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Abstract: The Montado is an agro-silvo-pastoral ecosystem characteristic of the Mediterranean
region. Pasture productivity and, consequently, the possibilities for intensifying livestock production
depend on soil fertility. Soil organic matter (SOM) and phosphorus (P2O5) are two indicators of the
evolution of soil fertility in this ecosystem. However, their conventional analytical determination
by reference laboratory methods is costly, time consuming, and laborious and, thus, does not meet
the needs of current production systems. The aim of this study was to evaluate an alternative
approach to estimate SOM and soil P2O5 based on near infrared spectroscopy (NIRS) combined
with multivariate data analysis. For this purpose, 242 topsoil samples were collected in 2019 in
eleven fields. These samples were subjected to reference laboratory analysis and NIRS analysis.
For NIRS, 165 samples were used during the calibration phase and 77 samples were used during
the external validation phase. The results of this study showed significant correlation between NIRS
calibration models and reference methods for quantification of these soil parameters. The coefficient
of determination (R2, 0.85 for SOM and 0.76 for P2O5) and the residual predictive deviation (RPD,
2.7 for SOM and 2.2 for P2O5) obtained in external validation indicated the potential of NIRS to
estimate SOM and P2O5, which can facilitate farm managers’ decision making in terms of dynamic
management of animal grazing and differential fertilizer application.

Keywords: spectrometry; soil fertility; soil organic matter; phosphorus; precision agriculture

1. Introduction

The Montado is an agro-silvo-pastoral ecosystem typical of the temperate Mediter-
ranean climate (“Csa: hot-summer Mediterranean climate” according to Köppen–Geiger
climate classification). This ecosystem covers 3.5–4.0 Mha in Portugal and Spain and is usu-
ally associated with poor soils [1]. Pasture productivity and, consequently, the possibilities
for intensifying pasture-based livestock production depend on soil fertility [2]. Soil organic
matter (SOM; [3,4]) and phosphorus (P2O5; [5,6]) are two indicators of the evolution of
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soil fertility in this ecosystem. SOM is an important source of soil nutrients, which are
essential for the growth and development of agricultural crops [4]. In agro-ecosystems,
such as pastures, mineral fertilization represents other important part of nutrient supplies
to plants. In addition to the crucial role in nutrient cycles and soil physical structure,
SOM also delivers multiple additional ecosystem services such as climate mitigation and
adaptation, as well as helping with water and fertilizer retention [4]. Since low SOM
(and, consequently, soil organic carbon, SOC) content may have negative impacts on soil
physical properties and on nutrient cycling, SOM plays a vital role in determining the
susceptibility to land degradation and efforts have been made to define soil degradation
thresholds based on SOC or in SOM content [2]. It is estimated that 16% of cultivated land
in Europe is vulnerable to desertification, although this proportion may be even higher in
areas with harsh climates such as the Mediterranean, which experiences frequent summer
droughts [2]. In this scenario, ensuring permanent land cover has been an effective strategy
in management land degradation through the reduction of water, soil, and nutrient losses
and increase of soil fertility [2]. The recommended procedure for recovering degraded soils
and pastures in the Montado ecosystem is to increase soil fertility through application of
chemical fertilizers in order to promote the development of a bio-diverse flora, especially
legumes [2,5,6]. Soil phosphorus (P) is a crucial nutrient for plant growth and yield [7],
particularly in biodiverse pastures in the Alentejo (Southern region of Portugal; [5]). Soil P
dynamics in the Montado ecosystem are complex, since P returns to the soil through animal
excreta (dung and urine), which is distributed in a discontinuous pattern in space and
time and is influenced by animal density, grazing system, and management, as well as
the presence of shade and rest areas, and land topography [8]). Knowledge of SOM and
P content in the soil–pasture–tree–animal system is, therefore, essential for efficient and
sustainable implementation of management practices in the Montado ecosystem [3,6].

