
Sw equal to 1, and it is tangent to the major part of the capillary pressure data. The pc* 
value for our core is about 3000 Pa, shown in Figure 4. 

 
Figure 3. Average CO2 saturation as a function of gravity number Ngv (LHS (left hand side)) and capillary number Ncv 
(RHS (right hand side)) for homogeneous and high contrast models, respectively, for different Bond numbers. 

 
Figure 4. Laboratory capillary pressure data. (pc*—characteristic capillary pressure [Pa]) 

1.3. General Rule of Thumb for Reliable Relative Permeability Measurements 
According to the previous 2D semi-analytical and 3D numerical results, a “rule of 

thumb” is established in this paper for identifying the region in which the viscous 
dominated regime persists, and accurate effective relative permeability curves can be 
obtained from steady-state experiments. Figure 3 illustrates that, when the capillary 
number Ncv is small enough (below the critical value, Nୡ୴,ୡଵୌୣ୲ୣ), viscous forces dominate and 
the gravity impact can be neglected in this regime even with horizontal core flooding. Nୡ୴ ≤  Nୡ୴,ୡଵୌୣ୲ୣ ,   (4)

The concept of first critical capillary number, Nୡ୴,ୡଵୌୣ୲ୣ , is the most important factor to 
define the viscous-dominated regime for the heterogeneous cores. In principle, we can 
calculate the first critical number based on the previous results [60]: 

Ncv,c1
Hete=

1
τNB

fCO2Rl

krCO2൫SBL
Hete൯ (5)

where τ is a dimensionless variable that represents permeability heterogeneity; SBLHete is 
defined as the average CO2 saturation of the heterogeneous core in the viscous-dominated 
regime, which is the Buckley–Leverett saturationtaking into account heterogeneity 
(shown in Figure 3); krCO2൫SBL

Hete൯ is the CO2 relative permeability evaluated at SBL
Hete; 

Rl is the aspect ratio (L/H); and fCO2 is the fractional flow of CO2. Because the critical 

Figure 3. Average CO2 saturation as a function of gravity number Ngv (LHS (left hand side)) and capillary number Ncv

(RHS (right hand side)) for homogeneous and high contrast models, respectively, for different Bond numbers.

Sustainability 2021, 13, 2744 5 of 26 
 

capillary pressure of the medium, chosen as a so-called displacement capillary pressure. 
The displacement capillary pressure is a capillary pressure value at the brine saturation 
Sw equal to 1, and it is tangent to the major part of the capillary pressure data. The pc* 
value for our core is about 3000 Pa, shown in Figure 4. 

 
Figure 3. Average CO2 saturation as a function of gravity number Ngv (LHS (left hand side)) and capillary number Ncv 
(RHS (right hand side)) for homogeneous and high contrast models, respectively, for different Bond numbers. 

 
Figure 4. Laboratory capillary pressure data. (pc*—characteristic capillary pressure [Pa]) 

1.3. General Rule of Thumb for Reliable Relative Permeability Measurements 
According to the previous 2D semi-analytical and 3D numerical results, a “rule of 

thumb” is established in this paper for identifying the region in which the viscous 
dominated regime persists, and accurate effective relative permeability curves can be 
obtained from steady-state experiments. Figure 3 illustrates that, when the capillary 
number Ncv is small enough (below the critical value, Nୡ୴,ୡଵୌୣ୲ୣ), viscous forces dominate and 
the gravity impact can be neglected in this regime even with horizontal core flooding. Nୡ୴ ≤  Nୡ୴,ୡଵୌୣ୲ୣ ,   (4)

The concept of first critical capillary number, Nୡ୴,ୡଵୌୣ୲ୣ , is the most important factor to 
define the viscous-dominated regime for the heterogeneous cores. In principle, we can 
calculate the first critical number based on the previous results [60]: 

Ncv,c1
Hete=

1
τNB

fCO2Rl

krCO2൫SBL
Hete൯ (5)

where τ is a dimensionless variable that represents permeability heterogeneity; SBLHete is 
defined as the average CO2 saturation of the heterogeneous core in the viscous-dominated 
regime, which is the Buckley–Leverett saturationtaking into account heterogeneity 
(shown in Figure 3); krCO2൫SBL

Hete൯ is the CO2 relative permeability evaluated at SBL
Hete; 

Rl is the aspect ratio (L/H); and fCO2 is the fractional flow of CO2. Because the critical 

Figure 4. Laboratory capillary pressure data. (pc*—characteristic capillary pressure [Pa]).

1.3. General Rule of Thumb for Reliable Relative Permeability Measurements

According to the previous 2D semi-analytical and 3D numerical results, a “rule of
thumb” is established in this paper for identifying the region in which the viscous domi-
nated regime persists, and accurate effective relative permeability curves can be obtained
from steady-state experiments. Figure 3 illustrates that, when the capillary number Ncv
is small enough (below the critical value, NHete

cv,c1), viscous forces dominate and the gravity
impact can be neglected in this regime even with horizontal core flooding.

Ncv ≤ NHete
cv,c1 , (4)

The concept of first critical capillary number, NHete
cv,c1, is the most important factor to

define the viscous-dominated regime for the heterogeneous cores. In principle, we can
calculate the first critical number based on the previous results [60]:

NHete
cv,c1 =

1
τNB

fCO2Rl

krCO2

(
SBL

Hete
) (5)

where τ is a dimensionless variable that represents permeability heterogeneity; SBL
Hete is

defined as the average CO2 saturation of the heterogeneous core in the viscous-dominated
regime, which is the Buckley–Leverett saturationtaking into account heterogeneity (shown
in Figure 3); krCO2

(
SBL

Hete
)

is the CO2 relative permeability evaluated at SBL
Hete; Rl is the

aspect ratio (L/H); and fCO2 is the fractional flow of CO2. Because the critical capillary number
NHete

cv,c1 depends on the rock heterogeneity, the higher the degree of heterogeneity in the core,
the smaller the capillary number Ncv required reaching the viscous-dominated regime.
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Based on all the sensitivity studies for the homogeneous and heterogeneous models
(two porosity-based permeability cores and four random log-normal distribution perme-
ability cores) performed before [60], the critical capillary number NHete

cv,c1 is chosen to be
around 10, which would result in relatively uniform saturation profiles for most types of
heterogeneity cores (σlnk’ < 2.5).

