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Abstract: High-profile events can trigger expressions of hate speech online, which in turn modifies 

attitudes and offline behavior towards stigmatized groups. This paper addresses the first path of 

this process using manual and computational methods to analyze the stream of Twitter messages 

in Spanish around the boat Aquarius (n = 24,254) before and after the announcement of the Spanish 

government to welcome the boat in June 2018, a milestone for asylum seekers acceptance in the EU 

and an event that was highly covered by media. It was observed that most of the messages were 

related to a few topics and had a generally positive sentiment, although a significant part of mes-

sages expressed rejection or hate—often supported by stereotypes and lies—towards refugees and 

migrants and towards politicians. These expressions grew after the announcement of hosting the 

boat, although the general sentiment of the messages became more positive. We discuss the theo-

retical, practical, and methodological implications of the study, and acknowledge limitations re-

ferred to the examined timeframe and to the preliminary condition of the conclusions. 

Keywords: aquarius boat; immigration; hate speech; politicians; refugees and asylum seekers; sen-
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1. Introduction 

Since the Crisis of Refugees of the Mediterranean in 2015, Southern European coun-

tries have gained relevance in the reception of refugees, asylum seekers, and migrants 

that either remain in them or continue to wealthier countries. Although Italy and Greece 

have been the arrival countries for most migrants, the eventual closure of the migration 

routes from Turkey to Greece and from Lybia to Italy turned Spain into the country with 

more Mediterranean arrivals in 2018, with 57,250 Africans reaching Spanish soil accord-

ing to the International Organization for Migration [1]. The biggest single intake was that 

of the boat Aquarius, which carried 630 migrants and arrived at the port of Valencia in 

June 2018 after being rejected by other European countries. The announcement by the 

Spanish government on 11 June 2018 that the country would welcome the drifting boat 

was the first high-profile political move of the new Socialist executive, who had reached 

power 10 days after a successful motion of censure in the national Parliament. 

In just 1 week of that month, the case of Aquarius generated a large amount of inter-

actions in Twitter (~24,000), making this social medium a unique space to monitor and 

analyze the public opinion towards refugees. This is an example of a high-profile real-life 

event that has led to a strong activity in social media, something that has been often stud-

ied in the academia, given that these events can act as drivers in the expression of either 

support or rejection, giving also space for different forms of hate speech. Miró-Llinares 

and Rodríguez-Sala [2] studied Twitter’s conversation after the attacks against the head-

quarters of Charlie Hebdo in Paris in 2015, while Burnap and Williams [3], and Williams 
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and Burnap [4] did something similar after the murder of Drummer Lee Rigby in London 

in 2013. The relevance of studying these cases is increased by the fact that the hate spiral 

produced after these events also led to episodes of verbal violence and attacks against the 

honor and the dignity of specific individuals, which is already a crime by itself [5]. 

Hate speech generally refers to all forms of discourse that deteriorate the image of a 

person or a group of individuals based on their inherent or acquired condition. This in-

cludes explicit hate messages, as well as subtler narratives by which the image of groups 

is despised with the goal of exercising social control. The pioneering scholar connecting 

hate speech and communication theory was Calvert [6], who drew from James Carey’s 

famous distinction between “communication as transmission” and “communication as 

culture” to ponder on the difficulties of measuring the actual effect of hateful speech on 

violent behavior. Jurors are always looking for evidence following the transmission 

model, linking threats to actions in the short term, whereas a cultural perspective invites 

us to think about the indirect consequences of hateful discourse as a breeding ground to 

justify discrimination in the long term. Regardless of one’s preference for the transmission 

on the cultural model, Calvert’s insight remains valid in this digital age: Any strategy that 

seeks to understand and fight hate speech must include a communication approach. Ad-

ditionally, recent studies have found a link between online hate speech and the increase 

of hate crime against this vulnerable group [7], supporting a broader but still inconclusive 

scientific literature on predicting real world behaviors based on media texts [8–10], and 

also supporting the fact that combating hate speech can decrease the number on hate 

crimes. 

With this in mind, the study will use text mining, or text analytics, not only for the 

need of overcoming the limitations of surveys in racism—or xenophobia-related issues 

[11], but also since the access to unstructured data, such as the one of Twitter, provides 

unfiltered and immediate information in a particular moment in a way that surveys or 

other studies cannot. Text mining refers to a set of techniques that are gaining relevance 

in different fields of the academia, from finance [12] to social impact [13], including poli-

tics [14] and anti-immigration sentiments [15], the topics of this study. From these tech-

niques, which offer a way to extract knowledge from textual information using big data 

[16], sentiment analysis and topic modelling, the two that will be used in this study, are 

among the most common ones, both with a growing presence, according to the systematic 

review of literature on text mining on Twitter conducted by Karami et al. [17]. 

With all this, the goal of this paper is to understand the features of refugee-related 

messages in Twitter around a high-profile event, such as the announcement of Spanish 

Prime Minister Pedro Sánchez to welcome the ship Aquarius, as well as identifying the 

expressions of hate and the role of the event in the variation of hatred contents towards 

refugees. This will allow us to fill in a still existing knowledge gap on the feelings of the 

Spanish population towards refugees and immigrants, not only around this specific high-

profile event, but also in the context immediately before the arrival of Vox to Spanish in-

stitutions in December 2018, which made anti-immigration a more relevant topic in the 

Spanish political discourse [18]. This way, the study will complement previous works in 

the field and try to observe how and around what topics the anti-immigration discourse 

in Spain is built [15,18,19] and, more in general, how refugees are depicted in Twitter 

[20,21]. Moreover, the article introduces a novelty in its approach to hate speech against 

politicians, even if they are not a vulnerable group that demands protection, one of the 

most common reasons behind hateful contents is political ideology. Therefore, approach-

ing these types of contents, something very seldomly done in the past, will offer a basis 

for future works analyzing ideologically motivated hatred. 

