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Abstract: Emerging technologies such as artificial intelligence help operations management achieve 

sustainability. However, in sustainable operations management studies, scholars pay less attention 

to product design, which can be highly affected by artificial intelligence. In addition, sustainability 

is perceived as maintaining economic development while limiting environmental harm caused by 

human activity. Therefore, social sustainability is treated as peripheral compared to economic and 

environmental sustainability. However, social sustainability now has gained more attention because 

it is the basis on which meaningful economic and environmental sustainability can be valid. Thus, 

I systematically reviewed present studies on product design considering artificial intelligence to 

understand what types of social sustainability are achieved when applying artificial intelligence to 

product design. This study discovered artificial intelligence can improve social sustainability in 

product design, but social sustainability diversity is necessary. These findings can contribute to the 

inclusion of different types of social sustainability in product design when using artificial intelli-

gence. 
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1. Introduction 

Emerging technologies, as competitive resources, help operations management be-

come more sustainable by meeting the needs of the present and future generations in eco-

nomic, environmental, and social aspects [1]. The three aspects of sustainability are based 

on three pillars of sustainability [2]. Sustainable operations management can advance 

these activities not only in the supply chain of a product but also in new product devel-

opment, including product design [3]. On top of sustainable operations management, 

these technologies, such as artificial intelligence, can improve the performance of the ac-

tivities. 

Economic sustainability has been related to operational costs such as production and 

manufacturing costs [4]. In the economic aspect, association rule mining and decision 

trees enabled companies to develop a new digital camera [5] and a new smart phone [6] 

efficiently and effectively. Rough set theory and decision trees helped a manufacturer to 

design a new notebook visual aesthetic that will decrease consumer complaints and in-

crease user experience [7]. 

Environmental sustainability has been associated with the reduction of waste, en-

ergy, and pollution. In the environmental aspect, fuzzy logic along with analytic network 

processes advanced the selection of environmentally sustainable product designs [8]. 

Bayesian decision networks for life-cycle engineering advanced the development of an 

environmentally friendly oil-drill design [9]. Fuzzy extent analysis and fuzzy technique 

for order of preference by similarity to ideal solution helped advance green product de-

velopment [10]. 
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Social sustainability has been connected to the quality of life. In the social aspect, 

digital fabrication such as 3D printing, CNC milling, and laser cutting for development 

enabled designers to create products that advanced local employment, empowerment, 

and ownership. This shows system-centric and radical social sustainability, rather than 

user-centric and incremental social sustainability [11]. Communication technologies 

helped industrialization late-comers overcome a mental barrier and promote moderniza-

tion process by giving them more opportunities for networking [12]. A handheld device 

by HP, which was a relatively new technology in Uganda, promoted microfinance bank-

ing transactions without a one-day journey to a city [13]. 

However, as the UNEP-SETAC Life Cycle Initiative indicated, the business commu-

nity has paid less attention to social sustainability because its benefits are intangible and 

indirect [14]. That is, meeting higher-order needs—e.g., quality of life and safety, and 

health—were largely not considered in operations management. Studies have tried to 

measure social sustainability throughout the life of a product. Social sustainability indica-

tors evaluated the needs of employees and customers based on Maslow’s hierarchy of 

individual needs [15]. Zhou et al. (2000) considered maximizing profit for economic sus-

tainability, minimizing resource and energy consumption for environmental sustainabil-

ity, and maximizing product values by satisfying the market demands for social sustain-

ability [16]. The studies focused on sustainable operations management in the supply 

chain, not in new product development. 

The operations in a supply chain depends on new product development, particularly 

product design. This is because parts to be made or procured as well as the necessary 

processes of suppliers, manufacturers, distributors, and retailers are determined in the 

stage of product design in the supply chain. Thus, it is important to understand socially 

sustainable operations management in product design. Socially sustainable product de-

sign can improve a product’s social sustainability by adding customers’ design require-

ments in the product’s development and manufacturing process. 

It is necessary to understand how new technologies improve product design to be-

come more socially sustainable than economically and environmentally sustainable. Al-

ready, many scholars are concentrating on the economic and environmental effects of a 

powerful new technology, artificial intelligence. Additionally, this is bringing imbalance 

to sustainability. 

Therefore, in this study, I systematically reviewed the highly impactful literatures in 

product design and artificial intelligence to clarify contributions of artificial intelligence 

in product design to social sustainability. In particular, this systematic review study was 

performed based on an efficient systematic review framework [17], and each paper in the 

literature was identified as involving a combination of three kinds of social sustainability 

offered by [18]. Through this systematic review, the questions I sought to answer were: 

(1) What are the contexts of social sustainability in artificial intelligence used in product 

design? (2) Which scientific communities using artificial intelligence in product design are 

paying attention to social sustainability? (3) What are the temporal and cross-disciplinary 

characteristics of social sustainability in artificial intelligence used in product design? (4) 

How diverse do the types of social sustainability appear in artificial intelligence applied 

in product design over time and among scientific communities? 

By answering the questions, this study discovers the scientific communities paying 

attention to social sustainability and their characteristics under a certain context of artifi-

cial intelligence and product design. This study also opens a new perspective to consider 

social sustainability types and their diversity in artificial intelligence used in product de-

sign. This can reveal our focuses, regarding social sustainability, in artificial intelligence 

used in product design. This is important where the integration of product and service 

becomes the center of customer satisfaction under the condition of a digitized and global-

ized economic environment. 
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2. Literature Review 

Artificial intelligence involves making computers to solve problems in the areas of 

search, pattern recognition, learning, planning, and induction [19]. It is, in short, a process 

to study the intelligence to identify useful information processing problems, give a 

method of how to solve them, and develop algorithms that implement the method [20]. 

Artificial intelligence is considered to transform human tasks and activities in a wide 

range of applications [21]. 

In the case of new product development, artificial intelligence was used in various 

areas including but not limited to new product development evaluation, product and pro-

cess design, quality function deployment, conceptual design, and group decision making 

in concurrent engineering [22]. For example, Santillan-Gutierrez and Wright (1996) ap-

plied genetic algorithms to derive promising solutions during the development of a prod-

uct [23]. Rao et al. (1999) reported that the various areas include but are not limited to 

problem solving and planning [24], expert systems [25], knowledge-based systems [26], 

natural language processing [27], robotics [28], computer vision [29], learning [30], genetic 

algorithms [31], neural networks [32], case-based reasoning [33], rough set theory [34], 

and intelligent agent [35]. A mixture of various areas of artificial intelligence was also 

utilized. For example, fuzzy logic, genetic algorithms, and artificial neural networks were 

applied in design [36]. 

Artificial intelligence, the most salient and emerging technology currently, is consid-

ered to have the power to not only to transform our society but also address societal prob-

lems including sustainability [37]. In achieving sustainability everywhere, artificial intel-

ligence, along with other digital technologies, is considered the key transformation ele-

ment [38]. Artificial intelligence can improve economic, environmental, and social sus-

tainability [39]. However, our attention is still more on economic and environmental sus-

tainability. Artificial intelligence can increase productivity and decrease production costs 

[40]. It can monitor and reduce emissions [41] and conserve ecosystems [42]. It also can 

help secure quality and inclusion [43,44]. However, such orientation toward social sus-

tainability seems to have received less attention according to the UNEP-SETAC Life Cycle 

Initiative [14]. 