Ncv =
keffLp∗c
H2µCO2

A
qt
≤ NHete

cv,c1 ≡
1
τNB

fCO2Rl

krCO2

(
SBL

Hete
) ∼= 10 , (6)

Note that this value could be larger if the core is known to be more homogeneous.
Rearranging Equation (6), we can obtain the critical injection flow rate for most types of
cores (Equation (7)). Further discussion will been shown later in the “Discussion” section.

qt ≥ qHete
critical ≡

keffLp∗c
H2µCO2

A
NHete

cv,c1
in
[

m3

s

]
= 60× 106 ×

keffLp∗c
H2µCO2

A
NHete

cv,c1
in
[

ml
min

]
. (7)

In this so-called viscous-dominated regime where the average saturation of the core is
independent of the capillary or gravity number, heterogeneity results in spatially varying
and lower average CO2 saturation as compared with that expected for a uniform core
(Figure 3). Consequently, the effective relative permeability for the whole core is different
from the intrinsic relative permeability of each individual voxel in the core. Saturations
in this “viscous-dominated regime” vary spatially in response to the establishment of
gravity-capillary equilibrium in the core, which is shown at the LHS of Figure 5.
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On the other hand, if we continue to increase flow rates up to 100 mL/min or
200 mL/min, the saturation ultimately becomes constant throughout the core and the
corresponding capillary pressure varies spatially (the RHS of Figure 5). Under these condi-
tions, the effective relative permeability of the core and the intrinsic relative permeability
of the core are the same because the saturation is uniform throughout the core [59,63].
However, in order to reach this extreme viscous-dominated regime, flow rates are required
to be unreasonably high and are not expected to occur in the field [9]. Therefore, for
practical interest, the concept of effective relative permeability for heterogeneous rocks
is used in this paper, and the viscous-dominated regime is referred to as the “capillary
equilibrium viscous-dominated regime” or the “quasi viscous dominated regime” in this
work.

The objective here is to investigate systematically which parameters have a significant
impact on reliable drainage relative permeability measurements on the laboratory scale.
In particular, 3D high resolution core-scale simulations are conducted to study the inde-
pendent as well as the combined effect of flow rate, capillary pressure, gravity, and rock
heterogeneity, thus allowing identification of the operational regimes under which reliable
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measurements of relative permeability can be obtained using steady-state horizontal core
flood experiments. In addition, we would like to support the conclusion that the effective
relative permeability of a core can be measured accurately in the viscous-dominated regime
or even in the transition (complex interplay) regime.

2. Materials and Methods

The overall methodology for this study is illustrated in Figure 6. First, we define a set
of properties for the core, including the spatial distribution of permeability (k), porosity
(ϕ), capillary pressure curves (Pc), and relative permeability curves (kr). These are then
used as input for simulations using TOUGH2/ECO2N [64,65] that mimic the core-flooding
procedures for making steady-state relative permeability measurements. Outputs from
the simulation are used as synthetic “data sets” for calculating the relative permeability of
the core. The influence of flowrate, rock heterogeneity, core length, gravity, and interfacial
tension on the accuracy of the calculated relative permeability curves are systematically
studied by varying these parameters over a wide range of values. Based on the comparison
between the input (intrinsic) and calculated (effective) relative permeability curves, we
draw conclusions about the important sources of error for these calculations as well as the
conditions over which accurate measurements can be obtained. Simulations are repeated
at a number of fractional flows to construct the full relative permeability curve.
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2.1. Simulation

As this work builds on previous studies [9,11,60], all the simulation settings are the
same as before. We will highlight some important features relevant for this study. First, the
simulations for a real rock carried out in this study are based on the rock properties of a
typical Berea Sandstone. As a starting point, we provide illustrative data from the actual
experiments on this rock sample. For example, the CO2 saturation distribution resulting
from co-injection of 5% brine and 95% CO2 is shown in Figure 7 [16,66]. The experiment is
modeled by a three-dimensional roughly cylindrical core (Figure 8). A total of 31 slices are
used in the flow direction, including 29 rock slices, an “inlet” slice at the upstream end of
the core, and an “outlet” slice at the downstream end. All of the simulations are carried
out by co-injecting known quantities of CO2 and brine at a constant flow rate into the inlet
end of the core (Figure 7). The laboratory conditions and core properties are selected to
replicate the laboratory experiments. All the TOUGH2 simulations are conducted at 50 ◦C
temperature and 12.4 MPa initial pore pressure.
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Three different degrees of heterogeneity are considered: for reference, a homogeneous
model; a low contrast model (Kozeny–Carman); and a high contrast model. The three-
dimensional porosity map, which is from X-ray CT scans of the core prior to injection [9],
is used to generate the corresponding permeability map with the porosity–permeability
relationships as shown in Table 1. The Kozeny–Carman (KC) equation generates the low
contrast permeability map, while the exponential function of the porosity–permeability
relation generates a higher degree of heterogeneity, called the high contrast model. The
equations for the models as well as their normalized standard deviations in σlnk’ are
shown in Table 1. The permeability of each grid element is assumed to be isotropic. These
two heterogeneous models are compared to a homogeneous one to study the effect of
heterogeneity on the multiphase flow system. Note that the capillary pressure and the
relative permeability functions are the same in as the previous studies.

Table 1. Synthetic input parameters for every grid in the simulations for three different models.