In the next sections we justify our research questions (Section 1.1.1.) and hypothesis 

(Section 1.1.2.), describe the manual and computational methods used in the research (Sec-

tion 2), explain our findings (Sections 3 and 4) and, finally, present our conclusions (Sec-

tion 4). 
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1.1. Online Hate Speech 

The two legal schools of thought regarding hate speech somehow mimic the distinc-

tion between the transmission and cultural approaches in communication theory. The 

American model, grounded on the “marketplace of ideas”, only prohibits hateful speech 

if there is a clear and present danger of physical violence. The European approach, bor-

rowing from Germany’s post-war “militant democracy”, is far more coercive, concerning 

itself with the hateful expressions that might lead to a certain climate of opinion, even if 

no immediate danger can be devised [22]. 

Hate speech must be differentiated from mere offensive language, or an insult. Hate 

speech has a clear social dimension, as it is targeted to a specific group marked by a dis-

tinctive feature, be it race, religion, ideology, or sexual orientation, etc. The European 

school of legal thought on dangerous speech is clearly marked by the experience of geno-

cide. In its first relevant decision on the topic, the Council of Europe issued a Recommen-

dation in 1997 (97/20, 30 October) asking its constituent States to act against “all forms of 

expression which spread, incite, promote or justify racial hatred, xenophobia, anti-Semi-

tism or other forms of hatred based on intolerance, including: intolerance expressed by 

aggressive nationalism and ethnocentrism, discrimination and hostility against minori-

ties, migrants and people of immigrant origin”. After 7 years of negotiations among its 

member states [22], the Council of the European Union agreed in 2008 on a definition of 

illegal hate speech as “publicly inciting to violence or hatred directed against a group of 

persons or a member of such a group defined by reference to race, colour, religion, descent 

or national or ethnic origin” [23]. 

To better understand these definitions, it should be noted that online hate speech is 

a specific type of hate which is part of the behavior of the so-called cyber hate. In a context 

in which social media, such as Facebook or Twitter, and new digital media have allowed 

a faster and broader spreading of these contents, as well as a greater visibility, online hate 

speech becomes more dangerous and potentially harmful than previous expressions of 

hate. This has led to a growing interest of studies dealing with the problem of online hate 

speech, such as Müller and Schwarz [7], who showed how right-wing anti-refugee senti-

ment on Facebook predicts violent crimes against refugees; Lucas [24], who collected dif-

ferent international experiences of monitoring and mapping online hate speech or Burnap 

and Williams [3], who used machine classification to model hate speech online. 

Moretón Toquero [25] discusses that, following the principle of minimum interven-

tion, cyber hate specifically applies, from a legal point of view, to the most harmful ex-

pressions which are regulated in the Criminal Code, and that freedom of speech tends to 

protect everything else. However, legally punishable forms of hate speech are just the 

most visible and harmful part of verbal rejection. Contrada et al. [26] considered verbal 

rejection as the most basic form of discrimination, whereas Brown [27] defended that re-

jection towards the other can go from verbal rejection to genocide. In our field, previous 

studies [20] have pointed out how the rejection of immigrants and the demand of their 

expulsion or the prohibition of their entrance, especially by prominent figures and opinion 

leaders, can lead to an increase of hate speech. Therefore, in order to understand hate 

speech and rejection towards immigrants from a broad perspective, with the goal of tack-

ling the problem from its basis, in this study we will not only try to identify explicit ex-

pressions of hate speech, as defined by law, but also expressions of rejection which do not 

fit into that classification but can potentially lead to others that do. 

1.1.1. Refugees as a Subject in Social Media 

The predominance of social media and the new dimension of hate speech, thanks to 

them, has led to an increase in the regulation and legislation of hate speech online [28,29]. 

However, the popularity of online social media keeps generating new challenges, such as 

the spread of fake news [30], the use of disinformation for promoting rejection against 

refugees [31] or the increase in the presence of hate speech [32] despite all efforts. 
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However, social media have also become relevant to gauge the public opinion of societies, 

including the presence of racism [33] or the representation of refugees [21]. As a result, 

authors such as Ross et al. [34] see a great interest in the identification of hate speech in 

social media in connection to real-life events, such as, in our case, the arrival of a boat to 

the coast of Spain in the context of the crisis of refugees in the Mediterranean. 

More specifically, Twitter has been frequently used to discover the political and pub-

lic discourse of a society on different sociopolitical topics [35], including immigration-re-

lated topics [20,36]. The interest of the academia in Twitter comes from the condition of 

digital tribune of this micro-blogging medium, in which users express organically and 

freely their thoughts and opinions feeling as they are talking to a captive audience [33]. In 

addition, although it is not a representative platform of all society, its popularity, the pos-

sibility of making contents viral using hashtags or mentions, and the ease and speed of its 

communication, make it of great interest for our analysis. 

Previous research [37] shows the importance of analyzing the predominant senti-

ment of the discourse of social media due to its capacity to provide information on the 

context and the possible reactions towards any minority group. Sentiment analysis has 

also been related to the presence of hateful content [38]. Therefore, we present the follow-

ing research question: 

Which is the predominant sentiment of messages in Twitter in Spanish referring to 

the arrival of the boat Aquarius? (RQ1). 