Conventional analytical determinations of SOM and P by reference laboratory meth-
ods are relatively complex, costly, and laborious [4,9]. In addition to an initial stage of
preparing soil samples (including air-drying, grinding, and sieving), they undergo a phase
of chemical analysis. SOM is frequently measured by combustion and CO2 measured
using an infrared detection cell, while P2O5 is extracted by the Egner–Riehm method
and measured using the colorimetric method [10]. Given that soil fertility attributes have
different scales and forms of spatial and temporal variations in agricultural fields [11],
a representative soil survey requires the analysis of numerous soil samples in order to
characterize SOM or P spatial variability in the field [9]). Hence, the results of these con-
ventional analyses are only available after a few weeks or even months and, thus, do not
meet the needs of current production management [4]. Therefore, the development of fast,
inexpensive, environmentally friendly and sufficiently accurate methods to predict soil
fertility and assess its spatial variability is indispensable [9,12]. Adequate spatiotemporal
characterization of these soil attributes is fundamental to the successful development of
strategies for variable rate application of fertilizers, enabling the classic benefits of the
precision agriculture (PA) approach [11].

In this perspective, soil spectral information obtained through satellites, field and
laboratory spectrometers have been used to infer soil properties by many researchers [4].
This process consists of measuring the reflectance response of the soil, that is, the percentage
of incident electromagnetic radiation that is reflected by the soil at different wavelengths,
which is represented by a spectrum [11]. For this purpose, remote sensing requires that
the soil should not be covered by vegetation or a crop and, therefore, does not suit the
Montado ecosystem (where a permanent cover of the soil with pasture is sought). Calibra-
tion models developed from processed samples cannot be utilized for field soil samples
with near infrared spectroscopy (NIRS) due to the variability of external environmental
factors, such as the moisture content, one of the most critical factors that degrades the
prediction accuracy [12]. All of these problems can be overcome in the laboratory, after soil
sample preparation [7,9]. Under these conditions, NIRS combined with the partial least
squares regression (PLSR) method is considered to be an effective way of determining
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soil properties [4]. This widely used approach for evaluating the accuracy of sensing
techniques is undertaken by comparing the prediction given by sensors with that provided
by traditional reference laboratory methods, creating calibration models [11].

The aim of this study was thus to evaluate an alternative to the conventional approach
to estimate SOM and soil P2O5 based on laboratory NIRS combined with multivariate data
analysis (Figure 1).
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Figure 1. Diagram of the proposed procedure.

2. Materials and Methods
2.1. Experimental Fields

This work is based on the results of several projects conducted by this research team
to monitor the soil in the Montado ecosystem at eleven experimental fields (Figure 2).
The main characteristics of the experimental fields used in this study are presented in
Table 1. These are typical permanent sown biodiverse dryland pastures that usually grow
under a low or moderate density plantation of Holm oak or Cork oak, and that are mainly
used for grazing by cattle, sheep, horses, or pigs on a rotational or permanent basis. The soil
type is Cambisol with a granite origin [13], characterized by slight or moderate weathering
of parent material and by absence of appreciable quantities of illuviated clay, organic
matter, aluminum, and/or iron compounds. These acid soils present medium to coarse
texture (Table 1), are not very fertile, and are mainly used for mixed agro-silvo-pastoral sys-
tems [14]. The location of these fields is representative of the temperate climatic conditions
of Portugal, with a temperature and precipitation gradient, with higher mean temperatures
and smaller amounts of rainfall in the southern districts (“Beja”, “Évora”, and “Portale-
gre”, Figure 2, “Csa: hot-summer Mediterranean climate” according to Köppen–Geiger
climate classification) and the reverse in the northern district (“Guarda”, Figure 2, “Csb:
warm-summer Mediterranean climate”).
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Figure 2. Location of the experimental fields in Portugal and Spanish: graphical illustration of animal
species in each field.
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Table 1. Main characteristics of the eleven experimental fields used in this work.