σlnk’ Porosity Permeability (md) Capillary Pressure
(Pa)

Input Relative
Permeability

Homogeneous Model 0

ϕi = ϕmean
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2.2. Boundary Conditions

The boundary conditions used in this study are selected to replicate the core flooding
experiments [16,30,62,66]. In the experiments, CO2 and brine are mixed and co-injected
through a tube and enter into a diffuser plate to distribute evenly before entering into the
upstream end of the core. To avoid dry-out, carbon dioxide and water are pre-equilibrated
at a high pressure and temperature (in this case, 50 ◦C and 12.4 MPa) prior to starting the
experiment. The amounts of CO2 and brine that enter each pixel are controlled by the
relative mobility of CO2 and brine (Equation (8)) such that the total rate is equal to the
injection rate of each phase (Equation (9)):

qβ,i

∆y∆z
= −

(
kkrβ

µβ

∆Pβ

∆x

)
i
= −

(
kkrβ

µβ

Pβ,inlet−Pβ,1

∆x

)
i

where β = w, CO2. (8)

∑
i

qi= qt where qi = qw,i + qCO2,i. (9)

To replicate the inlet boundary condition with the simulator, anisotropic permeability
is implemented in the inlet slice (used to mimic the diffuser) such that the injected fluids
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are free to spread out over the cross section area evenly and enter each cell in accordance
with its mobility.

In the experiment conducted by Perrin and Benson (2010) [16], the downstream end of
the core is maintained at a constant pressure by a back-pressure pump. Under this situation,
it is not apparent which boundary conditions will most closely replicate the experimental
measurements. Therefore, we test two numerical boundary conditions to determine which
one would most closely replicate the saturation distributions observed at the outlet of the
core (Figure 9a). Both test cases have imposed a time-independent Dirichlet boundary
condition: the primary thermodynamic variables (for example, P and T) remain unchanged
in the outlet. One boundary condition sets the capillary pressure to zero in the outlet slice
of the core (Figure 9b):

Pc|outlet = 0. (10)
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The other boundary condition imposes the case where there is no capillary pressure
gradient between the last rock slice and the outlet slice of the model (Figure 9c):

(dPc/dx)|outlet = 0. (11)

An example of the measured saturation distribution along the core for different
fractional flows of CO2 at a total injection rate of 2.6 mL/min flow rate is shown in
Figure 9a [67]. Similar saturation distributions have been measured for other rocks as
described by Krevor et al. (2012) [30]. A relatively uniform saturation profile is observed
over the whole core; in particular, there is no large saturation gradient at the outlet, and
different fractional flows of CO2 have different values at the end. If the boundary condition
with Pc = 0 at the downstream end is imposed, a large saturation gradient occurs and
every fractional flow of CO2 have zero saturation at the outlet, which is not observed in the
experiments (Figure 9b). The Dirichlet boundary condition with the added constraint that
dPc/dx = 0 between the last slice in the core and the outlet provides a much better match
to the data at the outlet (Figure 9c). Consequently, we use this boundary condition in the
rest of the simulations. Specifications for the boundary conditions are listed in Table 2.

Table 2. Summary of boundary conditions.

Inlet Slice Rock Slices (29 Slices) Outlet Slice

ϕmean, ϕi, ϕmean,
kmean: Anisotropic ki: Isotropic kmean: Isotropic
(kz = ky = 100kx) Pc,i ∝

√
ϕi/ki Dirichlet boundary condition

Pc = Pc,mean dPc/dx = 0
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2.3. Simulated Synthetic Relative Permeability Data Sets

For a given flow rate, simulations of co-injection of CO2 and brine are run until the
pressure drop and core-averaged saturation stabilize. All of the simulations were confirmed
to run for long enough (more than 10 pore volumes injected) to reach steady-state. Important
output parameters include grid-cell CO2 saturations, CO2 pressures, and capillary pressures.
Briefly speaking, we only analyze the core-averaged saturation in the previous study, but now,
the slice-averaged quantities along the length of the core such as saturation profiles (SCO2),
pressure in the CO2 phase (PCO2), and capillary pressure profiles (Pc) are evaluated in this
study. Figure 10 shows a typical simulation result, including the CO2 saturation distribution,
pressure drop across the core, and core-averaged CO2 saturation.
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The pressure drops across the core are defined as the difference between the average
inlet and the outlet slice values:

∆PCO2= PCO2,inlet - PCO2,outlet, (12)

∆Pw= Pw,inlet - Pw,outlet. (13)

If the correct pressure drop in one of the phases can be measured, ∆PCO2, for example,
then the water pressure drop can be rewritten in terms of the two output parameters ∆PCO2
and ∆Pc:

∆Pw= (PCO2,inlet − PCO2,outlet) − (Pc,inlet − Pc,outlet)= ∆PCO2 − ∆Pc. (14)

Note that the terms Pc,inlet and Pc,outlet do not refer to the capillary pressure in the
endcap, but inside the rock, just downstream or upstream of the endcaps. When Pc is
the same in the first and last slice of the core, the pressure gradient drop across the core
is the same in both phases. The pressure drops in each phase are used to calculate the
corresponding relative permeability values based on the simplified Darcy’s equation,
shown later in Equation (15).

3. Results

For horizontal, 1D, immiscible, two-phase flow in homogeneous and isotropic porous
media at core scale, Darcy’s law neglecting the gravity effect takes the following form:

qw =
kkrw

µw
A

∆Pw

L
and qCO2 =

kkrCO2

µCO2
A

∆PCO2

L
. (15)

In this paper, Equation (15) is used to calculate the effective relative permeability as
a function of the average saturation in the core, as the core average saturation and the
pressure drop profiles are known. Darcy’s law is valid once the saturation and the pressure
gradients along the core are constants.