The Statistic System of Criminality (SEC) of the Ministry of the Interior of Spain refers 

to eight motivations or prejudices that can lead to hate expressions: Racism/Xenophobia; 

Sexual orientation or identity; Religious praxis or beliefs; Ideology; Disability; Gender, 

Antisemitism; and Aporophobia. In the same line, Olteanu et al. [39], who analyzed the 

discourse of xenophobic hatred in Twitter, discovered that there are six potential publics 

towards whom this hateful discourse is usually aimed: “Muslims and Islam; Religious 

groups: unspecified, any religion except Islam; Arabs, Orientals or North Africans: off-

spring without reference to religion; Ethnic groups or groups of foreign ancestry: unspec-

ified, any foreign ancestry, except Arabic; Immigrants, refugees or foreigners in general: 

without indicating a specific religion or offspring; Other groups of nonimmigrants: ac-

cording to, for example, gender, sexual orientation, appearance, disability or age” (p. 5). 

Following these classifications, we will focus here on refugees (who can be a target of 

discrimination and rejection in various of the previously mentioned categories) to pose 

the following research question: 

To what extent is hate speech towards refugees present in the messages in Twitter in 

Spanish referring to the arrival of the boat Aquarius and how does the presence of hate 

speech relate with the predominant sentiment in those messages? (RQ2). 

In order to understand the reasons that explain those feelings, and following Entman 

[39], it is important to know what the topics present in the messages are and under which 

frame they are presented, which will allow us to know what are the problems, the causes 

or the risks that could explain the presence of hate speech towards refugees and migrants, 

but also which are the possible solutions against these narratives. Therefore, this research 

question will be complemented with this secondary one: 

What are the main topics behind the messages in Twitter in Spain with hate speech 

against refugees? (RQ2.1). 

Olteanu et al. [40] suggested that, although most messages containing hate are aimed 

towards minority groups—in this case, those would be the migrants and refugees, it is 

also possible to find messages that directly attack non-vulnerable groups, such as political 

parties, media organizations or senior profiles of politicians and journalists. Therefore, 

with the goal of broadening the lens about who could become a victim of hateful expres-

sions in social media and to discover what is the sentiment of the hateful messages aimed 

at each public, we present the following research question: 
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To what extent is hate speech towards politicians present in the messages in Twitter 

in Spanish referring to the arrival of the boat Aquarius and how does the presence of hate 

speech relate with the predominant sentiment in those messages? (RQ3). 

As in RQ2, we can dig into the problems, the causes or the risks that could explain 

the presence of hate speech or of negative sentiments towards this group. Therefore, this 

research question will be complemented with this secondary question: 

What are the main topics behind the messages in Twitter in Spain with hate speech 

against politicians? (RQ3.1). 

1.1.2. High-Profile Events and Hate Speech 

It can be seen how messages spread by specialized or organized groups, and includ-

ing those published with an appearance of news [31], on the Internet are means of 

transport for hate, increasing the presence of hate in the public discourse. However, some 

authors [3,41–43] defended that online hate speech can be also intensified in social media 

after high-impact events, such as terrorist attacks or news with the presence of disadvan-

taged or denigrated groups of population, and may be the springboards to incidents and 

targeted attacks with similar characteristics. Sometimes, even apparently unrelated events 

can be used as an excuse for an increase in hate speech, often in connection with disinfor-

mation or fake news campaigns [44]. 

Furthermore, previous studies have found that certain events can affect and modify 

the public perception of refugees and migrants [45–48] from the situation prior to a high 

impact event to the response after that. In the case of the boat Aquarius, the turning point 

took place when the Government officially announced that Spain would welcome the 

boat, therefore, we present the following hypothesis: 

The average of hateful comments and negative sentiments in the messages in Twitter 

in Spanish referring to the arrival of the boat Aquarius increased after the official an-

nouncement of welcoming the boat in Spain (H1). 

2. Materials and Methods 

2.1. Sample 

Using the Stream API of Twitter [49], we collected those messages that declared lan-

guage in Spanish and included “#Aquarius” in the field text from 7:27 a.m. 8 June to 11:54 

p.m. 17 June 2018 (N = 26,236). After removing 1983 messages that referred to other topics 

or were written in other languages, the final sample was of n = 24,254 messages. These 

contents were downloaded and analyzed in the servers of the Supercomputing Centre of 

Castille and León (Scayle). 

2.2. Measures 

Five measures were used in this study: Three of them were manually analyzed, 

whereas the last two were computationally analyzed. These measures were: 

1. Date and time: It shows the date and the time in which the message was produced. 

This measure allowed the division of the tweets between those produced before the an-

nouncement of the Spanish Prime Minister, Pedro Sánchez, of receiving the boat Aquarius 

in the harbor of Valencia (0) and those produced afterwards (1). This announcement took 

place on 11 June at around 12.30 p.m. (Madrid’s time zone, GMT+1; the moment will be 

marked in the set of tweets with the following tweet by @AlejandroCancho, posted at 

12.30.41: “#ÚltimaHora - El gobierno de #España acogerá el #Aquarius con 629 migrantes que 

hasta ahora no tenían donde atracar el barco”), and this division allowed us to answer H1. 

2. Presence of hateful expressions: It shows whether the message is of a hateful nature 

(1; as previously discussed, this category includes messages with explicit forms of hate 

speech, but also other expressions of rejection that could lead to it) or not (0; in this case, 

it includes messages showing support, but also those of an informative nature). If a 



Sustainability 2021, 13, 2728 6 of 17 
 

message simultaneously showed support to a group but rejection to another, the predom-

inant feeling was determined by the coder, so that all messages had only one category. 