Field
Code Coordinates Area (ha) Soil Texture (pH) Pasture Type Predominant

Trees
Animal Species (Type

of Grazing)
Annual Mean

Temperature (◦C) *
Annual

Rainfall (mm)*
Climate

Classification **

“AZI” 38◦6.2′ N;
8◦26.9′ W 22.3 Sandy loam

(pH = 6.4)
Permanent; biodiverse

(predominance of composites)
Holm oak and

Cork oak
Sheep

(Rotational grazing) 17.2 430 Csa

“CUB” 39◦10.0′ N;
6◦44.6′ W 32.8 Sandy clay loam

(pH = 5.4)
Annual; biodiverse (mixture of

grasses and legumes)
Holm oak and

Cork oak
Cattle

(Rotational grazing) 16.2 950 Csa

“GRO” 37◦52.3′ N;
7◦56.7′ W 28.3 Sandy loam

(pH = 5.8)
Permanent; biodiverse

(predominance of composites) Holm oak Cattle
(Rotational grazing) 17.2 430 Csa

“MIT A” 38◦32.23′ N;
8◦00.05′ W; 10.9 Sandy loam

(pH = 5.4)
Permanent; biodiverse (mixture of

grasses and legumes) Holm oak Cattle
(Rotational grazing) 17.1 567 Csa

“MIT B” 38◦32.04′ N;
7◦59.90′ W 8.4 Sandy loam

(pH = 5.5)
Permanent; biodiverse (mixture of

grasses and legumes) Holm oak Cattle
(Rotational grazing) 17.1 567 Csa

“MIT C” 38◦31.37′ N;
8◦0.45′ W 4.2 Sandy loam

(pH = 5.4)
Permanent; biodiverse (mixture of

grasses and legumes) Holm oak Sheep
(Rotational grazing) 17.1 567 Csa

“MUR” 38◦23.4′ N;
7◦52.5′ W 29.6 Loam

(pH = 5.8)
Annual; biodiverse (mixture of

grasses and legumes)
Holm oak and

Cork oak
Sheep

(Permanent grazing) 17.1 567 Csa

“PAD” 38◦36.4′ N;
8◦8.7′ W 32.2 Sandy loam

(pH = 6.2)
Permanent; biodiverse

(predominance of composites) Holm oak Cattle
(Permanent grazing) 17.1 567 Csa

“QF A” 40◦16.38′ N;
7◦25.14′ W 15.2 Loamy sand

(pH = 5.4)
Permanent; biodiverse (mixture of

grasses and legumes)
Oaks and

Eucalyptus
Horses and Cattle

(Permanent grazing) 12.4 1330 Csb

“QF B” 40◦16.78′ N;
7◦25.34′ W 10.1 Loamy sand

(pH = 5.5)
Permanent; biodiverse (mixture of

grasses and legumes)
Oaks and

Eucalyptus
Sheep

(Rotational grazing) 12.4 1330 Csb

“TAP” 39◦9.5′ N;
7◦31.9′ W 27.1 Sandy clay loam

(pH = 5.8)
Permanent; biodiverse (mixture of

legumes)
Holm oak and

Cork oak
Pigs

(Rotational grazing) 16.2 950 Csa

* Data (annual mean temperature and accumulated rainfall between July 2019 and June 2020) for the nearest district weather stations of Portuguese Institute of Sea and Atmosphere. ** Köppen–Geiger climate
classification.
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2.2. Soil Sample Collection and Reference Chemical Processing

Two hundred and forty two soil samples were collected between January and De-
cember 2019 in eleven different fields, eight located in the Portuguese Alentejo region
(“AZI”, “GRO”, “MIT A”, “MIT B”, “MIT C”, “MUR”, “PAD”, and “TAP”), two in the
Portuguese Beira Baixa region (“QF A” and “QF B”), and one in the Spanish Extremadura
region (“CUB”) (Figure 2). In each field, 22 composite samples from the upper soil layer
(at 0–0.30 m depth) were georeferenced and collected using a gouge auger and a hammer.
Each composite sample was the result of the combination of five sub-samples collected in
an area of 10 × 10 m. These soil samples were inserted in plastic bags and transported to
the “MED- Soil Analysis Laboratory” at University of Évora. After weighing, air-drying,
and sieving, the samples were analyzed for particle-size distribution, and the fine com-
ponents of the soil (fraction with diameter < 2 mm) were characterized in terms of pH,
organic matter (SOM), and phosphorus (P2O5). These fine components were analyzed
using the following standard reference laboratory methods [10]: (i) pH was determined in
1:2.5 (soil:water) suspension, using the potentiometric method, because water pH responds
more rapidly to lime applications; (ii) SOM was measured by combustion and CO2 mea-
surement, using an infrared detection cell; (iii) P2O5 was extracted by the Egner–Riehm
method and measured using the colorimetric method.