For horizontal, 1D, immiscible, two-phase flow in heterogeneous cores, Equation (15)
is still valid, but the relative permeability will be effective properties representing the
whole core (different from the intrinsic curves). The measured relative permeability will be
reliable for modeling flow under the conditions in which the experiment was conducted.
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3.1. Relative Permeability Calculated When ∆Pw = ∆PCO2

It is often assumed that the pressure drops in both phases are equal [22,68], which
requires that the capillary pressure is constant along the length of the core. Moreover, it is
assumed that the measured pressure drop accurately reflects the pressure drop in at least one
of the phases. For the TOUGH2 simulations, the pressure in the non-wetting phase is treated
as the primary variable. Therefore, PCO2 is the used as the “proxy” for the measured variable
∆P in the experiments. In this case, the effective relative permeability can be rearranged and
calculated from Equation (15) based on the assumption that ∆Pw = ∆PCO2:

krw =
qwµw

kA
L

∆PCO2
, krCO2 =

qCO2µCO2

kA
L

∆PCO2
. (16)

In the subsequent discussion, for simplicity, the results are presented for a range of
flow rates and for two different degrees of heterogeneity (σlnk’ = 0 and 0.96).

3.1.1. Homogeneous Cores (σlnk’ = 0)

For homogeneous cores, the effect of flow rate on brine displacement efficiency has
been shown in Kuo and Benson (2013) [11]. Figure 11 illustrates CO2 saturation as a
function of the distance from the inlet at a 95% fractional flow of CO2 over a large range
of flow rates (0.1 mL/min–6 mL/min). The saturation is uniform across the core at high
flow rates where no saturation gradient exists, and hence there is no capillary pressure
gradient along the core. Decreasing the flow rate below this regime leads to a saturation
gradient in the flow direction. Based on the simulation results, the critical flow rate for the
homogeneous core is around 0.3 mL/min, or equal to the flow velocity (u) of 0.25 m/day.

As mentioned in Section 2.2, the flow rate dependence shown in Figure 11 is not due
to the traditional capillary end effect because the outlet boundary condition does not force
the two fluids to have the same pressure. The observed saturation gradients existing at low
flow rates are because gravity and capillary pressure are included in the simulation. Gravity
causes some small amount of flow in the vertical direction and, consequently, the saturation
of CO2 is higher near the top of the core. This in turn creates higher-than-average factional
flow of CO2 near the top of the core as the fluid moves away from the inlet boundary. The
net effect is to cause a saturation gradient along the length of the core.
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Figure 11. Flow rate effect on CO2 saturation along the homogeneous core at a 95% fractional flow of
CO2 with flow rates ranging from 0.1 mL/min to 6 mL/min.

To study the flow rate effect on relative permeability, five different injection rates
are picked to obtain the corresponding relative permeability curves. Figure 12 compares
the input (intrinsic) relative permeability curve with the effective relative permeability
calculated based on Equation (16). As shown, they are identical when the flow rates are
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close or in the viscous-dominated regime (q > qcritical ~0.3 mL/min), which corresponds to
the negligible saturation gradients observed in Figure 11. On the other hand, a roughly 15%
saturation gradient along the flow direction results in a significant deviation of wetting
phase relative permeability (0.1 mL/min). Equation (16) is no longer valid for the wetting
phase as pressure drops for the two fluids are different once saturation gradients occur.
Using the pressure gradient in the CO2 phase overestimates the pressure drop in the water
phase, leading to underestimation of the water-phase relative permeability.
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Figure 12. Relative permeability calculated by the same pressure drop (∆Pw = ∆PCO2) for the
homogeneous core with 430 md permeability at different flow rates.

3.1.2. Heterogeneous Core (High Contrast Model, σlnk’ = 0.96)

The flow rate effect on brine displacement efficiency for the high contrast model has
been shown in Kuo and Benson (2015) [60]. Figure 13 compares the average CO2 saturation
along the length of the core between the homogeneous and heterogeneous cores at the
same flow rates. The general trends observed in the homogeneous core can apply to the
heterogeneous one. First, the slice-averaged saturation is relatively uniform in the high
flowrate regime (q > 1.2 mL/min or u > 1 m/day). The source of saturation variation
along the core is a combination of capillary, gravity, and heterogeneity effects. Given the
constant capillary pressure curve and no gravity effects, we would get constant saturation
even with the most heterogeneous core. Similar patterns can also be observed in the
experiments [30,66]. Second, a large saturation gradient across the core starts to occur
once the flow rate is below the limit for establishing the quasi-viscous-dominated regime.
Comparing the homogeneous and the heterogeneous cores, it is clear that the capillary
heterogeneity will enhance the flow rate dependency, decrease the average saturation, and
increase the saturation gradient.
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Figure 13. The effect of heterogeneity on CO2 saturation along the core at a fractional flow of 95%
over a wide range of flow rates.

As mentioned before, although the constant Buckley–Leverett saturation or the intrin-
sic relative permeability of heterogeneous cores can be obtained once we have reached an
extreme high flow rate (q > 100 mL/min or flow velocity u > 84 m/day), it is unrealistic
to use such high flow rates in the core flood experiments. Therefore, the effective relative
permeability of the heterogeneous cores is used to compare with the homogeneous results.

Similar to the homogeneous results, when saturation gradients are small (q > qcritical),
the effective relative permeability is independent of the flowrate, which demonstrates that
the relatively uniform slice-averaged saturation results in the rate-independent effective
relative permeability values (Figure 14). In addition, once large saturation gradients
develop (q < qcritical), the wetting phase relative permeability is reduced significantly as it
is an effective property that incorporated the capillary heterogeneity effects [56,66,69,70].
In this case, the assumption of ∆Pw = ∆PCO2 would also contribute to this deviation. For
the same flow rate, the heterogeneous core results in larger saturation gradients compared
with the homogeneous core. In general, the rate-independent drainage effective relative
permeability can be obtained even with the highly heterogeneous core once the flow rate
is high enough to eliminate saturation gradients from one end of the core to the other. It
is not required that saturation gradients are eliminated in the middle of the core, as these
result from the capillary heterogeneity of the rock.