3. The target of the hateful expression: In order to determine the target of the hateful 

expressions, two complementary measures were created: The first one showed the pres-

ence of hate speech against refugees (1) or not (0, including those tweets with hate against 

politicians, but also those that had no hate or rejection); the second one showed the pres-

ence of hate speech against politicians (1) or not (0, including those tweets with hate 

against refugees, but also those that had no hate or rejection). Given that all the collected 

messages had the hashtag “#Aquarius” and that only those referring to the arrival of the 

boat were considered for the analysis, they all referred to one of these groups. In order to 

simplify the analysis, we determined that tweets could only show rejection towards one 

of the two groups—refugees or politicians. In the cases in which hate or rejection could be 

found towards both groups, coders were instructed to select the predominant one. It 

should be also highlighted here that we are not differentiating between politicians of dif-

ferent nationalities, ideologies and, especially in this analysis, with different approaches 

towards migration, given that none of them can be considered vulnerable groups. Simi-

larly, the expressions towards refugees or migrants were studied together since, although 

some were aimed at the people rescued by the boat Aquarius and other at immigrants in 

general, they all shared the condition of immigrants and, therefore, of vulnerable mem-

bers of the exogroup, which are more exposed to prejudice and rejection [50,51]. 

These first three measures were manually analyzed by one previously trained coder 

within a period of 3 months, from mid-September 2018 to mid-December 2018. In order 

to test the reliability of this analysis, a secondary coder content analyzed a random sub-

sample of 1293 messages (~5% of the total sample of 26,236 tweets, so that we could also 

test the reliability of the removal of tweets that did not belong to the sample) during the 

month of February 2019. Inter-coders reliability tests were conducted for measures 2 and 

3, showing in both cases adequate values: Kα = 0.709 for the presence of hateful expres-

sions and Kα = 0.854 for the target of the hateful expression. In addition to the presence 

(1) or not (0) of hate speech in the messages, a third category (99) was included in this 

measure, so that we could test the agreement of the coders regarding the removal of the 

messages which would not be of interest in the study, for being in other languages or for 

referring to unrelated topics. This means that for the inter-coders reliability test, prior to 

the removal of unrelated tweets for the analysis and to the analysis itself, measure 2 –

presence of hate speech in the message– had three categories, although it only had two in 

the analysis –given that the removed tweets were already out of the sample. 

In addition to the manual study of the tweets, we ran the automated sentiment anal-

ysis and topic modelling. The two measures for these analyses were: 

4. Sentiment of the tweet: This automated analysis was based on a lexicon or diction-

ary, using SentiStrength, an open-source tool developed by Thelwall et al. [52] and vali-

dated in Spanish by Vilares, Thelwall, and Alonso [53]. This software rates the relevance 

and presence of negative words (from −1, being not negative, to −5, being extremely neg-

ative) and positive words (from +1, being not positive, to +5, being extremely positive) for 

every tweet. The sum of these two values indicates the general emotions of the tweet in 

terms of language (Language Sentiment) and it can be from −4 (+1, −5; clear predominance 

of negative words) to 4 (+5, −1; clear predominance of positive words). 

5. Detected topics in the hateful messages: With the goal of discovering the main top-

ics behind the messages, we applied unsupervised machine learning to the content of the 

messages. Specifically, we conducted topic modelling using Latent Dirichlet Allocation 

(LDA), which is the most commonly used algorithm for this unsupervised task [54]. Topic 

modelling is employed to identify topics in large sets of documents [55], in this case, a 

large set of tweets. We estimated the optimal number of topics based on internal coherence 

values (Figure 1) for messages with hate speech against refugees and messages with hate 

speech against politicians. This optimal number was determined using the Elbow method, 

which leads us to choose the number of clusters at which the variability abruptly 
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decreases, creating an “elbow” in the slope. The selection of one “elbow” or another de-

pends on the adequate number of topics that can be considered useful for the study. In 

this case, as it can be seen in the left part of Figure 1, the optimal number of topics for the 

2397 tweets that expressed hate against refugees and migrants were 6 (X-axis), with an 

internal coherence of −7.54 (Y-axis; the internal coherence value for 0 to 15 topics would 

be, in the case of hate against refugees: −3.62, −3.62, −4.47, −6.31, −5.42, −8.07, −7.54, −8.75, 

−9.75, −10.00, −10.02, −10.41, −11.53, −11.94, −12.61, −12.93), while the optimal number of 

topics for the 4146 tweets that expressed hate against politicians were 4 (X-axis), with an 

internal coherence of -6.48 (Y-axis; the internal coherence value for 0 to 15 topics would 

be, in the case of hate against politicians: −3.92, −3.92, −4.16, −6.19, −6.48, −7.81, −10.44, 

−10.24, −10.00, −12.09, −11.24, −11.50, −11.88, −12.37, −13.18, −12.76). In other words, the 

internal coherence value is the measure that orientates the optimal number of topics, 

which means that the researchers should later obtain a descriptive label for each topic 

attending to the main terms included in each of them (the standard number of terms is 

ten). 

 

Figure 1. Optimal number of topics for the messages with hate against refugees (left) and politi-

cians (right). The X-axes represent the number of topics and the Y-axes represent the value of the 

internal coherence. 

After selecting the optimal number of topics for each group, we interactively con-

ducted topic modelling over the two sets of messages. At each execution of LDA we ob-

tained a list of words (10) that characterized every detected topic. By creating and updat-

ing a set of stop words, we manually removed the words of the initial list that did not 

contribute to generate a logic label of the topics (such as articles and other meaningless 

particles, but also variations of the verb “to be”, for example), and repeated this process 

several times until obtaining a final set of relevant words with enough meaning to create 

the labels. The final amount of stop words was 386: 313 predefined words from the nltk 

package plus 73 ad-hoc terms. 