Studies on artificial intelligence for social sustainability seem to be rare. Yet it is the 

most important type of sustainability to consider [45,46]. Artificial intelligence can secure 

social sustainability [45]. For instance, artificial intelligence can increase work efficiency 

and reduce working hours, so that a worker’s physical well-being can improve and phys-

ical damage caused during working hours can decrease [47]. Artificial intelligence can 

also perform diverse simple tasks in living spaces, hospitals, and classrooms to serve var-

ious small roles in communities [48,49]. Artificial intelligence can automate routine activ-

ities in health care [50], education [51], Human Resources [52], call centers [53], and cus-

tomer services [54]. Artificial intelligence is even able to promote socially charitable and 

ethical actions [55]. 

In sustainable operations management, it is necessary to understand the current state 

of how artificial intelligence used in product design, which many posterior processes are 

dependent on, contributes to social sustainability. We know little about what scientific 

community applies what special artificial intelligence in which product design task for a 

certain aspect of social sustainability. Thus, a literature review on artificial intelligence 

used in product design from the perspective of social sustainability is required. 

When reviewing papers in a certain area, methods can vary according to the size of 

the papers. If the number of articles is too large, text summarization techniques can extract 

concepts from the collection of papers. One popular technique is topic modeling. Proba-

bilistic topic modeling is a statistical way to analyze the words of documents to find 

themes that exist across the words and documents [56]. Among the models that learn pat-

terns of topics in a collection of documents, latent Dirichlet allocation is the simplest and 

most popular [57]. It discovers topic probability distributions among words embedded in 
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the collection. Recently, given the large amount of textual data, scholars used it for a liter-

ature analysis by extracting research trends from the data [58,59]. Lee et al. (2016) used it 

to derive more abstract concepts from research trends by using the relationships among 

topics and a community detection algorithm used in network analysis [60]. Song et al. 

(2016) extended it to regress topic trends on time and venues (i.e., journals) [61]. Such 

literature analyses were possible due to the rise of algorithms and computational powers 

as well as available big data. 

The size of the literature to be reviewed is not always very large, but can be large 

enough to prevent researchers from reading all relevant papers for a literature review. In 

this case, instead of the application of text summarization techniques to literature anal-

yses, scholars used network analysis. Science of science [62] and scientometrics [63,64] and 

are the research fields that utilize network analysis to map science. Semantic network 

analysis is an example, and it investigates the associations among the components of the 

target subject of a literature review, based on the shared meanings of symbols [65]. It is 

better to use semantic network analysis when the number of the papers is not too large 

[66]. Lee et al. (2017) used semantic network analysis to understand Parkinson’s disease 

research [67]. Lee and Jung (2019) also employed semantic network analysis to understand 

social sustainability over time [68]. 

When the number of the papers is small, researchers can use literature review, and 

there are three methods for an effective literature review: narrative review, meta-analysis 

review, and systematic review. Narrative review is an effective literature review that 

heavily relies on the experience and expertise of the author [69]. It is decomposed into 

input, processing, and output stages. In the input stage, the quality of literature and the 

process of gathering papers are the key activities to secure relevant and sufficient data. In 

the processing stage, the author processes data into information according to Bloom’s tax-

onomy of educational objectives [70]. Finally, in the output stage, the author develops and 

writes arguments. However, this approach is criticized for its subjectivity. Another effec-

tive literature review method is meta-analysis [71,72]. Meta-analysis is a type of observa-

tional study of evidence. It is a statistical analysis that integrates the results of different 

independent studies dealing with a research problem. It is decomposed into problem for-

mulation, data collection and analysis with eligibility criteria and statistical methods, and 

results reporting with graphical display. 

Whereas meta-analysis is known as a quantitative systematic review and results in a 

quantitative summary, a general systematic review generates a qualitative summary. Both 

quantitative and qualitative systematic reviews have in common a thoroughly systematic 

procedure of formulating a specific research question, collecting data with eligibility cri-

teria, and summarizing with a critical appraisal to minimize error and bias. A systematic 

review has the advantage of summarizing a large collection of studies and explaining dif-

ferences among studies on the same research question [73]. In the case of understanding 

the contributions of artificial intelligence used in product design to social sustainability, a 

statistical combination of the studies is impossible and a qualitative systematic review is 

appropriate. Thankfully, there is an effective systematic review framework, as outlined 

by [17]. 

3. Methodology 

To understand the current contribution of artificial intelligence embedded in product 

design to social sustainability, I refined the efficient systematic literature review frame-

work [17]. This framework involves six steps: scoping, planning, identification and search, 

screening, eligibility and assessment, and presentation and interpretation (Figure 1.). 

Koutsos et al. (2019) used a case study on agricultural research to confirm the framework’s 

ease of use and efficacy [17]. 

Through this systematic review process, this study makes answers to (1) What are 

the contexts of social sustainability in artificial intelligence used in product design? (2) 
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Which scientific communities using artificial intelligence in product design are paying at-

tention to social sustainability? (3) What are the temporal and cross-disciplinary charac-

teristics of social sustainability in artificial intelligence used in product design? (4) How 

diverse do the types of social sustainability appear in artificial intelligence applied in 

product design over time and among scientific communities? 

The first step is scoping, in which the reviewer defines a protocol for a review. The 

second step is planning, where the reviewer identifies appropriate databases and devel-

ops search strategies. The third step is search process, where the reviewer recognizes pa-

pers to include from the databases. In the case study, the authors identified 478 papers 

and added two papers manually. The fourth step is screening articles, where the reviewer 

identifies papers to exclude from the papers selected in the previous step. In the case 

study, the authors excluded 389 papers and three duplicates, leaving 86 papers. The fifth 

step is eligibility assessment, where the reviewer reads the remaining full-text articles, 

leaves out papers based on exclusion criteria, and adds papers based on inclusion criteria 

from other possible sources. In the case study, the authors identified 27 eligible papers to 

be reviewed and added two more papers from other sources. The last step is interpretation 

and presentation, where the reviewer synthesizes findings and analyzes the heterogeneity 

of papers with strong evidence out of eligible papers (11 of 29 papers in the case study). 

In this step, the reviewer shows the findings graphically and derives their meanings. 

In addition, I applied a general inductive approach to the last step to identify themes 

or categories most relevant to the research objectives identified (Figure 1). A coder uses 

the typology of social sustainability [18] to identify themes or categories with respect to 

development, bridge, and maintenance social sustainability. As a result, I can clarify how 

artificial intelligence used in product design contributes to social sustainability. Addition-

ally, a diversity indicator used in ecology was applied to quantify the heterogeneity 

among papers (Figure 1). 

 

Figure 1. The systematic literature review framework [17] and a refinement focusing on social 

sustainability (n is the number of papers). 
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In detail, the modified efficient systematic literature review framework works as fol-

lows. The first step is scoping, which develops focused research questions and study de-

sign; identifies a few relevant studies for a pilot review study; and searches for previous 

systematic reviews on current issues. My focused question was: What are the contribu-

tions of artificial intelligence applied in product design to social sustainability, appearing 

in science? Cai and Choi (2020) recently emphasized the importance of the balance among 

economic, environmental, and social sustainability in a sustainable supply chain [74]. 

They showed how economic, environmental, and social sustainability were achieved in 

sustainable design. Yet consideration of social sustainability is not enough, and the role of 

technology has not been well examined. There are no previous systematic reviews based 

on my focused question. Then, I examined the databases and chose the Scopus digital 

database as the source of search. 

The second step is planning. It develops the main search queries using Boolean op-

erators and identifies appropriate digital databases. I developed a query that is an inter-

section between documents containing “product design” and “artificial intelligence” in 

the abstract, title, or keywords (author and indexed keywords). That is, in the Scopus da-

tabase, the query is (TITLE-ABS-KEY (“product design”) AND TITLE-ABS-KEY (“artificial 

intelligence”) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “Eng-

lish”)). For the selection of articles, the inclusion criteria were (a) the document type is set 

as “article” and (b) the study was published in peer-reviewed English journals. 