On the other hand, even in the quasi-viscous-dominated regime, the effective CO2
relative permeability is higher than the input value. This non-intrinsic effective CO2 relative
permeability occurs when the heterogeneities are aligned parallel to the direction of the
flow field, a well-known phenomenon as described by Corey and Rathjens (1956) and
Honarpour et al. (1994) [71,72]. Permeability distribution for the high contrast model
indeed has some channels across the core diagonally (Table 1) leading to the effective
relative permeability for the non-wetting phase of the heterogeneous core higher than for a
homogeneous core.
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3.2. Relative Permeability Calculated by Using Corrected Pressure Drops

Because the pressure drops of the water phase along the flow direction can be de-
termined accurately based on Equation (14), we can use this true pressure drop (∆Pw =
∆PCO2−∆Pc) to calculate krw (Figure 15). Once the true pressure drop of the wetting phase
is known and used in the calculation, the wetting phase relative permeability is identical or
close to the intrinsic values even with a 15% saturation gradient along the core (0.1 mL/min
for the homogeneous core and 0.5 mL/min for the high contrast model).

Any relative permeability measurements that deviate from the intrinsic curves are
referred to as inaccurate or unreliable. There are two types of impacts on relative permeabil-
ity measurements. Gravity effects and capillary end effects in steady-state core flooding can
be considered as leading to inaccuracies in relative permeability, because we use Darcy’s
law without gravity (Equation (15)) and we assume that end effects are absent in larger
scale flows. However, reservoirs are subjected to capillary and heterogeneity effects and,
therefore, the relative permeabilities that include such effects may represent the core more
accurately than the intrinsic curves.
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As shown above, to obtain more accurate effective relative permeability at lower flow
rates, capillary pressure gradient (∆Pc) needs to be included in the calculation. This concept
may apply to core flood experiments and give us a more reliable relative permeability.
However, capillary pressure gradients in general are not measured in the experiment.
It is possible to estimate capillary pressure gradients based on the average saturation
values at the inlet and outlet slices of the core. Once saturations at the ends of the core are
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measured (e.g., using X-ray CT scanning), the corresponding capillary pressure values can
be estimated from independently measured capillary pressure curves:

Pc,inlet = Pc(Sinlet), Pc,outlet = Pc(Soutlet). (17)

Therefore,
∆Pc = Pc(Sinlet) − Pc(Soutlet). (18)

Compared with the effective relative permeability calculated using the same pressure
drop for both fluids, it is observed that, including this corrected capillary pressure drop in
the pressure drop of water, the accuracy of effective relative permeability to water for the
heterogeneous core at 1.2, 0.5, and 0.1 mL/min flowrates can be increased (Figure 16). Once
the saturations at the ends of the core are known, the application of this methodology can
improve the accuracy of the measured relative permeability curves even at lower flowrates
and in the presence of saturation gradients.
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3.3. Sensitivity Studies for Different Core Properties

In the rest of this paper, we provide support for the conclusion that the effective
relative permeability of a core can be measured accurately in the viscous-dominated regime
or even in the transition regime, if the correct pressure gradients are used in each phase.

3.3.1. Effects of Heterogeneity

The core-averaged saturations with different degrees of heterogeneity have already
been illustrated in Kuo and Benson (2015) [60] with capillary numbers Ncv ranging from
10 to 105. Based on the previous results, it is reasonable to hypothesize that reliable relative
permeability curves can be obtained as long as the saturation is relatively uniform. To
validate this conclusion, we use the homogeneous core and the four heterogeneous models
to obtain the relative permeability curves calculated based on the true pressure drops in
each phase (Figure 17). The permeability heterogeneity of Random 2 and Random 3 models
are generated based on a random log-normal distribution with a standard deviation of
σlnk’ = 0.254 and 1.42, respectively. Kozeny–Carman (KC) and high contrast (HC) models
are the other type of heterogeneity distribution generated using a porosity-based approach,
which has already been described earlier. The injection flow rates are chosen to be higher
than the minimum flow rates for these five cases to make sure the system reaches the
viscous-dominated regime (Table 3). The higher degree of heterogeneity results in higher
minimum rates.

The simulation results show that the effective relative permeability depends on the
degree of heterogeneity. For example, the effective relative permeability to the gas phase
is larger for more heterogeneous cores, while the effective water relative permeability is



Sustainability 2021, 13, 2744 16 of 26

smaller for the largest degree of heterogeneity (Random 3). The water relative permeability
krw is almost identical when the heterogeneity factor σlnk’ < 1.42, which implies that the
effective relative permeability to water krw is not as sensitive as the krg to the small-scale
heterogeneity.

Relative permeability curves are almost identical for Random 2 and KC models as
their heterogeneity factors σlnk’ are very close (0.254 and 0.275, respectively).
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Table 3. Summary of different flow rates for different heterogeneous cores: homogeneous, Random 2, Kozeny–Carman (KC), high
contrast (HC), and Random 3 models.