It should be noted that this model, known as Clean Model, was selected after having 

tested others (Naïve, tf-idf, and tf-idt+trimming of extreme words) that did not offer the 

same coherence values, according to the u-mass statistic. These models were tested once 

all capital letters, all punctuation signs, and all html tags (boiler plates) were removed in 

a preprocessing phase. 

2.3. Software Used 

All the contents were downloaded in the JSON format, which allows the execution 

of filters by username, language, date, geographic location, etc. In this particular investi-

gation, only the text contained in the messages was analyzed, using the publication date 

as an organizing feature, so the contents were cleaned up to remove the irrelevant infor-

mation. The contents were later transformed into a data frame for subsequent automated 

analysis using Python, specifically, the Gensim library and the Latent Dirichlet Allocation 

(LDA) algorithm in order to discover the underlying issues within the sample, as well as 

Java and the SentiStrengt library in order to identify the emotions within the tweets. 
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Finally, IBM’s SPSS program was used to perform the descriptive statistical analysis 

and inferential statistical analysis (including Student’s t-tests for independent variables 

and correlations). Krippendorff’s Alpha macro was also used to measure the reliability of 

the aforementioned inter-coders test. 

3. Results 

In the first place, we found that 27% of the messages of the final sample (6543) in-

cluded expressions of hate or rejection, while 73% (17,711 messages) were not hateful mes-

sages. Seeking to answer RQ1, we observed that the general feeling of the sample of tweets 

was slightly positive (M = 0.018; SD = 1.643), with a small predominance of positive (M = 

1.960; SD = 1.139) rather than negative words (M = –1.940; SD = 1.280). These values are 

summarized in Table 1, together with those that will allow us to answer RQ2 and RQ3. 

Table 1. Summary of frequencies and mean values. 

 Frequency Percentage Sentiment 
Positive 

words 

Negative 

words 

Non-hateful messages 17,711 73% 0.067 1.950 −1.880 

Hateful messages 6543 27% –0.114 1.980 −2.090 

Hate against refugees 2397 9.9% –0.073 1.960 −2.040 

Hate against politicians 4146 17.1% –0.137 1.980 −2.120 

Final sample 24,254 100% 0.018 1.960 −1.940 

Source: The authors. 

We found a significant, although small, negative correlation between the presence of 

hate speech and the sentiment [r = −0.49; p < 0.001], meaning that the presence of hate 

speech correlates with a greater negativity of the message. More specifically, we can see 

how the presence of hate speech does not show a significant correlation with the relevance 

of the positive words, but it does with the relevance of the negative words [r = −0.73; p < 

0.001] (we must remember at this point that the relevance of negative words grows when 

the values go farther from −1 and closer to −5). 

Focusing now on the hateful or rejection messages aimed at refugees, we can answer 

RQ2 by saying that 2397 messages (9.9% of the total sample, and 36.6% of the hateful ones) 

showed hate or rejection against refugees or migrants, either those in the boat Aquarius 

or other immigrants in general. In these messages, the general feeling was slightly nega-

tive (M = –0.073; SD = 1.690), with a predominance of negative (M = −2.040; SD = 1.312) 

rather than positive words (M = 1.960; SD = 1.138). 

We can find a small but significant negative correlation between the sentiment of the 

tweet and the presence of hate speech expression towards refugees [r = −0.18; p < 0.01], 

which means that the presence of hate or rejection against this target correlates with a 

stronger negative feeling in the text. More specifically, we could observe a significant cor-

relation between the presence of hate speech against refugees and the importance of neg-

ative words in the messages [r = −0.26; p < 0.001]. This correlation shows that a greater 

relevance of negative words can be found in those texts with hate speech expressions 

against refugees and migrants. There was no significant correlation between the relevance 

of positive words and the presence of hate speech against these groups. 

For a more detailed analysis of the topics present in these messages, we used LDA to 

answer RQ2.1. Table 2 shows the six topics (with each word and respective weight) that 

were found within these hateful messages against refugees and Figure 2 shows an exam-

ple of the distribution of topics and the list of words of the first topic. 
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Table 2. Topics of the messages with hate speech against refugees. 

Topic 

Most Common Words and Their Frequency within the Topic (the 

Underlined Words are the Most Determinant for the Labelling of the 

Topic) 

Pull effect and 

consequences 

“immigrants” (0.008) + “spain” (0.007) + “boat” (0.005) + “effect” (0.005) 

+ “pull” (0.004) + “goes” (0.004) + “valencia” (0.004) + “consequences” 

(0.004) + “europe” (0.004) + “concentration” (0.004) 

Pull effect and 

not welcoming 

“illegals” 

“immigrants” (0.013) + “people” (0.008) + “spain” (0.008) + “pull” 

(0.007) + “effect” (0.007) + “illegal” (0.007) + “protectyourborders” 

(0.007) + “spaniards” (0.006) + “harbor” (0.006) + “aquariusnot-

welcome” (0.006) 

Not welcoming 

and terrorism 

“go” (0.008) + “spain” (0.008) + “people” (0.006) + “aquariusnot-

welcome” (0.005) + “country” (0.005) + “boko” (0.005) + “haram” (0.005) 

+ “immigrants” (0.005) + “boat” (0.004) + “have” (0.004) 

Smugglers and 

NGOs 

“immigrants” (0.023) + “spain” (0.010) + “spaniards” + “come” (0.008) + 

“mafias” (0.008) + “people” (0.007) + “go” (0.006) + “illegal” (0.006) + 

“ngos” (0.006) + “boat” (0.006) 

Money and jobs 

“refugees” (0.011) + “immigrants” (0.009) + “pay” (0.007) + “spain” 

(0.007) + “countries” (0.005) + “boat” (0.005) + “spaniards” (0.005) + 

“people” (0.005) + “solution” (0.005) + “work” (0.005) 

Entrance to Eu-

rope 

“spain” (0.018) + “immigrants” (0.009) + “europe” (0.006) + “boat” 

(0.006) + “valencia” (0.005) + “spaniards” (0.005) + “government” 

(0.005) + “immigration” (0.005) + “north” (0.004) + “millions” (0.005) 

Source: The authors. For the original Spanish terms, see Table A1 in Appendix 1. 