2.3. Sample Spectra Acquisition and Processing

Soil samples were transported to the “MED-Post Harvest Laboratory” at University of
Évora for optical reflectance measurements and data analysis. Spectroscopic measurements
were made on all samples using an FT-NIR spectrometer (MPA, Bruker Optik GmbH,
Germany). Dried and sieved soil samples were placed in a small circular rotating cup of
90 mm diameter, and spectra were collected in an integrating sphere in diffuse reflectance
mode at room temperature of 20 ◦C. Reflectance data (R) were measured as log 1/R
(absorbance data), and NIR spectra data were recorded. An average spectrum was collected
from each sample and was used for further mathematical processing and chemometrics
analysis. Spectra data were obtained in the entire near infrared region of 12,500–3600 cm−1

(800–2777 nm) after a total of 32 scans with a scanner velocity of 10 kHz and an average
resolution of 16 cm−1, with a receiver gain function with the lowest gain setting defined as
1 [15]. The first 70 values of each spectrum were discarded to eliminate the noise below
4065 cm−1 (2460 nm). The background measurement was performed using the MPA FT-
NIR spectrometer by measuring the internal gold-coated diffuse reflector, mounted inside
the integrating sphere. This procedure was repeated every 2 h.

2.4. Statistical Analysis

For evaluating the accuracy of this approach, SOM and P2O5 obtained by reference
laboratory methods were compared with the data obtained by calibration models resulting
from NIRS combined with multivariate data analysis.

The Opus v. 7.5 software (Bruker Optik GmbH, Ettlingen, Germany) was employed
for spectral data collection, and FT-NIR spectra were exported to the Unscrambler software
(version 10.5.1, Camo AS, Oslo, Norway) for chemometrics analysis, calibration, and ex-
ternal validation models. Prediction models were developed using the PLSR algorithm,
considering an independent validation sample set for the chemometrics analysis [16]. In or-
der to obtain the best predictive model, for PLSR, samples were random split in two sets:
a training set (calibration) with two-thirds of samples (15 samples in each field, totaling
165 samples) and a test set, with the remaining one-third of samples (seven samples in each
field, totaling 77 samples) used as an external and independent validation set of the NIRS
calibration models.

To find the most accurate model to quantify SOM and P2O5, the calibration process
was performed on the raw spectra data, and after the application of adequate pre-processing
techniques, mathematical algorithms were used to remove any irrelevant information. In NIR
spectroscopy, several pre-processing techniques are widely used to improve the subsequent
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analysis by removing unnecessary information. Two of the most used pre-processing methods
are the multiplicative scatter correction (MSC) and the baseline offset correction (BOC),
both scattering correction methods; the first reduces the variability among samples and the
second, performed through subtraction of a linear from original spectra, adjusts baseline shifts
between samples. Calibration and validation models were developed based on partial least
squares regression. Model performance evaluation was assessed by three parameters [17,18]:
the coefficient of determination (R2; an excellent indicator of the accuracy and robustness of
a model), the root mean square error (RMSE; Equation (1)) for the calibration and external
validation data sets, and the ratio of performance to deviation or residual predictive deviation
(RPD; Equation (2). The model with the highest R2 and the lowest RMSE is considered as
the best model [19]. RPD corresponds to the ratio between standard deviation (SD) of the
results obtained by the reference method and the corrected mean error of the prediction of the
validation (SEP bias) and is commonly used to investigate the prediction error. The value of
RPD is usually used as an indicator of the quality of a calibration model.