Degree of Heterogeneity
σlnk’

Injection Flow Rate
q, mL/min qcritical, mL/min Regime

Homo 0 0.5 0.24 Viscous-dominated
Random 2 0.254 0.5 0.25 Viscous-dominated

KC 0.275 1.2 0.37 Viscous-dominated
HC 0.96 2.6 0.97 Viscous-dominated

Random 3 1.42 6 1.19 Viscous-dominated

3.3.2. Effects of Core Length (15.24–45.72 cm)

In order to assess whether or not the flow rate dependency observed in the previous
results depends on the length of the core, the average CO2 saturations as a function of
capillary numbers for the three different core lengths (L, 2L, and 3L) are shown in the
LHS of Figure 18. The aspect ratios Rl are 3.14, 6.29, and 9.43, respectively. The starred
points at the LHS represent 0.1 mL/min injection flow rate, while the RHS illustrates the
corresponding relative permeability. The simulation results show that, even with up to
15% saturation gradient, we can still obtain the intrinsic relative permeability for different
lengths of homogeneous cores.
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Figure 18. (LHS) Brine displacement efficiencies for three different lengths of homogeneous core with capillary number
ranging from 10 to 107; (RHS) relative permeability calculated by the true pressure drops for homogeneous cores at
0.1 mL/min flow rates.

3.3.3. Effects of Interfacial Tension (7.49–67.41 mN/m)

Different pressure, temperature, and water salinity will result in different interfacial
tension. Conflicting information about the effects of interfacial tension on relative perme-
ability of CO2/brine systems has been reported in the literature [28,33,39]. Simulations
covering a wide range of interfacial tension (IFT) values, which are purely hypothetical, are
used solely to explore the sensitivity of relative permeability measurements to IFT values.

Figure 19 compares the average saturation of three different interfacial tensions (7.49,
22.47, and 67.41 mN/m) between the homogeneous and the high contrast model as well as
the three corresponding relative permeability curves calculated based on the true pressure
drops at 6 mL/min flow rate for the high contrast model. This flow rate was chosen to
make sure the systems are in the viscous-dominated regime.

It is observed that there is no IFT effect on the saturations and relative permeability
measurements once the system is in the viscous-dominated regime. Reliable relative
permeability data are again obtained even for the heterogeneous cores with a wide range
of IFT values once the displacement is within or near the viscous-dominated regime.

The LHS of Figure 19 illustrates that the range of interfacial tension effects only affect
the average saturation in the transition regime. The heterogeneity not only increases the
flow rate dependency, but also reduces the sensitivity of average saturation on interfa-
cial tension. The same conclusions can also apply to a wide range of permeability cases
(31.8–3180 md). Note that, based on Equation (2), a smaller capillary number Ncv corre-
sponds to smaller IFT values, as smaller IFT values reduce capillary pressure, and hence
reduce displacement capillary pressure pc*.
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Figure 19. (LHS) Average CO2 saturation as a function of capillary number Ncv for the homogeneous and high contrast
models with three different values of interfacial tensions; (RHS) interfacial tension effects on relative permeability calculated
in the true pressure drops for heterogeneous core (high contrast model) at 6 mL/min flow rates.
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3.3.4. Effects of Gravity

Figure 20 shows a sensitivity study on the effect of gravity for the homogeneous and
the two heterogeneous cores. The dashed lines represent simulations without considering
gravity (setting g = 0), while the solid lines represent the simulations with gravity (setting
g = 9.8 m/s2).
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Figure 20. Average CO2 saturation as a function of capillary number Ncv for the homogeneous,
Kozeny–Carman (KC) (small heterogeneity), and high contrast (HC) (large heterogeneity) models
with and without gravity (1G/0G).

It is shown that gravity override is eliminated even with horizontal displacements
when the capillary numbers Ncv are smaller than the critical values. It is verified that the
effect of gravity due to the density difference between two fluids and the long core is small
in the viscous-dominated regime, as mentioned before. However, even without considering
gravity in the simulation, flow rate dependency is observed in the heterogeneous cores.

In the condition when gravity is considered, there are three physical forces (gravity
force, viscous force, and the capillary forces) competing with each other in the multiphase
flow system. Once gravity is removed, only capillary forces and viscous forces are com-
peting in the system. Therefore, the transition for different types of cores (homogeneous,
Kozeny–Carman, and the high contrast models) is much more abrupt when gravity is not
included (Figure 20).

Furthermore, there is only one capillary pressure curve applied for the homogeneous
core. However, a unique capillary pressure curve is assigned to every grid for the hetero-
geneous cores in order to replicate experimental core flood saturation distributions [60].
Therefore, the large degree of heterogeneity results in a wide range of capillary pressures
(Pc,min < Pc < Pc,max). This could explain why the flow rate dependency is still observed in
the heterogeneous cores even without considering gravity in the simulation.

4. Discussion
4.1. Observations from the Numerical and Semi-Analytical Models

Numerical simulations and semi-analytical studies of brine displacement efficiency in
homogeneous and heterogeneous cores have been presented in Kuo and Benson (2013) [11]
and (2015) [60], respectively. The critical capillary numbers define the transitions between
flow regimes, first from the viscous dominated regime to complex interplay regime, and
next from the complex interplay regime to capillary dominated regime (Figure 3). The
different flow regimes are observed for both the homogeneous and heterogeneous models.

In the transition regime, buoyancy of CO2 causes lower displacement efficiency and re-
sults in a vertical saturation gradient, which leads to the deviations of relative permeability
values observed in Figures 12 and 14. In this regime, gravity not only causes the inaccuracy
of relative permeability values, but also results in large flow rate dependency. The average
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saturation over a wide range of injection rates for the homogeneous and two porosity-based
permeability cores as well as four random log-normal distribution permeability cores are
shown in Figure 21. The simulation results show that capillary heterogeneity will increase
this flow rate dependency in the transition regime, and reduce the average saturation in
the viscous dominated regime.
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The simulation results show that, when the capillary number is below the critical
value, Ncv < NHete

cv,c1, the viscous force becomes greater than the gravity and capillary forces.
Consequently, the calculated effective relative permeability is independent of flow rate,
gravity, and Bond number in this regime.

For the cores with high permeability, low interfacial tension, or a smaller degree of
heterogeneity, the two-phase flow displacement will encounter a stronger gravity effect,
while the gravity effect is irrelevant for the cores with low permeability, high interfacial
tension, or a larger degree of heterogeneity. In addition, the highly heterogeneous cores
require the smaller Ncv to reach the viscous-dominated regime, and hence to obtain the
reliable relative permeability data (Figure 21).