In general, it seems that the problem is not so much welcoming this particular boat 

and the asylum seekers that travel in it, but the further consequences of this decision. This 

way, we can see how the most relevant aspect seems to be the fear of the pull effect that 

hosting the boat could have on the arrival of new immigrants to Spain. This relates also 

with the fear of having terrorists among the immigrants and with the economic burden of 

what a large number of immigrants would mean for the State and the Spanish citizens. 

 

Figure 2. Topics within the hateful messages against refugees and list of words of the first topic. 
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Similarly to the previous research question, we can answer RQ3 by saying that a total 

of 4146 messages included expressions of hate or rejection against politicians. That equals 

17.1% of the total sample of studied tweets and 63.4% of the contents with hate speech. 

The feeling of these tweets was rather negative (M = −0.137; SD = 1.673), with a stronger 

relevance of negative (M = −2.120; SD = 1.341) rather than positive words (M = 1.980; SD = 

1.122). 

The results also showed a statistically significant correlation between the presence of 

hate speech against politicians and the sentiment of the language of the message [r = 

−0.043; p < 0.001], which means that the presence of hate speech towards politicians was 

associated with a stronger relevance of negative words. This result is complemented by 

the statistically significant correlation between the presence of hateful contents aimed at 

politicians and the importance of negative words [r = −0.065; p < 0.001] in the message. 

This means that hate speech is more frequent in texts with a larger presence of negative 

words. However, no statistically significant correlation between the presence of hate 

speech against politicians and the importance of positive words in the message [r = 0.011; 

p = 0.074] was found. In other words, and similar to what was observed when analyzing 

the presence of hate speech against immigrants, a greater relevance of positive words in 

the message was not linked with the presence of hate speech. 

Looking more in detail into the content of the messages, we can answer RQ3.1 by 

showing the four most relevant topics discovered among the tweets with hate speech 

against politicians (see Table 3 and Figure 3): 

Table 3. Topics of the messages with hate speech against politicians. 

Topic 

Most Common Words and Their Frequency within the Topic (the 

Underlined Words are the Most Determinant for the Labelling of 

the Topic) 

Shame of politi-

cians 

“immigrants” (0.006) + “urdangarín” (0.005) + “people” (0.005) + “eu-

rope” (0.005) + “government” (0.004) + “pp” (0.004) + “italy” (0.004) + 

“shame” (0.004) + “hypocrisy” (0.004) + “open” (0.003) 

Media coverage 

“valencia” (0.009) + “refugees” (0.009) + “arrive” (0.006) + “spain” 

(0.006) + “picture” (0.006) + “people” (0.005) + “spanish” (0.005) + 

“journalists” (0.004) + “sánchez” (0.004) + “spaniards” (0.004) 

National politics 

“immigrants” (0.010) + “spain” (0.009) + “government” (0.008) + “peo-

ple” (0.007) + “sanchezcastejon” (0.006) + “persons” (0.006) + “politics” 

(0.005) + “propaganda” (0.004) + “valencia” (0.004) + “years” (0.004) 

Demanding Gov-

ernment to accept 

migrants 

“psoe” (0.010) + “sanchezcastejon” (0.008) + “immigrants” (0.007) + 

“spain” (0.007) + “host” (0.006) + “refugees” (0.005) + “circus” (0.005) + 

“people” (0.004) + “god” (0.004) + “leave” (0.004) 

Source: The authors. For the original Spanish terms, see Table A2 in Appendix 1. 

These topics show that, despite the European or, at least, Mediterranean dimension 

of the event, there is a national perspective in the hateful messages against politicians, and 

the figures and political parties that are mentioned in these messages seem to be only 

national. The figures which are targeted in those messages are from different political ide-

ologies and it is not clear whether the attacks come due to having accepted the arrival of 

the boat or due to not having accepted it earlier. We can see how politicians are rejected 

from both sides, which makes it impossible to find a clear narrative against politicians, 

something that was easier to see within the hateful contents against immigrants. 
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Figure 3. Topics within the hateful messages against politicians and list of words of the first topic. 

RQ2 and RQ3 allow us to affirm that there is a stronger presence of hate speech con-

tents aimed at politicians than at refugees. However, the values of the sentiment analysis 

seem to be close in both groups, so it is harder to get a clear image. By comparing the 

sentiment and the relevance of positive and negative words of those messages with hate-

ful contents against politicians and against refugees, we can offer more illustrative infor-

mation. The presence of positive words and the sentiment showed no significant differ-

ences, but the average presence of negative words was observed to be higher among those 

hateful messages aimed at politicians (M = −2.12; SD = 1.341) than at refugees and migrants 

(M = −2.04; SD = 1.312), [t (5091.164) = −2.437; p < 0.05; d = 0.06]. The effect is, however, 

small, so further research would be needed to produce conclusive results in this sense. 