Here, the total number of articles containing “product design” and “artificial intelli-

gence” in the abstract, title, or keywords (author and indexed keywords) with the docu-

ment type article at the initial screening was 392. After refining SCI-indexed journals only, the 

number of articles was 288. The process of selecting eligible articles based on preferred report-

ing items for systematic reviews and meta-analyses (PRISMA) [75] is shown in Figure 2. 

 

Figure 2. Systematic review flowchart based on systematic reviews and meta-analyses (PRISMA) 

flowchart. 
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The third step is identification and search, in which I applied the query developed in 

the previous step to Scopus DB’s search engine. After retrieving relevant articles from 

Scopus DB, I checked the articles thoroughly to determine if their conditions met eligibil-

ity criteria. That is, the conditions were (a) articles containing “product design” and “ar-

tificial intelligence” in the title, abstract, and keywords, including author and indexed 

keywords; (b) the document type is categorized as article in Scopus DB; and (c) the articles 

were published in peer-reviewed English journals indexed by SCI. Additionally, I checked 

if the search strategy needed to be changed and if additional searches were necessary. 

The fourth step was screening. The bibliographic data of the 288 articles were ex-

ported as a CSV file. I again checked duplicates and missing data. Additionally, the highly 

impactful papers were selected only. I measured the degree of impact using the number 

of citations. According to pareto principle, which is known as 80/20 rule, I assumed that 

highly impactful papers were 20% of the total number of papers. Then, the full texts of the 

selected highly impactful studies were downloaded and examined to determine if they 

were relevant to product design and artificial intelligence. 

The fifth step is eligibility and assessment. I read the full text of the selected articles 

in depth. Here, I identified if a certain article contained not only keywords such as product 

design and artificial intelligence but also content relevant to these topics. Finally, I distilled 

papers on artificial intelligence in product design as shown in Figure 3. I also checked if 

the article discussed elements that can be categorized as social sustainability. Further-

more, I classify the types of social sustainability associated with the article. 

 

Figure 3. Data selection represented in van diagram. 

Sustainability has three pillars: economic, biophysical (i.e., ecological or environmen-

tal), and social [2]. Additionally, social sustainability can be decomposed into develop-

ment, bridge, and maintenance parts [18]. Table 1 summarizes the types of social sustain-

ability. I categorized a study as development social sustainability if it concerned basic 

needs based on resources and infrastructures. This also can be divided into two parts, 

tangible and intangible. Studies on economic sustainability can be identified as tangible 

development social sustainability because economic sustainability encompasses financial 

costs and benefits, which are directly related to tangible necessities. On the other hand, a 

study can be identified as having intangible development social sustainability if less tan-

gible needs such as education, employment, equity, and justice are considered. I classified 

a study as having bridge social sustainability if it included necessary social conditions that 

sustain ecology or promote attitudes and behaviors that meet the conditions. This can be 

divided into transformative bridge social sustainability and nontransformative bridge so-

cial sustainability. Last, a paper was categorized in maintenance social sustainability if 

dealt with the ways in which social and cultural preferences and characteristics and the 
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environment are maintained over time to sustain quality of life. Table 2 shows an example 

of social sustainability type categorization. 

Table 1. Summary of social sustainability types [18]. 

Social sustainability: “Social sustainability occurs when the formal and informal processes/sys-

tems/structures/relationships actively support the capacity of current and future generations to 

create healthy and liveable communities.” [76] 

1. Development 

To meet the basic needs, ways to 

develop infrastructures that secure 

physical and non-physical require-

ments 

Tangible: basic physical require-

ments 

Intangible: basic nonphysical re-

quirements 

2. Bridge 

To support ecological sustainabil-

ity, ways to promote eco-friendly 

behavior or stronger environmen-

tal ethics 

Transformative: fundamental 

changes by socially constructed 

environment 

Nontransformative: provision of 

information for changes 

3. Maintenance 
To sustain quality of life, ways of preferences, characteristics, and en-

vironments to be maintained over time. 

Table 2. An example of social sustainability type categorization. 

P 

ID 

Development 

(Tangible) 

Development 

(Intangible) 

Bridge 

(Transformative) 

Bridge 

(Non- 

Transformative) 

Maintenance 

1 1 0 0 0 0 

…      

K 1 1 1 1 1 

To measure the diversity of social sustainability types in artificial intelligence in 

product design, I use the Shannon diversity index, which is based on Shannon entropy. 

Let pi be the proportion of the ith social sustainability type in a document. Then, the di-

versity of the document, H, is computed using the following equation. For example, if a 

paper contains tangible development social sustainability, transformative bridge social 

sustainability, and maintenance social sustainability, then the social sustain inability di-

versity is –(1/3)log(1/3) –(1/3)log(1/3) –(1/3)log(1/3). When the value of this index is high, 

it means highly diverse social sustainability types exist in the paper. 

 
1

log
k

i i
i

H p p


  . 

The sixth step is presentation and interpretation. I started by delineating the context 

of artificial intelligence used and scientific communities involved. Next, based on the sta-

tistics of social sustainability types of all papers, I determined the major social sustaina-

bility type, how the social sustainability types change over time, and social sustainability 

diversity over time and among journals. This enabled me to understand the heterogeneity 

of the studies included. I identified example papers that contributed different types of 

social sustainability to read their full texts and distill features of artificial intelligence, 

product design, and the forms of contributions made to social sustainability. Then, I per-

formed a content analysis on the articles according to their component social sustainabil-

ity type. For example, to see the characteristics of bridge social sustainability in product 

design using artificial intelligence, the content analysis only focused on the articles that 

contain bridge social sustainability. 
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4. Results 

I retrieved bibliographic data that contained “product design” and “artificial intelli-

gence” at the same time in the title, abstract, or keywords from the Scopus database, a 

major scientific research search engine developed by Elsevier. Here, keywords can be ei-

ther author or indexed keywords. Author keywords are the representative words that the 

author inputs, whereas indexed keywords are the representative words that the search 

engine identifies. Additionally, the retrieved data were from English articles in SCI-in-

dexed journals in the JCR list. 

Subsequently, I derived the distribution of the number of citations of the articles, as 

shown in Figure 4. I confirmed that the majority of the papers had fewer than 26 citation 

counts. Therefore, I set 26 citations as my threshold for choosing the highly impactful pa-

pers, which are shown with an orange box in Figure 4. Figure 5 shows the citation distri-

bution of the selected papers. The most cited paper had more than 600 citations. The num-

ber of papers was 68. The number of highly cited papers over time fluctuated (Figure 6). 

It increased dramatically from 1994 to 2000 and rose until 2007. It then declined in 2007. 

Since 2007, it has stayed stable, between 10 and 15. 

 

Figure 4. Citation Distribution of the Selected Journal Articles. 

 

Figure 5. Year Histogram of the Journal Articles of the Final Selection. 
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Figure 6. Year Histogram of the Journal Articles of the Final Selection. 

Among 68 selected papers, 16 papers were dropped. For every year, the number of 

publications on artificial intelligence used in product design was stable at two (Figure 7). 