RMSE =

√√√√√ n
∑

i=1
(Ei −Mi)2

n
(1)

RPD =
SD

RMSE
(2)

where n is the number of observations and Ei and Mi are the estimated and observed
(measured) values, respectively.

ArcGIS 10.8 (Esri, Redlands, CA, USA) software was used to produce the spatial
maps for soil data (SOM and P2O5). All surfaces were produced with the ArcMap/Spatial
Analyst module, using the inverse distance weighting (IDW) interpolator with a 1-m
grid resolution.

3. Results

One of the characteristics common to soils where pastures are installed under Montado
is the low pH. Table 1 shows that in nine of the 11 experimental fields, the average pH
ranges between 5.4 and 5.8. This is a relevant aspect, since the availability of nutrients,
particularly phosphorus, is conditioned by low pH [20].

Table 2 shows SOM and P2O5 results of soil samples at each location, determined
with the reference method and used in the calibration and external validation models.
These results show (i) relatively low values of SOM (on average, between 1.4 and 2.9%)
and of phosphorus (on average, between 6 and 61 mg kg−1), (ii) an important variability
between fields (with average values ranging from simple to double in SOM and up to ten
times more in phosphorus), (iii) and an important spatial variability of both parameters
within each experimental field (CV between 15–40% in SOM and CV between 25–90% in
P2O5), as a result of the simultaneous effect of trees and animal grazing [21] and intrinsic
soil heterogeneity (namely due to land morphology). The range of variation of these
parameters showed that the properties of the soils used in this study are representative of
the Montado ecosystem, a decisive factor in obtaining adequate calibration models [7].

Table 3 shows the statistics for calibration and external validation of the prediction
models developed using PLSR to correlate NIRS absorbance spectra with the reference
values of SOM and P2O5 obtained by chemical reference processing. For each parameter,
only the selected pre-treatment is shown based on the criteria presented above (for each
parameter the pre-treatment with higher values of R2 and RPD and with lower values
of RMSE and bias was selected; [17,18]). In this case, the best results were obtained
using (i) the “baseline offset correction” (BOC) and the “multiplicative scatter correction”
(MSC) pre-processing for SOM due to the highest R2 (0.85) and RPD (2.7) and the lowest
RMSE (0.291) and bias (0.070) of the external validation model (Table 3) and (ii) the “raw
spectra” procedure for the P2O5 due to the highest R2 (0.76) and RPD (2.2) and the lowest
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RMSE (13.97) and bias (2.640) of the external validation model (Table 3). BOC was the
transformation used to correct the baseline of samples, and MSC method can handle both
additive and multiplicative effects of light scattering.

Table 2. Soil organic matter (SOM) and phosphorus (P2O5) reference values of each experimental field.

Field
Code

SOM (%) P2O5 (mg kg−1)

Mean SD Range Mean SD Range

“AZI” 2.0 0.5 1.4–2.8 13.7 4.4 7–23
“CUB” 2.9 0.5 2.4–3.9 22.8 19.0 8–58
“GRO” 1.9 0.6 1.3–3.3 34.1 18.8 8–64

“MIT A” 1.4 0.4 0.9–2.1 17.3 4.3 13–23
“MIT B” 2.1 0.7 1.2–3.4 56.7 22.2 15–96
“MIT C” 1.7 0.7 0.4–3.7 60.8 28.6 8–145
“MUR” 1.8 0.7 1.0–3.2 17.3 15.0 4–49
“PAD” 2.3 0.3 2.0–2.8 20.7 6.6 13–30
“QF A” 2.7 0.6 2.0–3.9 28.1 13.8 17–63
“QF B” 2.1 0.4 1.4–2.7 52.9 19.6 20–82
“TAP” 1.4 0.4 0.9–2.2 6.1 2.7 2–12

Table 3. Statistics for calibration and external validation models of soil organic matter (SOM) and
soil phosphorous (P2O5) using near-infrared spectroscopy (NIRS) spectra and partial least squares
regression (PLSR).