Finally, in order to test H1, we analyzed if the hateful contents towards the two stud-

ied target groups changed after the announcement of Spanish Prime Minister Pedro 

Sánchez to receive the boat Aquarius in Spain. This announcement clearly changed the 

discourse, but not always in the hypothesized direction. Hate speech against refugees sig-

nificantly increased from M = 0.08 (n = 76; SD = 0.267) before the announcement to M = 

0.10 (n = 2320; SD = 0.300) afterwards, [t (1090.294) = −2.576; p < 0.05; d = 0.07]. The same 

trend was observed with hate speech against politicians, increasing from M = 0.125 (n = 

119; SD = 0.331) to M = 0.173 (n = 4023; SD = 0.378), [t (1094.440) = −4.419; p < 0.001; d = 0.14], 

although the effect was slightly bigger in this second case. The differences, that confirm 

the first part of H1, can be seen more clearly in Figure 4. Nonetheless, the other part of the 

hypothesis was not confirmed, given that the sentiment of the messages went from a 

slightly negative one before the announcement (M = −0.162; SD = 1.620) to a slightly posi-

tive afterwards (M = 0.026; SD = 1.644), [t (24252) = −3.499; p < 0.001; d = 0.12]. In this sense, 

as it can be seen in Figure 5, the presence of positive words significantly increased from 

M = 1.89 (SD = 1.091) to M = 1.96 (SD = 1.141), [t(1075.918) = −1.996; p < 0.05; d = 0.06], while 

the importance of the negative terms significantly decreased from M = −2.05 (SD = 1.334) 

to M = −1.93 (SD = 1.278), [t(1060.698) = −2.678; p < 0.01; d = 0.09]. This means that, even 

though the amount of hate speech against refugees and politicians increased, the language 

used to discuss the topic became in general less negative after the announcement. Table 4 

summarizes the previous information. 
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Table 4. Values before and after the announcement. 

 
Before After 

n M SD n M SD 

Hate Speech towards refugees * 76 0.08 0.267 2320 0.10 0.300 

Hate Speech towards politicians *** 119 0.125 0.331 4023 0.173 0.378 

Sentiment *** - −0.162 1.620 - 0.026 1.644 

Positive words * - 1.89 1.091 - 1.96 1.141 

Negative words ** - −2.05 1.334 - –1.93 1.278 

Source: The authors. * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 

Figure 4. Mean values of hate speech against refugees (blue) and politicians (orange) before and 

after the announcement. 

 

Figure 5. Mean values of the presence of positive words (blue) and negative words (orange) before 

and after the announcement. 

4. Discussion and Conclusions 

The study has shown that a relevant part of the conversation around a high-profile 

event such as the arrival of the Aquarius boat to Spain included hateful or rejection 
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expressions against refugees and migrants and, to a greater extent, against politicians. The 

sentiment of the language used in this conversation was, in general, positive, although the 

presence of hate speech and the sentiment showed a correlation, making the sentiment 

more negative in those messages expressing hate or rejection. For this reason, the tweets 

with hate speech, both against refugees and against politicians were more negative, with 

a stronger relevance of negative words, while the positive ones remained rather similar in 

all kinds of messages. In addition, although there was significantly more hate against pol-

iticians than against refugees and migrants, the sentiment of the language in both cases 

remained quite similar, and only the relevance of negative words was slightly bigger 

among the tweets expressing hate against politicians. These initial findings support the 

natural perception of conceiving hate speech as a product of negative feelings expressed 

in language. 

With all these observations, we can conclude that the conversation around the boat 

Aquarius in Twitter in Spain was not predominantly hateful or negative –something that 

might be related with the more empowering discourse used in television coverage [56]–, 

and that politicians were most commonly criticized or attacked than migrants. The differ-

ences, however, were not big in any case. Future studies analyzing similar events—in 

summer 2019 a similar situation was seen in the Mediterranean with a boat of the Open 

Arms NGO—will be able to test if the conversation in Twitter has changed since this first 

“influential” rescue boat. 

The unsupervised analysis of the topics discovered that hate speech against refugees 

usually revolves around the potential pull effect that hosting the boat would have, as well 

as the threats that immigrants could pose—terrorism or economic burdens for the State. 

This shows the relevant role played by stereotypes and prejudices, if not complete lies or 

fake news, such as the connection of immigration with terrorism. This is coherent with the 

observations made in previous studies [15,17,20], and highlights the need for initiatives 

and studies that approach the interaction between hate speech and disinformation [31,44]. 

In general, the topics associated to hate speech around the studied event are strongly con-

nected with the frames observed by Lawlor and Tolley [57] in the media representation of 

immigration. 

These frames are also perceived in the case of the hateful messages aimed at politi-

cians, in which topics focused more specifically on the shameful behavior of these officials, 

both for hosting and for not hosting the asylum seekers, usually with a stronger presence 

of national politics rather than an international one. This element of the study, although 

preliminary, can show how hateful messages aimed at politicians have a clear ideological 

background, which constitutes one of the types of hate typified by the Statistic System of 

Criminality (SEC) of the Ministry of the Interior of Spain, and which is strongly connected 

with affective polarization [58]. 

Finally, we could observe that the presence of hate speech against both target groups 

significantly increased after the announcement of the Spanish Prime Minister of welcom-

ing the boat in Valencia’s harbor, which confirmed our main hypothesis. On the other 

hand, the sentiment of the language used in the discussion became more positive, with a 

stronger presence of positive words and a weaker presence of negative ones, something 

that theoretically clashes with the increase in the presence of hateful expressions. This 

shows how, despite the correlation between language sentiment and presence of hate, it 

is not determinant and further analyses are needed in order to really establish the connec-

tion between these two elements. 