This is consistent with previous studies indicating that, once a saturation gradient
develops along the core, the relative permeability calculated based on a one-dimensional
form of Darcy’s law is no longer valid [22]. However, there are several methods to obtain
the reliable effective relative permeability. First, we can increase flow rates to minimize
the saturation gradients. Second, we can use true pressure drops for two fluids to get
more reliable relative permeability values even with 15% saturation gradient. Finally, if
the saturations at the inlet and outlet are known, we can increase the accuracy of effective
relative permeability to water by including the corresponding capillary pressure drop.

4.2. Conditions for Reliable Effective Relative Permeability Measurements

In summary, the accurate whole-core effective relative permeability measurements
can be achieved once we satisfy the conditions below.

(i) If the core is known as relatively homogeneous (τ ~ 1 and SBL
Hete ~ SBL)

The first critical number in heterogeneous cases can be simplified into that in homoge-
neous cases [11]:

Ncv ≤ Ncv,c1 =
1

NB

fCO2Rl
krCO2(SBL)

. (19)

As Ngv = NcvNB (Equations (1)–(3)), Equation (19) can also be presented as follows:

Ngv ≤ Ngv,c1 =
fCO2Rl

krCO2(SBL)
. (20)
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Using the definition of Ngv (Equation (1)), and rearranging Equation (20), we can
obtain the total rate needed to be greater than or equal to the critical flow rate qcritical
(Equations (21) and (22)) in order to enter the viscous-dominated regime:

qt ≥ qcritical ≡
∆ρgkeffL
HµCO2

A
Ngv,c1

. (21)

qt ≥ qcritical ≡
keff
µCO2

∆ρg
fCO2

A︸ ︷︷ ︸
qc,max

krCO2(SBL) = qc,maxkrCO2(SBL). (22)

Because we can predict the relative permeability for the homogeneous cores quite well
in the viscous-dominated regime (Figure 15) based on the 1D simplified Darcy’s equation
(Equation (15)):

fCO2qt = qCO2 =
keffkrCO2(SBL)

µCO2
A

∆PCO2

L
. (23)

Replacing Equation (23) into Equation (22), we can obtain the following:

keffkrCO2(SBL)

fCO2µCO2
A
(∆PCO2)critical

L
= qcritical =

keff
µCO2

∆ρg
fCO2

AkrCO2(SBL). (24)

(∆PCO2)critical
∆ρgL

= 1. (25)

Equation (25) implies that the first transition point occurs when (∆PCO2)critical = ∆ρgL
for the homogeneous cores, which is quite consistent with the simulation data shown in
this study where (∆PCO2)critical ≈ ∆ρgL = 574 Pa. In addition, it is also in agreement with
the theory provided in Kuo and Benson (2013) [11] that the first critical number is derived
when the buoyancy pressure gradient equals the viscous pressure gradient.

(ii) If the core is very heterogeneous,

Ncv ≤ NHete
cv,c1 =

1
τNB

fCO2Rl

krCO2

(
SBL

Hete
) . (26)

Using the definition of Ncv (Equation (2)) and rearranging Equation (26), we can also
obtain the condition for entering the viscous-dominated regime:

qt ≥ qHete
critical ≡

keffLp∗c
H2µCO2

A
NHete

cv,c1
. (27)

On the other hand, from the definition of NHete
cv,c1 (Equation (5)), Equation (27) can also

be presented as follows:

qt ≥ qHete
critical =

keff
µCO2

∆ρg
fCO2

A︸ ︷︷ ︸ krCO2

(
SBL

Hete
)
τ. (28)

Similarly, the effective relative permeability for the heterogeneous core is invariant
in the viscous-dominated regime (Figure 15) based on the 1D simplified Darcy’s equation
(Equation (15)):

fCO2qt = qCO2 =
keffkrCO2

(
SBL

Hete
)

µCO2
A

∆PCO2

L
. (29)
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Replacing Equation (29) into Equation (28), and we can obtain Equations (30) and (31)
for the heterogeneous core:

keffkrCO2

(
SBL

Hete
)

fCO2µCO2
A
(∆PCO2)

Hete
critical

L
= qHete

critical =
keff
µCO2

∆ρg
fCO2

AkrCO2

(
SBL

Hete
)
τ. (30)

(∆PCO2)
Hete
critical

∆ρgL
= τ. (31)

where (∆PCO2)
Hete
critical is the CO2 pressure drop across the core. Equation (31) implies that

the first transition point occurs when (∆PCO2)
Hete
critical = ∆ρgLτ for the heterogeneous cores.

It is very important as it provides the theoretical basis that the dimensionless parameter τ
could be quantified from the known properties and the experimental measurement.

4.3. Permeability Heterogeneity Parameter τ

For practical interest, the relation of permeability heterogeneity parameter τ, which
illustrates the total degree of permeability heterogeneity according to Kuo and Benson
(2015) [60], can be established in terms of other dimensionless heterogeneity factors and
correlation lengths [61], or the normalized standard deviation σlnk’:

τ = 1 + f(σ lnk′) ≥ 1 (32)

where σlnk’ is the standard deviation of ln(ki/kmean). For the homogeneous core, σlnk’ = 0
and we should obtain τ = 1, which will be consistent with the previous work [60]. In
this study, the function f(σ lnk′) is assumed to only be dependent on σlnk’, which requires
detailed information on the rock (but could be estimated based on the lithology and stratig-
raphy). However, we can expect that weak (but highly correlated) heterogeneities have an
equally strong (if not stronger) influence as strong (but randomly oriented) heterogeneity.
Therefore, the permeability heterogeneity parameter τ should be a function of the strength
of heterogeneity as well as the spatial correlation. Further investigation (by means of, e.g.,
variograms in each spatial direction or the correlation structure of the permeability) should
be attempted to discuss how the length scale of these heterogeneities may affect the perme-
ability heterogeneity parameter τ. In addition, sensitivity studies for different degrees of
heterogeneity will be required to generalize the results to a wide range of conditions.