The 16 papers were excluded because they did not contain either artificial intelligence or 

product design in the full texts. Ceres et al. (1998) was not about using artificial intelli-

gence in product design but rather the design and implantation of an aided fruit-harvest-

ing robot [77]. Onuh and Yusuf (1999) did not address artificial intelligence but reviewed 

rapid prototyping technology [78]. Ohashi and Tsujimoto (1999) did not address artificial 

intelligence but pump research and development review in Japan [79]. Murphy (2001) 

discussed robot design competition and education [80]. Cavallucci and Weill (2001) fo-

cused on how the theory of inventive problem solving can be embedded in design pro-

cesses [81]. Ahmed and Wallace (2004) developed a method that supports designers and 

can decrease the frequency of inappropriate questions raised by new designers [82]. Mon-

dada et al. (2004) was about designing swarm intelligent robots, not using swarm intelli-

gence for product design [83]. Far and Elamy (2005) explained functional reasoning theo-

ries in engineering design but had no application of functional reasoning to a product 

design case, so it was hard to find sustainability implications [84]. Whitby (2008) studied 

designing artificially intelligent robots [85]. Qiu and Benbasat (2014) discussed anthropo-

morphic information systems design, not product design [86]. Renzi et al. (2014) used ar-

tificial intelligence for reconfigurable manufacturing system design, instead of product 

design [87]. Zhang et al. (2016) was about sustainable supply chain network design opti-

mization rather than product design [88]. Nakandala et al. (2016) used artificial intelli-

gence for the cost-optimization problem of fresh food transportation [89]. Zhang et al. 

(2017) utilized artificial intelligence to design a supply chain network that maximizes 

profit [90]. Sanderman et al. (2018) used a random forest model for program design [91]. 

Liu et al. (2018) used neural networks for a clinical decision support system [92]. Finally, 

52 papers were chosen to examine development, bridge, and maintenance social sustain-

ability. 

 

Figure 7. The number of articles on product design and artificial intelligence. 
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4.1. Contexts 

4.1.1. Thematic Context of Social Sustainability in Artificial Intelligence in Product De-

sign 

First, by reading the titles of the list in Table 3, I determined that the majority of the 

papers on artificial intelligence in product design were in the context of assembly manu-

facturing. Assembly manufacturing considers not only how to design and assemble parts 

but also how to design and disassemble a product. This allows people to include environ-

ment sustainability easily along with economic sustainability. However, recently, additive 

manufacturing is another context [93,94]. In additive manufacturing, materials and the 

way of manufacturing a product are different than assembly manufacturing. For instance, 

we do not have to consider product parts to assemble, but a total product and powder 

materials to be used. 

Second, the algorithms of artificial intelligence used in product design include but 

are not limited to case-based reasoning, genetic algorithms, simulated annealing, ant col-

ony optimization, decision tree, association rule mining, Bayesian network, and fuzzy set 

theory. Case-based reasoning induces a solution by retrieving the solutions to the cases 

already stored in a database and reusing or revising the solutions to fit new case needs. 

Decision tree algorithms generate if–then rules based on information entropy. Association 

rule mining can also generate rules based on frequent item sets. 

Genetic algorithm and its variants are categorized as evolutionary algorithms and 

imitate a natural selection process including mutation, crossover, and selection to gener-

ate combinatoric solutions highly suitable to a certain objective. Simulated annealing is 

also a kind of evolutionary algorithm that uses a probabilistic technique for deriving glob-

ally optimal solutions. Ant colony optimization is a distributed evolutionary algorithm 

that uses multiple artificial agents search for the global optimal solution. A Bayesian net-

work is a probabilistic graphical model whose nodes are variables and edges are condi-

tional dependencies between nodes. Last, fuzzy logic based on fuzzy set theory helps 

model human judgement. Basically, artificial intelligence in product design is used to dis-

cover the optimal combination of product attributes and parts that maximizes profit and 

customer’s satisfaction while minimizing environmental costs throughout the life of a 

product. 

Third, this artificial intelligence is utilized to not only select attributes and parts of a 

product but also provide decision supports and cooperative works. A decision support 

system is an information system that supports design decision-making activities. In this 

case, the last decision is made by a designer, and the system supplies a list of recommen-

dations that may help the designer narrow the solution search space and determine the 

optimal solution. In designing a product, sometimes a collaborative product development 

and concurrent engineering process is necessary. More than one designer work together 

to make a new product, and creating a team collaboration and cooperation environment 

is necessary. Additionally, artificial intelligence is used to improve communication and 

facilitate collaboration. 

Table 3. The 52 articles selected with their publication years, source titles, titles, and number of 

citations. 

Paper ID Year Source title Title 
Cited 

by 

Paper 

ID 
Year Source Title Title 

Cited 

by 

1 2003 

International 

Journal of Ma-

chine Tools and 

Manufacture 

Predicting 

surface 

roughness in 

machining: A 

review [95] 

622 33 1999 

Research in 

Engineering 

Design—The-

ory, Applica-

tions, and 

Concurrent 

Engineering 

CADOM: A 

Component 

Agent-based De-

sign-Oriented 

Model for collab-

orative design 

[96] 

51 
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2 2018 

International 

Journal of Pro-

duction Research 

Smart manu-

facturing [94] 
245 35 1999 

Journal of In-

telligent 

Manufactur-

ing 

Web-based mor-

phological charts 

for concept de-

sign in collabora-

tive product de-

velopment [97] 

50 

5 2003 
Research in Engi-

neering Design 

Towards an 

ontology of 

generic engi-

neering de-

sign activities 

[98] 

160 37 2002 

Journal of 

Materials 

Processing 

Technology 

Case-based rea-

soning approach 

to concurrent de-

sign of low 

power transform-

ers [99] 

47 

6 2002 

Artificial Intelli-

gence for Engi-

neering Design, 

Analysis and 

Manufacturing: 

AIEDAM 

Function and 

behavior rep-

resentation in 

conceptual 

mechanical 

design [100] 

140 39 2004 

IEEE Trans-

actions on 

Systems, 

Man, and Cy-

bernetics, 

Part B: Cy-

bernetics 

Development of 

Hybrid Genetic 

Algorithms for 

Product Line De-

signs [101] 

46 

7 2006 
Communications 

of the ACM 

Automated 

analysis of 

feature mod-

els: Chal-

lenges ahead 

[102] 

128 40 1999 

Research in 

Engineering 

Design—The-

ory, Applica-

tions, and 

Concurrent 

Engineering 

Design support 

using distributed 

web-based AI 

tools [103] 

45 

8 2004 

International 

Journal of Pro-

duction Econom-

ics 

Configuring 

products to 

address the 

customiza-

tion-respon-

siveness 

squeeze: A 

survey of 

management 

issues and 

opportunities 

[104] 

121 45 2000 

International 

Journal of 

Production 

Research 

Assembly/disas-

sembly task plan-

ning and simula-

tion using expert 

Petri nets [105] 

39 

9 2008 

Journal of Opera-

tions Manage-

ment 

Toward a 

theory of 

competencies 

for the man-

agement of 

product com-

plexity: Six 

case studies 

[106] 

120 46 1995 

Journal of 

Materials En-

gineering and 

Performance 

Design for ma-

chining using ex-

pert system and 

fuzzy logic ap-

proach [107] 

38 

10 2007 

Journal of Intelli-

gent Manufactur-

ing 

Applying 

data mining 

to manufac-

turing: The 

nature and 

implications 

[108] 

95 48 2016 

Engineering 

Applications 

of Artificial 

Intelligence 

AI-based meth-

odology of inte-

grating affective 

design, engineer-

ing, and market-

ing for defining 

design specifica-

tions of new 

products [109] 

36 

11 1995 

Journal of Vibra-

tion and Acous-

tics, Transactions 

of the ASME 

Life-cycle en-

gineering de-

sign [110] 

86 47 1999 

Journal of In-

telligent 

Manufactur-

ing 

Artificial intelli-

gence and expert 

systems applica-

tions in new 

product develop-

ment—a survey 

[22] 

36 
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12 2003 

Engineering Ap-

plications of Arti-

ficial Intelligence 

Application 

of Bayesian 

decision net-

works to life 

cycle engi-

neering in 

Green design 

and manufac-

turing [9] 