This paper acknowledges some limitations, including the fact that the results only 

covered 9 days of conversation. Even though they were the most active days, covering the 

decision of hosting the boat and its arrival to Spain, a broader analysis in terms of time 

and of sample size could have strengthened the conclusions. The size of the sample also 

made it impossible to conduct comparative topic modelling for each group before and 

after the reception, something that could be done with the sentiment analysis, and that 

could have been interesting in order to observe potential changes in the mains topics 
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before and after the reception of the boat. Secondly, the automatic sentiment analysis is 

based on an a priori lexicon that, although validated, was generated in a different context. 

Additionally, recent research shows that for short texts (such as tweets), a supervised sen-

timent analysis may produce better results than an automatic sentiment analysis based on 

dictionaries [59], which implies that this approach should be taken into account in future 

studies. In the same line, topic modelling tends to be used in larger texts, such as articles 

from newspapers [60], but there are some arguments that pushed us to employ it in 

tweets: The longer extension of tweets since 2017—280 characters rather then 140, the rel-

evance of Twitter in the construction of public discourse in the present, and the interest to 

test this technique in this medium in Spain, discovering whether it can be applied in larger 

studies. This helps increase the corpus of works employing topic modelling as a text min-

ing research technique on Twitter, in the line with the observations of Karami et al. [17], 

and it serves as a basis for future studies in the same line in the Spanish setting. 

This way, the study offers preliminary observations that need further analysis and 

confirmation from future studies, as well as an update of the predominant sentiments and 

topics, given that, despite the milestone condition of the arrival of the Aquarius boat, the 

conversation around the topic of asylum and migration might have changed significantly, 

especially after the appearance of a right-wing anti-immigration party such as Vox [15]. 

However, the study offers promising preliminary conclusions on the relationship between 

hate speech and sentiments, using novel techniques that have rarely been exploited in 

migration research, and especially gives empirical evidence of how milestones during 

high-profile events can change the way people discuss public opinion topics in social me-

dia. 
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Appendix A 

Table A1. Topics of the messages with hate speech against refugees in Spanish. 

Topic 

Most Common Words and Their Frequency within the Topic (the 

Underlined Words are the Most Determinant for the Labelling of the 

Topic) 

Pull effect and 

consequences 

“inmigrantes” (0.008) + “españa” (0.007) + “barco” (0.005) + “efecto” 

(0.005) + “llamada” (0.004) + “va” (0.004) + “valencia” (0.004) + “conse-

cuencias” (0.004) + “europa” (0.004) + “concentración” (0.004) 

Pull effect and 

not welcoming 

“illegals” 

“inmigrantes” (0.013) + “personas” (0.008) + “españa” (0.008) + “lla-

mada” (0.007) + “efecto” (0.007) + “ilegales” (0.007) + “defiendetusfron-

teras” (0.007) + “españoles” (0.006) + “puerto” (0.006) + “aqua-

riusnotwelcome” (0.006) 

Not welcoming 

and terrorism 

“van” (0.008) + “españa” (0.008) + “personas” (0.006) + “aqua-

riusnotwelcome” (0.005) + “país” (0.005) + “boko” (0.005) + “haram” 

(0.005) + “inmigrantes” (0.005) + “barco” (0.004) + “tener” (0.004) 
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Smugglers and 

NGOs 

“inmigrantes” (0.023) + “españa” (0.010) + “españoles” + “vienen” 

(0.008) + “mafias” (0.008) + “personas” (0.007) + “van” (0.006) + “ilega-

les” (0.006) + “ongs” (0.006) + “barco” (0.006) 

Money and jobs 

“refugiados” (0.011) + “inmigrantes” (0.009) + “pagar” (0.007) + “es-

paña” (0.007) + “países” (0.005) + “barco” (0.005) + “españoles” (0.005) + 

“personas” (0.005) + “solución” (0.005) + “trabajo” (0.005) 

Entrance to Eu-

rope 

“españa” (0.018) + “inmigrantes” (0.009) + “europa” (0.006) + “barco” 

(0.006) + “valencia” (0.005) + “españoles” (0.005) + “gobierno” (0.005) + 

“inmigración” (0.005) + “norte” (0.004) + “millones” (0.005) 

Source: The authors. 

Table A2. Topics of the messages with hate speech against politicians in Spanish. 

Topic Most Common Words and Their Frequency within the Topic (the 

Underlined Words are the Most Determinant for the Labelling of 

the Topic) 

Shame of politi-

cians 

“inmigrantes” (0.006) + “urdangarín” (0.005) + “personas” (0.005) + 

“europa” (0.005) + “gobierno” (0.004) + “pp” (0.004) + “italia” (0.004) + 

“vergüenza” (0.004) + “hipocresía” (0.004) + “abierto” (0.003) 

Media coverage “valencia” (0.009) + “refugiados” (0.009) + “llegan” (0.006) + “españa” 

(0.006) + “foto” (0.006) + “personas” (0.005) + “español” (0.005) + “pe-

riodistas” (0.004) + “sánchez” (0.004) + “españoles” (0.004) 

National politics “inmigrantes” (0.010) + “españa” (0.009) + “gobierno” (0.008) + 

“gente” (0.007) + “sanchezcastejon” (0.006) + “personas” (0.006) + “po-

lítica” (0.005) + “propaganda” (0.004) + “valencia” (0.004) + “años” 

(0.004) 

Demanding Gov-

ernment to accept 

migrants 

“psoe” (0.010) + “sanchezcastejon” (0.008) + “inmigrantes” (0.007) + 

“españa” (0.007) + “acoger” (0.006) + “refugiados” (0.005) + “circo” 

(0.005) + “personas” (0.004) + “dios” (0.004) + “dejo” (0.004) 

Source: The authors. 
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