Soil Parameter (Spectral
Pre-Processing) LV Slope Intercept R2 RMSE Bias RPD

Calibration

SOM (BOC + MSC) 7 0.8504 0.2915 0.85 0.257 - -
P2O5 (Raw spectra) 6 0.7772 10.431 0.777 14.98 - -

External Validation

SOM (BOC + MSC) 7 0.8708 0.3137 0.847 0.291 0.07 2.7
P2O5 (Raw spectra) 6 0.8095 9.4241 0.761 13.97 2.64 2.2

SOM—soil organic matter; P2O5—phosphate; BOC—baseline offset correction; MSC—multiplicative scatter
correction; LV—latent variables; R2—coefficient of determination; RMSE—root mean square error; RPD—residual
predictive deviation; Bias—average difference between predicted and actual values.

Figure 3 shows the optimized spectra of NIRS in the wavenumber region 4065 to
8817 cm−1 (wavelength region 2460 to 1134 nm) for SOM and phosphorus, considering
the selected pre-processing methods. The NIR spectrum from soil varies because the
spectral reflectance characteristics are related to soil mineral composition. The soils in
this study showed the same sensitive spectral regions for SOM and phosphorus; both
calibration models used the spectral bands between 7500–7000 cm−1 (1333–1429 nm) and
5501–4400 cm−1 (1818–2460 nm), with peaks of absorbance to wavenumbers 7000 cm−1

(wavelength 1400 nm), 5100 cm−1 (wavelength 1960 nm), and 4400 cm−1 (wavelength
2270 nm), which seems to indicate that these two soil parameters are related in agro-silvo-
pastoral systems, such as the Montado.

Figure 4 shows measured versus predicted values for SOM and phosphorus (P2O5).
The similar R2 (0.85 and 0.86 to SOM and 0.78 and 0.76 to P2O5) and of range of calibration
and validation phases in both parameters (SOM: 0.4–3.9% in calibration and validation
sets; P2O5: 2–120 mg kg−1 in calibration set and 2–145 mg kg−1 in validation set) confirms
the good representativeness of the whole group of samples and the accuracy of NIRS
calibration models, especially for SOM. Figures 5–7 present as an example the maps of the
reference and the predicted values of SOM and P2O5 of three of the eleven experimental
fields used in this study. All these maps confirm the similarity of the spatial patterns
of the reference and predictive data, demonstrating that prediction models were able to
successfully identify spatial SOM and P2O5 variability in the same field.



Sustainability 2021, 13, 2734 9 of 16

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 17 

seems to indicate that these two soil parameters are related in agro-silvo-pastoral systems, 
such as the Montado. 

 
Figure 3. Optimized near infrared (NIR) spectra in the wavenumber region 4065 to 8817 cm−1 (wavelength region 2460 to 
1134 nm) for (a) soil organic matter (SOM) and (b) phosphorus (P2O5). - − 

4065,505 4404,94 4744,375 5099,239 5430,96 5762,68 6102,115 6441,55 6780,985 7120,42 7459,855 7799,29 8131,011 8478,16 8817,595
-0,1

0

0,1

0,2

0,3

 

4065,505 4404,94 4736,661 5083,811 5430,96 5762,68 6094,401 6441,55 6773,271 7120,42 7452,141 7799,29 8131,011 8478,16 8817,595
0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

(a)

(b)

Ab
so

rb
an

ce
(lo

g
1.

R
-1

)
0.3

0.2

0.1

0.0

-0.1

4065 4404     4736            5083 5430 5762 6094 6441 6773 7120 7452 7799 8131 8478 8817

Wavenumber (cm-1)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

4065 4404     4736            5083 5430 5762 6094 6441 6773 7120 7452 7799 8131 8478 8817

Wavenumber (cm-1)

Ab
so

rb
an

ce
(lo

g
1.