80 49 2001 
Computers in 

Industry 

CLOVER: An 

agent-based ap-

proach to systems 

interoperability 

in cooperative de-

sign systems 

[111] 

35 

13 1990 AI Magazine 

Assembly se-

quence plan-

ning [112] 

78 50 2015 
Decision Sup-

port Systems 

A Decision Sup-

port System for 

market-driven 

product position-

ing and design 

[113] 

35 

17 2011 
Decision Support 

Systems 

A dynamic 

decision sup-

port system 

to predict the 

value of cus-

tomer for 

new product 

development 

[114] 

72 53 2006 

Advanced 

Engineering 

Informatics 

Intelligent evalu-

ation approach 

for electronic 

product recycling 

via case-based 

reasoning [115] 

34 

18 2012 

Advanced Engi-

neering Informat-

ics 

Disassembly 

sequence 

structure 

graphs: An 

optimal ap-

proach for 

multiple-tar-

get selective 

disassembly 

sequence 

planning 

[116] 

69 51 1996 

Artificial In-

telligence for 

Engineering 

Design, Anal-

ysis and 

Manufactur-

ing: AIEDAM 

Feature modeling 

based on design 

catalogues for 

principle concep-

tual design [117] 

34 

19 2001 

Engineering Ap-

plications of Arti-

ficial Intelligence 

Knowledge-

based ap-

proach and 

system for as-

sembly ori-

ented design, 

Part I: The 

approach 

[118] 

68 54 2008 

Chemical En-

gineering Re-

search and 

Design 

Case-based rea-

soning for chemi-

cal engineering 

design [119] 

34 

21 1992 

International 

Journal of Pro-

duction Research 

An artificial 

intelligence-

based con-

straint net-

work system 

for concur-

rent engi-

neering [120] 

65 52 1998 

IEEE Intelli-

gent Systems 

and Their 

Applications 

A configuration 

tool to increase 

product competi-

tiveness [121] 

34 

22 2003 

Artificial Intelli-

gence for Engi-

neering Design, 

Analysis and 

Manufacturing: 

AIEDAM 

Intelligent se-

lective disas-

sembly using 

the ant col-

ony algo-

rithm [122] 

63 55 2015 
Waste Man-

agement 

An investigation 

of used electron-

ics return flows: 

A data-driven ap-

proach to capture 

and predict con-

sumers storage 

and utilization 

behavior [123] 

34 
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23 2012 
Decision Support 

Systems 

A decision 

support sys-

tem for inte-

grating man-

ufacturing 

and product 

design into 

the reconfigu-

ration of the 

supply chain 

networks 

[124] 

63 56 1999 

Annual Re-

view of Fluid 

Mechanics 

Computational 

fluid dynamics of 

whole-body air-

craft [125] 

33 

24 2014 

International 

Journal of Ad-

vanced Manufac-

turing Technol-

ogy 

A review on 

artificial in-

telligence ap-

plications to 

the optimal 

design of 

dedicated 

and reconfig-

urable manu-

facturing sys-

tems [87] 

63 59 2015 

IEEE Robot-

ics and Auto-

mation Mag-

azine 

Grasping the per-

formance [126] 
32 

25 2016 

Engineering Ap-

plications of Arti-

ficial Intelligence 

A fuzzy TOP-

SIS and 

Rough Set 

based ap-

proach for 

mechanism 

analysis of 

product in-

fant failure 

[127] 

62 57 1988 
Materials and 

Design 

Planning of ex-

pert systems for 

materials selec-

tion [7] 

32 

27 1998 

International 

Journal of Ad-

vanced Manufac-

turing Technol-

ogy 

Integrated in-

telligent de-

sign and as-

sembly plan-

ning: A sur-

vey [128] 

61 61 1993 

IEEE Trans-

actions on 

Engineering 

Management 

Fuzzy Logic Ap-

plications: Tech-

nological and 

Strategic Issues 

[129] 

30 

29 2008 
Expert Systems 

with Applications

A data min-

ing approach 

to dynamic 

multiple re-

sponses in 

Taguchi ex-

perimental 

design [130] 

59 62 2007 

Artificial In-

telligence for 

Engineering 

Design, Anal-

ysis and 

Manufactur-

ing: AIEDAM 

A framework for 

the automatic an-

notation of car 

aesthetics [131] 

29 

28 1999 

International 

Journal of Pro-

duction Research 

Object ori-

ented manu-

facturing re-

source mod-

elling for 

adaptive pro-

cess planning 

[132] 

59 63 1999 

International 

Journal of 

Computer In-

tegrated 

Manufactur-

ing 

Integrated 

knowledge-based 

approach and 

system for prod-

uct design for as-

sembly [133] 

28 

30 2007 

IEEE Transac-

tions on Neural 

Networks 

An approach 

to estimating 

product de-

sign time 

based on 

fuzzy ν-sup-

port vector 

machine [134] 

57 64 2003 AI Magazine 

Model-Based 

Computing for 

Design and Con-

trol of Reconfigu-

rable Systems 

[135] 

27 
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31 2013 

International 

Journal of Pro-

duction Research 

Decarbonis-

ing product 

supply 

chains: De-

sign and de-

velopment of 

an integrated 

evidence-

based deci-

sion support 

system-the 

supply chain 

environmen-

tal analysis 

tool (SCE-

nAT) [136] 

54 65 2012 

Journal of 

Manufactur-

ing Systems 

Intelligent evalu-

ation of supplier 

bids using a hy-

brid technique in 

distributed sup-

ply chains [137] 

27 

32 2000 

Journal of Materi-

als Processing 

Technology 

Designing ca-

ble harness 

assemblies in 

virtual envi-

ronments 

[138] 

53 68 2016 

Industrial 

Management 

and Data Sys-

tems 

Simulation based 

method consider-

ing design for ad-

ditive manufac-

turing and sup-

ply chain An em-

pirical study of 

lamp industry 

[93] 

26 

34 1999 Decision Sciences 

Linking IT 

applications 

with manu-

facturing 

strategy: An 

intelligent de-

cision sup-

port system 

approach 

[139] 

51 67 2005 

International 

Journal of 

Advanced 

Manufactur-

ing Technol-

ogy 

A graph and ma-

trix representa-

tion scheme for 

functional design 

of mechanical 

products [140] 

26 

4.1.2. Scientific Contexts of Social Sustainability in Artificial Intelligence in Product De-

sign 

The 52 papers were published in 31 journals (Table 4). The journals that published 

highly cited papers subject to product design and artificial intelligence include but are not 

limited to International Journal of Production Research, Artificial Intelligence for Engineering 

Design, Analysis and Manufacturing (AIEDAM), Engineering Applications of Artificial Intelli-

gence, International Journal of Advanced Manufacturing Technology, Journal of Intelligent Man-

ufacturing, Decision Support Systems, and Research in Engineering Design. Each journal can 

be characterized by its subject areas and categories by Scopus through Scimago. For in-

stance, International Journal of Production Research is in the subject area of business, man-

agement, and accounting and its category of strategy and management, in the subject area 

of decision science and its category of management science and operations research, and 

in the subject area of engineering and its category of industrial and manufacturing engi-

neering. 

According to Scimago’s classification system, the 31 journals have 15 subject areas: 

arts and humanities; business, management, and accounting; decision sciences; engineer-

ing; computer science; material science; mathematics; physics and astronomy; chemical 

engineering; chemistry; psychology; medicine; economics; econometrics and finance; and 

environmental science. The top three salient subject areas are engineering (19 articles), 

computer science (18 articles), and business, management, and accounting (seven articles). 