4.4. Initial Guess of Critical Flow Rate

Based on Equations (20) and (22), almost all the parameters can be measured during
the core-flood experiment, except the relative permeability evaluated at SBL, krCO2(SBL).
SBL is a constant saturation, derived from the Buckley–Leverett theory, which neglects
gravity and capillary effects.

Although krCO2(SBL) is unavailable before we perform the relative permeability mea-
surements, we know krCO2 (SBL) is always smaller than or equal to 1; therefore, Equations
(33) and (34) provides the upper bounds and the lower bounds of first critical number and
injection flow rate for the homogeneous core, which is also useful for the design of core
flood experiments.

Ngv,min = fCO2Rl ≤ Ngv,c1 ≤
fCO2Rl

krCO2(SBL)
. (33)

qc,max ≥ qcritical ≥ qc,maxkrCO2(SBL). (34)

qc,max =
keff
µCO2

∆ρg
fCO2

A. (35)

In addition, Equation (28) can also be presented as follows:

qHete
critical = qc,max krCO2

(
SBL

Hete
)
τ︸ ︷︷ ︸ . (36)
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Note that Equation (36) shows that the injection flow rates required for the cores to reach
the viscous dominated regime depending on the degree and nature of heterogeneity, and they
are independent of the aspect ratio Rl. The more information we know about the core, the
larger the Ncv (Equation (19)) (and hence the smaller the injection flow rate (Equation (22))
that can be tolerated to obtain reliable relative permeability data. The upper bound qc,max
calculated based on Equation (35) is about 3.52 mL/min, which is indeed larger than the
qcritical = 0.3 for homogeneous cores and 1.2 for the high contrast model (Table 4). Therefore,
the upper bound of the critical flow rate qc,max for the homogeneous core would probably be
a good initial guess of critical flow rates for the very heterogeneous core.

Table 4. Summary of output simulation parameters in this study.

SBL/ SBL
Hete krCO2(SBL)/

krCO2(SBL
Hete)

qcritical [mL/min] from the
Simulation Results

Homogeneous core 0.324 0.0554 around 0.3

High contrast model 0.30 0.0483 around 1.2

4.5. Practical Application

Equations (25), (31), and (34) provide a very useful method to determine the critical
flow rate in which the viscous dominated regime is reached for the core flood experiments.
The basic idea could be as follows:

1. Conduct steady-state drainage core-flooding experiment with initial injection rate
qc,max (Equation (35)).

2. ∆ρgL can be calculated based on the design of experiment.
3. Equation (25) would give the lower bound of ∆PCO2 = ∆ρgL.
4. Change the initial rate up and down, and measure the corresponding core pressure

drop of CO2 (∆PCO2) and average CO2 saturation for each injection rate.
5. (∆PCO2)

Hete
critical could be obtained once saturation becomes constant.

6. The permeability heterogeneity parameter τ could be obtained based on Equation (31).

The method provided here could avoid performing many experiments in order to find
out the viscous-dominated regime.

5. Conclusions

Potential applications of the analytical results include establishing the bounds over
which relative permeability can be accurately measured in horizontal core-flood experi-
ments. In this work, we investigated sensitivity studies on volume-averaged (up-scaled)
relative permeability that accounts for the role of sub-core scale heterogeneity on multi-
phase flow in CO2/brine systems. We now summarize this part of the work:

1. Despite the presence of heterogeneity, it is possible to obtain the accurate effective
relative permeability measurements for heterogeneous cores. The incomplete fluid
displacement is primarily due to the heterogeneity and unfavorable mobility ratio,
not gravity segregation, but with a sufficiently high flow rate, these effects can be
overcome.

2. The critical flowrate for making these accurate measurements was identified based
on the properties of the core, and most notably on heterogeneity (Equations (22) and
(28)). Increasing the flow rate results in minimizing the saturation gradient caused
by the combined effects of capillary, viscous, and gravity forces; hence, the relative
permeability approaches the maximum value asymptotically and stabilizes when the
uniform saturation is achieved.

3. The simulation results shown here indicate that the flow-rate dependent saturation
occurs not only in the heterogeneous core, but also in homogeneous cores. In addition,
we show that the capillary heterogeneity will increase the flow-rate dependency.
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The conclusions drawn from the relative permeability studies should apply to unsteady-
state relative permeability measurements, but further studies are needed to confirm this.
The presented observations and suggestions can be most likely extended to any gas/liquid
system, but not for the imbibition conditions, because the latter are very relevant to geolog-
ical CO2 scenarios (particularly in the post-injection phase). In addition, as no chemical
reactions were considered in the simulation or the theoretical analysis, the results drawn
from here may not apply to carbonate systems, which have significant chemical reactions
between the fluids and rock.
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Nomenclature

A cross-section area of the core [m2] f fractional flow
H height of the core [m] g acceleration [m/s2]
L length of the core [m] k average permeability [md]
Rl aspect ratio, L/H kr relative permeability
NB Bond number, ∆ρgH/pc* q volumetric flow rate [mL/min]
Ncv capillary number, keffnLpc*/H2µg ut p pressure [Pa]
Ngv gravity number, ∆ρgkeffL/Hµg ut pc* characteristic capillary pressure [Pa]
∆ρ density difference between CO2 and u Darcy velocity [m/s]

brine [kg/m3]
µ viscosity [cp] θ contact angle, 0◦

ϕ porosity τ heterogeneity parameter
σ CO2–brine interfacial tension [N/m] or standard deviation
∆P pressure difference between the average inlet and the outlet slice values
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