R
-1

)
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4. Discussion

It has been estimated that in the coming decades the world will need 70–100%
more food to feed an estimated nine billion people [11,22]. Therefore, pressure on land
productivity—and thus on the environment—will continue to rise. Thus, it is crucial to
increase our knowledge of how different production practices influence crop yields and the
environment [22]. Improving agricultural management based on the understanding of soil
processes is a first step in increasing the potential for SOM storage, improving site-specific
carbon sequestration, and ensuring the sustainability of ecosystems [23,24].

In pastures, where a crop is produced within an agroforestry system, SOM is the
largest reservoir of soil organic carbon (SOC), containing about 90% of the total SOC [24,25],
whereby carefully designed pasture management strategies can change SOM dynamics
and promote storing SOC content, reducing atmospheric CO2 levels [24], limiting the
net flux of greenhouse gases towards the atmosphere, and thus contributing to climate
change mitigation [3,23,26]. Small changes in the SOC pool can have a serious impact on
climate and soil properties [3]. Thus, modelling SOM and other soil parameters such as
phosphorus is invaluable for assessing the effect of physicochemical and biological factors
on soil dynamics under various changes in land use and management practices [23].

The results of this study showed significant correlation between NIRS calibration
models and reference methods for quantifying SOM and P2O5. The R2 (0.85 to SOM and
0.76 to P2O5) indicated the potential of NIRS to estimate SOM and P2O5. According to
Viscara Rossel et al. [27], the value of RPD obtained for SOM (2.7) and for P2O5 (2.2) classify
these models as adequate for screening purposes, allowing the definition of homogeneous
management zones in precision agriculture projects, as is the case.

Several studies have shown the interest of NIRS to estimate SOM [4,7,9]. Kuang and
Mouazen [7], for example, obtained and R2 between 0.85–0.93 and RPD between 2.61–3.96
for SOM. Jiang et al. [9] justified this potential by the direct spectral response of the
overtones and combinations of C-H, C=O, or O-H. In general, calibration of SOM is
more likely to succeed because the spectrally active soil constituents have well-known
spectral features in the NIR region [11]. According to Shen et al. [4] in the NIR region,
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three absorbance peaks (as identified in our study; Figure 3) are common mainly caused by
the absorbance of the O-H bonds existing in the soil. Additionally, Zizala et al. [28] report
that spectral absorption regions that can be used to quantify SOC (and, indirectly, SOM)
are located mainly between 6250 and 5250 cm−1 (between 1600 and 1900 nm) and between
4750 and 4150 cm−1 (between 2100 and 2400 nm). Molin and Tavares [11] registered
important absorption features in the soil spectra between 11,900 and 10,600 cm−1 (between
840 and 940 nm), related to the presence of Fe oxides (e.g., hematite and goethite), between
7000 and 5250 cm−1 (between 1400 and 1900 nm) due to the presence of water and O-H
functionalities, between 4535 and 4495 cm−1 (between 2205 and 2225 nm) related to the
presence of kainite, and at 4415 cm−1 (2265 nm) in the presence of gibbsite.

The correlations of soil phosphorus with NIR spectra are generally weaker than
those of SOM with NIR [11], which agrees with the results obtained in our study (R2

of 0.85 for SOM and R2 of 0.76 for phosphorus). Phosphates are hardly detected by
infrared radiation due to the low dipole moment between phosphorous and oxygen,
which inhibits the direct detection of orthophosphate [29]. Notwithstanding, several works
have presented interesting results in the validation of soil phosphorus (P) content based on
the NIRS approach, as are the cases of Hermansen et al. [19], Bogrekci and Lee [30], Maleki
et al. [31], Mouazen and Kuang [32], and Kawamura et al. [33], with R2 of, respectively,
0.79–0.84, 0.78–0.99, 0.73–0.75, 0.75, and 0.80, similar to those obtained in this study (0.76).
Additionally, the RPD in our study (2.2) fits within the range of values obtained in these
works (between 1.8 and 2.7). It is widely referred to in the literature that P can be indirectly
detected by NIR spectroscopy if organically bound [34–36], which we believe is the reason
for P detection in these soils. According to Morón and Cozzolino [35], the success of
NIR spectroscopy in the calibration of P fractions in the soil is dependent on the selected
reference method. Phosphorous obtained by Egner–Riehm reference method, used in this
work, is more correlated with P fraction bound to soil organic matter [37] and, consequently,
SOM is usually punted as an indirect surrogate marker of a fraction of total P.