In engineering, the frequent categories are industrial and manufacturing engineering (12 

articles), mechanical engineering (seven articles), and control and systems engineering 
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(five articles). In computer science, the frequent categories are computer science applica-

tions (nine articles) and artificial intelligence (eight articles). In business, management, 

and accounting, the frequent categories are strategy and management (five articles) and 

management information systems (three articles). 

Table 4. The frequency of each journal’s published article(s) among the selected 52 articles. 

Journal Name #Articles 

International Journal of Production Research 5 

Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM 4 

Engineering Applications of Artificial Intelligence 4 

International Journal of Advanced Manufacturing Technology 3 

Journal of Intelligent Manufacturing 3 

Decision Support Systems 3 

Research in Engineering Design—Theory, Applications, and Concurrent Engineering 3 

Advanced Engineering Informatics 2 

AI Magazine 2 

Journal of Materials Processing Technology 2 

Annual Review of Fluid Mechanics 1 

Chemical Engineering Research and Design 1 

Communications of the ACM 1 

Computers in Industry 1 

Decision Sciences 1 

Expert Systems with Applications 1 

IEEE Intelligent Systems and Their Applications 1 

IEEE Robotics and Automation Magazine 1 

IEEE Transactions on Engineering Management 1 

IEEE Transactions on Neural Networks 1 

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 1 

Industrial Management and Data Systems 1 

International Journal of Computer Integrated Manufacturing 1 

International Journal of Machine Tools and Manufacture 1 

International Journal of Production Economics 1 

Journal of Manufacturing Systems 1 

Journal of Materials Engineering and Performance 1 

Journal of Operations Management 1 

Journal of Vibration and Acoustics, Transactions of the ASME 1 

Materials and Design 1 

Waste Management 1 

Total 52 

4.2. Social Sustainablity Categorization 

4.2.1. Skewness to the Development Social Sustainability 

I confirmed that development social sustainability, especially the tangible form, is 

the main sustainability type (Table 5). All the papers collected and identified as address-

ing artificial intelligence applied in product design considered the elements of tangible 

development social sustainability. However, only 11 of the 52 papers (i.e., 21.15%) consid-

ered bridge social sustainability. Eight of the 52 papers (i.e., 15.38%) considered mainte-

nance social sustainability. It seems that scholars care more about developmental social 

sustainability than bridge social sustainability, and bridge social sustainability more than 

maintenance social sustainability. That is, in artificial intelligence used in product design, 

meeting physical needs is considered first. The concerns about behavioral changes to 

achieve environmental goals comes next. Keeping up values during economic and social 

changes is the last thing to consider. 
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In addition, tangible development social sustainability was found far more fre-

quently than intangible development social sustainability. Whereas all 52 studies were 

related to tangible development social sustainability, just one study was related to intan-

gible development social sustainability. Tangible basic needs were counted more than less 

tangible needs such as education, employment, equity, and justice. Transformative bridge 

social sustainability was discovered more frequently than nontransformative bridge social 

sustainability. Eleven studies on bridge social sustainability were all transformative. 

Among them, only one was relevant to nontransformative bridge social sustainability. 

Namely, in product design, artificial intelligence is changing fundamental ways to make 

an eco-friendlier product. Last, maintenance social sustainability was the least common 

form of social sustainability found. As Vallance et al. (2009) indicated, preserving soci-

ocultural values in the environment of social and economic changes seem to be over-

looked in artificial intelligence used in product design [18]. 

Table 5. Social sustainability type categorization results. 

Paper 

ID 

Development-

Tangible 

Development-

Intangible 

Bridge-Trans-

formative 

Bridge-NonTrans-

formative 

Mainte-

nance 

Paper 

ID 

Development-

Tangible 

Development-

Intangible 

Bridge-Trans-

formative 

Bridge-NonTrans-

formative 

Mainte-

nance 

1 1 0 0 0 0 33 1 0 0 0 0 

2 1 0 1 0 1 35 1 0 0 0 0 

5 1 0 0 0 0 37 1 0 1 0 0 

6 1 0 0 0 0 39 1 0 0 0 1 

7 1 0 0 0 0 40 1 0 0 0 0 

8 1 0 0 0 0 45 1 0 0 0 0 

9 1 0 0 0 0 46 1 0 0 0 0 

10 1 0 0 0 0 48 1 0 0 0 0 

11 1 0 1 0 0 47 1 0 0 0 1 

12 1 0 1 0 0 49 1 0 0 0 0 

13 1 0 0 0 0 50 1 0 0 0 1 

17 1 0 0 0 0 53 1 0 1 0 0 

18 1 0 1 0 0 51 1 0 0 0 0 

19 1 0 0 0 0 54 1 0 0 0 0 

21 1 0 1 0 0 52 1 0 0 0 1 

22 1 0 1 0 0 55 1 0 1 0 1 

23 1 0 0 0 0 56 1 0 0 0 0 

24 1 0 0 0 0 59 1 0 0 0 0 

25 1 0 0 0 0 57 1 0 0 0 0 

27 1 0 0 0 0 61 1 0 0 0 0 

29 1 0 0 0 0 62 1 0 0 0 0 

28 1 0 0 0 0 63 1 0 0 0 0 

30 1 0 0 0 0 64 1 0 0 0 0 

31 1 1 1 1 1 65 1 0 0 0 0 

32 1 0 0 0 1 68 1 0 1 0 0 

34 1 0 0 0 0 67 1 0 0 0 0 
      Total 52 1 11 1 8 

4.2.2. The Small Rise of Social Sustainability 

Scholars have been considering social sustainability effect of artificial intelligence in 

product design more, although the extent of their consideration seems to be insufficient 

(Table 6). Over the years, development social sustainability has been included constantly. 

Development social sustainability was considered more after 1995, indicated by its up-

ward trend. However, the trend is slightly incremental. Additionally, the majority of de-

velopment social sustainability was tangible rather than intangible. Furthermore, bridge 

social sustainability was considered from time to time and transformative was included 

only rarely. Like bridge social sustainability, maintenance social sustainability has been 

considered occasionally. The year 2013 seems to be when diverse social sustainability was 

addressed.



Sustainability 2021, 13, 2668 18 of 29 
 

Table 6. The types of social sustainability over both time and by venue of publication. 

Journal Name. 1988 1990 1992 1993 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2011 2012 2013 2014 2015 2016 2018 Total 

International Journal of Production Research     
1,0,1,

0,0 
        

1,0,0,

0,0 

1,0,0,

0,0 
                    

1,1,1,

1,1 
      

1,0,1,

0,1 

5,1,3,1,

1 

Artificial Intelligence for Engineering Design, Analysis 

and Manufacturing: AIEDAM 
          

1,0,0,

0,0 
        

1,0,0,

0,0 

1,0,1,

0,0 
      

1,0,0,

0,0 
                

4,0,1,0,

0 

Engineering Applications of Artificial Intelligence                   
1,0,0,

0,0 
  

1,0,1,

0,0 
                    

2,0,0,

0,0 
  

4,0,1,0,

0 

International Journal of Advanced Manufacturing Tech-

nology 
            

1,0,0,

0,0 
            

1,0,0,

0,0 
            

1,0,0,

0,0 
      

3,0,0,0,

0 

Journal of Intelligent Manufacturing               
2,0,0,

0,1 
              

1,0,0,

0,0 
                

3,0,0,0,

1 

Decision Support Systems                                   
1,0,0,

0,0 

1,0,0,

0,0 
    

1,0,0,

0,1 
    

3,0,0,0,

1 

Advanced Engineering Informatics                             
1,0,1,

0,0 
      

1,0,1,

0,0 
          

2,0,2,0,

0 

AI Magazine   
1,0,0,

0,0 
                  

1,0,0,

0,0 
                        

2,0,0,0,

0 

Journal of Materials Processing Technology                 
1,0,0,

0,1 
  

1,0,1,

0,0 
                          

2,0,1,0,

1 

Research in Engineering Design—Theory, Applications, 

and Concurrent Engineering 
              

2,0,0,

0,0 
      

1,0,0,

0,0 
                        

3,0,0,0,

0 

Annual Review of Fluid Mechanics               
1,0,0,

0,0 
                                

1,0,0,0,

0 

Chemical Engineering Research and Design                                 
1,0,0,

0,0 
              

1,0,0,0,

0 

Communications of the ACM                             
1,0,0,

0,0 
                  

1,0,0,0,

0 

Computers in Industry                   
1,0,0,

0,0 
                            

1,0,0,0,

0 

Decision Sciences               
1,0,0,

0,0 
                                

1,0,0,0,

0 

Expert Systems with Applications                                 
1,0,0,

0,0 
              

1,0,0,0,

0 

IEEE Intelligent Systems and Their Applications             
1,0,0,

0,1 
                                  

1,0,0,0,

1 

IEEE Robotics and Automation Magazine                                           
1,0,0,

0,0 
    

1,0,0,0,

0 
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IEEE Transactions on Engineering Management       
1,0,0,

0,0 
                                        

1,0,0,0,

0 

IEEE Transactions on Neural Networks                               
1,0,0,

0,0 
                

1,0,0,0,

0 

IEEE Transactions on Systems, Man, and Cybernetics, Part 

B: Cybernetics 
                        

1,0,0,

0,1 
                      

1,0,0,0,

1 

Industrial Management and Data Systems                                             
1,0,0,

0,0 
  

1,0,0,0,

0 

International Journal of Computer Integrated Manufactur-

ing 
              

1,0,0,

0,0 
                                

1,0,0,0,

0 

International Journal of Machine Tools and Manufacture                       
1,0,0,

0,0 
                        

1,0,0,0,

0 

International Journal of Production Economics                         
1,0,0,

0,0 
                      

1,0,0,0,

0 

Journal of Manufacturing Systems                                     
1,0,0,

0,0 
          

1,0,0,0,

0 

Journal of Materials Engineering and Performance         
1,0,0,

0,0 
                                      

1,0,0,0,

0 

Journal of Operations Management                                 
1,0,0,

0,0 
              

1,0,0,0,

0 

Journal of Vibration and Acoustics, Transactions of the 

ASME 
        

1,0,1,

0,0 
                                      

1,0,0,0,

0 

Materials and Design 
1,0,0,

0,0 
                                              

1,0,0,0,

0 

Waste Management                                           
1,0,1,

0,1 
    

1,0,1,0,

1 

Total 
1,0,0,

0,0 

1,0,0,

0,0 

1,0,1,

0,0 

1,0,0,

0,0 

2,0,1,

0,0 

1,0,0,

0,0 

2,0,0,

0,1 

8,0,0,

0,1 

2,0,0,

0,1 

2,0,0,

0,0 

2,0,1,

0,0 

5,0,2,

0,0 

2,0,0,

0,1 

1,0,0,

0,0 

2,0,1,

0,0 

3,0,0,

0,0 

3,0,0,

0,0 

1,0,0,

0,0 

3,0,1,

0,0 

1,1,1,

1,1 

1,0,0,

0,0 

3,0,1,

0,2 

3,0,0,

0,0 

1,0,1,

0,1 

52,1,11

,1,8 
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Across journals, development social sustainability is also the main type. Ten of the 

31 journals that published these 52 papers only contained the other social sustainability 

types. International Journal of Production Research is a good example that contained all types 

of social sustainability. Waste Management contained tangible development social sustain-

ability, transformative bridge social sustainability, and maintenance social sustainability. 

The other eight journals included either transformative bridge social sustainability or 

maintenance with tangible development social sustainability. The remaining 21 journals 

only considered tangible development social sustainability. 

In sum, either explicitly or implicitly, social sustainability was considered in the lit-

erature of product design using artificial intelligence constantly but to a small extent. 

However, in terms of social sustainability types, development social sustainability has 

been the main incremental attention over time and among journals. Subsequently, various 

types of social sustainability should be dealt with more in studies of artificial intelligence 

used in product design. To examine the necessity of social sustainability heterogeneity, I 

looked at the diversity of social sustainability among the 52 papers with respect to time 

and venues of publication. 

4.2.3. Necessary Social Sustainability Diversity 

When applying Shannon diversity to the numbers in Table 6, the overall Shannon 

diversity index of the five types of social sustainability was 0.887. The Shannon diversity 

index is high when the heterogeneous types are distributed evenly and low otherwise. As 

0.887 is not that high of a value, this shows the low and imbalanced diversity of social 

sustainability in the literature on product design using artificial intelligence. I also consid-

ered the diversity of social sustainability types over time and among journals. 

Over the years, the average and standard deviation of the Shannon diversity index 

values of all journals were 0.406 and 0.446, respectively. The diversity of social sustaina-

bility types has been low. The maximum was 1.609 in 2013. The trend of social sustaina-

bility type diversity is going up slightly (Figure 8). My guess is that the period between 

2007 and 2011 seems to a change point. There seems to be a discontinuity before and after 

this period. It may be that awareness of social sustainability and the balance among dif-

ferent types of sustainability grew prominently after the 2008 financial crisis. 

Among journals, the average and standard deviation of the Shannon diversity index 

values of all journals were 0.249 and 0.401, respectively. The diversity of social sustainability 

types has been low across the journals. The maximum was 1.367 in International Journal of Pro-

duction Research, which is one of the leading journals in production research (Figure 9). Only 

three journals that published the included papers were found to be saliently diverse and 

balanced in terms of social sustainability types. 

 

Figure 8. The diversity of social sustainability types over time. 
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Figure 9. The diversity of social sustainability types among journals. 

4.3. Content Analysis 

4.3.1. Big Data and Artificial Intelligence 

Big data and artificial intelligence can make product design not only smarter but also 

more sustainable. According to my results, three publications contributed to develop-

ment, bridge, and maintenance social sustainability [93,94,136]. Kusiak (2018) emphasized 

sustainability as one of six pillars of smart manufacturing [94]. It is not what we make but 

how we make it that can contribute to sustainability. Additionally, artificial intelligence 

mostly involves the process of product design. In case of a smart vehicle, the sustainable 

design of e-vehicles results in autonomous, personal, shared, and sustainable transporta-

tion that may improve economic, environmental, and social sustainability. 

Additionally, the environment of additive manufacturing gives more flexibility to 

product design, using artificial intelligence based on big data. In the six pillars of smart 

factory that Kusiak (2018) suggested, manufacturing technology and processes change in 

accordance with the emergence of new materials, components, and products [94]. In the 

case of biomanufacturing, using artificial intelligence to generate possible bioprinting sce-

narios and select parameters in bioprinted product design enables high-throughput bio-

fabrication [141]. 

4.3.2. Bridge Social Sustainability by Considering Product Life Cycle 

Bridge social sustainability was mainly achieved by considering product life cycle. 

Young et al., (1992) used artificial intelligence constraint networks to support designers in 

concurrent engineering, which help designers handle life-cycle information requirements 

in printed wiring board manufacturing [120]. Ishii (1995) considered product life-cycle 
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values such as functional performance, manufacturability, serviceability, and environ-

mental impact in life-cycle engineering design [110]. One scholar applied semantic net-

works [142] to manufacturing for automated reasoning about product design. He specifi-

cally stated that “Life-cycle engineering seeks to maximize a product’s contribution to the 

society while minimizing its cost to the manufacturer, the user and the environment.” 