Figure 3 showed that peaks of absorbance have been verified in the same spectral
bands of SOM and phosphorus, demonstrating that the most active spectral region is
4000–5500 cm−1 (2450–1800 nm), where the water absorption band (5100 cm−1 or 1950 nm)
and clay minerals, C-H + C-H, C-H + C-C, OH + minerals, and N-H combinations
(4350 cm−1 or 2300 nm) stand out [7]. These results seem to indicate that SOM and soil
phosphorus are connected in agro-silvo-pastoral systems, such as the Montado, which un-
derlines the need for further investigation of soils of this important ecosystem. This aspect
gains particular importance because, on the one hand, the decrease of organic matter in
agricultural soils is generally considered a major threat to sustainability [4], and, on the
other hand, soil phosphorus is a crucial nutrient for pasture yield [5,7].

Based on the reference indications of Sims et al. [38] that identified four soil P2O5
categories for plant growth (low: 0–25 mg kg−1; medium: 26–50 mg kg−1; optimum:
51–100 mg kg−1; and excessive: >100 mg kg−1) and the mean values of soil P2O5 in the
eleven experimental fields (Table 2), it is clear that six present low values (<25 mg kg−1) and
all require phosphorus application. About 15 years ago, some pioneering works (for example,
Bogrekci and Lee [30] or Maleki et al. [31]) sought to integrate this spectral analysis technique
(NIRS) to predict soil phosphorus content as a preliminary step and provide the necessary
information for the development of an automatic variable rate fertilizer applicator. This ap-
proach integrates the concept of PA, replacing the traditional fertilizer application at a single
rate throughout the entire field by “the right amount at the right place” [39]. The results of
our study confirm the potential of NIRS for this purpose (Figure 5, Figure 6, and Figure 7c,d),
for example, indicating the need for application of P2O5 throughout the entire area. Simulta-
neously, Figures 6 and 7 show clearly the existence of two zones of differentiated phosphorus
application, respectively, in “MUR” and “PAD” experimental fields: greater quantities in
areas with low concentrations (below 25 mg kg−1 [38]) and smaller quantities in areas with
medium concentrations (between 25 and 50 mg kg−1 [38]) to achieve the objective of having
80–100 mg kg−1 of phosphorus in the topsoil [5].
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Nevertheless, some challenges remain, because it requires technicians to travel to
the field to collect soil samples and some preliminary processing. To overcome these
limitations, some works are currently focused on the use of satellite hyperspectral data
for accurate soil property prediction over large areas [4,28]. The continuous spatial and
temporal monitoring of the SOM, and of other soil characteristics or soil cover and crop
development provided by remote sensing, becomes extremely important, not only from
the environmental perspective, but also in economic terms to ensure, in general, that the
beneficiaries of Common Agricultural Policy (CAP) respect their cross-compliance obli-
gations [40], and, particularly in the Montado ecosystem, it can facilitate decision making
by the farm manager in dynamic management of animal grazing and differential fertilizer
application [4].

5. Conclusions

Soil organic matter (SOM) and phosphorus (P2O5) are two indicators of the evolution
of soil fertility in the Montado Mediterranean ecosystem. The results of this study showed
significant correlation between NIRS calibration models and reference methods to quantify
these soil parameters (R2, 0.85 for SOM and 0.76 for P2O5; RPD, 2.7 for SOM and 2.2 for
P2O5), which can mean an important simplification of the time and costs involved, better
suited to the needs of the current agricultural production management. To go further, in a
perspective of PA, two research topics require further attention: (i) improvement of portable
spectrometers in order to achieve a more accurate response in direct field measurements
and (ii) further exploration of soil spectral information obtained through satellites (remote
sensing). Future research along any of these lines will involve more advanced technologies,
such as the use of methods drawn from the field of artificial intelligence.
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