Kwong and Tam (2002) utilized case-based reasoning in the concurrent product and pro-

cess design of low-power transformers to aid designers in improving the lead time and 

quality of product and process design [99]. Zhu and Deshmukh (2003) used Bayesian de-

cision networks, which are helpful to represent and reason about decision problems under 

uncertainty, in green design and manufacturing [9]. Wang et al. (2003) used ant colony 

algorithms to intelligently generate disassembly sequences for the chosen components, 

which also minimized the reorientation of assemblies and removal of components [122]. 

Shih et al. (2006) used case-based reasoning to select a recycling strategy and evaluate the 

performance of disassembly operations [115]. Smith et al. (2012) introduced a disassembly 

sequence structure graph model for multiple-target selective disassembly sequence plan-

ning to improve solution quality, reduce model complexity, and minimize search time 

[116]. 

4.3.3. Maintenance Social Sustainability by Supporting Meeting Demand Preference 

Maintenance social sustainability mostly was achieved by supporting designers to 

meet demand preferences when designing a product. Yu and Skovgaard (1998) intro-

duced SalesPLUS, a product-configuration tool based on artificial intelligence, enabling 

designers to effectively make configurations that meet customer demands and reduce 

costs [121]. Ng et al. (2000) developed a cable harness design and planning using artificial 

intelligence and tested usability [138]. Balakrishnan et al. (2004) used hybrid genetic algo-

rithms for product line designs [101]. According to their implications, it is necessary not 

only to maximize market share but also to minimize undesirable organizational conflicts 

and inequity. Lei and Moon (2015) applied principal component analysis, k-means clus-

tering, and AdaBoost classification to determine new product design and positioning in 

market segments and support designers by providing recommended scenarios of product 

development [113]. 

5. Discussion 

5.1. More than Economic and Environmental Sustainability 

The slowly growing number of the articles including social sustainability considera-

tion among the highly cited articles on product design using artificial intelligence implies 

that social sustainability is not considered as often as economic and environmental sus-

tainability, as many scholars have indicated. Even the articles considering social sustain-

ability were mostly rooted in economic and environmental sustainability. In particular, 

the articles on product design included but were not limited to using artificial intelligence 

tend to regard economic sustainability in default and increasingly study environmental 

sustainability. It seems this is because the definition of social sustainability is unclear. 

Even if there is a certain framework or definition for social sustainability, it is not well 

known and recognized by people. A similar phenomenon is shown with social sustaina-

bility as well. Social sustainability related to infrastructure supporting tangible and intan-

gible needs, i.e., development social sustainability, has been more often included than so-

cial sustainability regarding transformative and less transformative eco-friendly actions, 

i.e., bridge social sustainability. Additionally, bridge social sustainability is more incorpo-

rated than social sustainability regarding maintaining values when changes occur, i.e., 

maintenance social sustainability. In sum, even in product design using artificial intelli-

gence, materials and tangible environment come first rather than intangible values. This 

may lead our society to become more materialistically prosperous than ever but mentally 

devastated.  
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5.2. Diversity and Harmony 

When promoting social sustainability, which is less tangible than economic and en-

vironmental sustainability, we need to be aware of the existence of an insufficiently bal-

anced social sustainability in social sustainability types. Otherwise, it may lead to poor 

social sustainability in designing a new product using artificial intelligence. Diversity in 

social sustainability can be achieved by showing the state of the poor social sustainability 

in our research—product design using artificial intelligence in this case—and developing 

appropriate indicators for insufficient social sustainability types such as maintenance so-

cial sustainability in every step where artificial intelligence is used in product design. 

Not only balance among development, environmental, and maintenance social sus-

tainability but also harmony among them is required. We do not know the golden ratio of 

how to combine different social sustainability types. Additionally, equal attention is not 

needed to the social sustainability types, but equitable attention is required. Development 

social sustainability is well understood, but maintenance social sustainability is not. One 

way to improve this is to encourage researchers in scientific communities who write pa-

pers in the journals listed in this study to consider maintenance and bridge social sustain-

ability. 

We can promote diverse social sustainability in harmony by first identifying the 

stages of product design where artificial intelligence is utilized and a certain type of social 

sustainability is achieved. Once we clarify the relationship among a product design stage, 

artificial intelligence algorithm, and social sustainability type, we can concentrate on a 

specific product design and artificial intelligence algorithm to contribute to the growth of 

a target social sustainability type. 

6. Conclusions 

Artificial intelligence can help operations management be more economically, envi-

ronmentally, and socially sustainable. However, as many scholars indicated, socially sus-

tainable operations management has received less attention than economically and envi-

ronmentally sustainable operations management. At the same time, social sustainability 

is now getting more attention because it is the basis of economic and environmental sus-

tainability. In this circumstance, I consider that product design in sustainable operations 

management should be highlighted more because it determines the following operations 

in the supply chain of a product. In fact, product design has evolved with the help of 

computers. Thus, artificial intelligence is expected to improve the performance of product 

design economically, environmentally, and socially. 

Unlike economic sustainability and environmental sustainability, social sustainabil-

ity has not been foregrounded in considering the effect of artificial intelligence in product 

design. Therefore, in this study, I systematically reviewed the literature on product design 

using artificial intelligence to appraise the contributions of artificial intelligence in product 

design to social sustainability. This review was done by following PRISMA [75] and an 

effective systematic review framework [17] tuned to my settings. Social sustainability can 

be categorized into development, bridge, and maintenance social sustainability, based on 

[18], so a coder can check if a certain study contains the elements of the three different 

types of social sustainability. 

As a result, I first found the contexts of social sustainability generated by artificial 

intelligence in product design. Assembly manufactured products, rather than additive 

manufactured products, are more often considered. Algorithms in artificial intelligence 

are various, but many are based on the previous cases and generate combinatoric solu-

tions, including product attributes and rules. They are applied not only in product design 

itself but also in supporting decisions in product design. Next, I discovered the major sci-

entific communities that contribute to product design using artificial intelligence. Accord-

ing to Scimago’s classification system, the top three communities were engineering, com-

puter science, and business. 
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The second finding is based on the statistics derived from the classification of social 

sustainability types of each article. Not surprisingly, the social sustainability associated 

with physical and nonphysical infrastructure to support basic needs, which is develop-

ment social sustainability, was dominant. This leads to an imbalance among kinds of so-

cial sustainability over time and by venue of publication. Social sustainability diversity 

seems to be necessary, but one good sign is that the consideration of social sustainability 

has increased, although its extent is small. 

Based on knowledge of the contexts and contributions of the papers to different types 

of social sustainability, I confirmed that big data and artificial intelligence contribute to 

making product design not only smart but also sustainable. I also verified that bridge so-

cial sustainability is often achieved when considering the life cycle of a product. Achieving 

maintenance social sustainability is somewhat blurry, but it mostly involves meeting de-

mand preference. As our economy is more digitized and globalized, servitization becomes 

important and artificial intelligence can help product design integrate product and service 

to improve social sustainability. 

This study had limitations. I used one major database in this study, but there are 

several other resources for information retrieval on a certain topic. Additionally, I only 

considered papers that are highly cited by scholars. In addition, the classification and an-

notation of the types of social sustainability were done by a coder manually. This can be 

performed by machine learning algorithms for classification. Moreover, the types of social 

sustainability are not mutually exclusive. 

The future directions are five folds. First, databases such as Web of Science can be 

considered in addition to Scopus. Second, digital product design can be included in addi-

tion to physical product design. For example, AI chatbot design in COVID-19 pandemic 

can be incorporated to cover health in social sustainability [143]. Third, all the papers can 

be included instead of highly cited papers. Fourth, multiple coders or automatic coders 

can be used in classification of social sustainability types. Fifth, the relationships among 

social sustainability types can be studied more. 
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