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Abstract: This research adopts the meta Dynamic Directional Distance Functions (DDF) model in
order to calculate the environmental efficiency and environmental governance efficiency of China’s
industrial sector from 2010 to 2017 from the overall, sub-regional, and sub-provincial perspectives
and discusses the technical gaps in regional environmental pollution control and the reasons for inef-
fective environmental governance. The research results show that the overall level of environmental
governance efficiency in China’s industrial sector is relatively high over this time period, and the
group frontier calculation results have improved compared to the meta frontier. The actual technical
level of the high-income group is closest to the potential technical level, and the upper-middle income
group is still far from the potential technical level. The main reason for the ineffective environmental
governance of the provinces in the high-income group is ineffective management, while the main
reason for ineffective environmental governance of the provinces in the upper-middle-income groups
is technical inefficiency. Regardless of high-income groups or upper-middle-income groups, each
province’s inefficiency of environmental governance is caused by inefficiency of the input factors.

Keywords: environmental efficiency; environmental governance efficiency; meta dynamic DDF
model; chinese industrial sector

1. Introduction

The rapid growth of China’s environmental protection investment has strongly pro-
moted the country’s economic and social transformation to green development. From 2013
to 2018, investment in its ecological protection and environmental management industry
increased by an average annual rate of 31.4%, and in 2018 the central government employed
255.5 billion yuan in pollution prevention and ecological protection funds. Although the
current investment in environmental pollution control in China has increased exponentially,
the beneficial effect of environmental pollution control is not significant, and environmental
quality is still worrying (Zheng and Zhao [1]). According to the “Communiqué of the First
National Pollution Source Survey”, industrial pollution sources are one of the three major
types of environmental pollution. Statistics from the Ministry of Environmental Protection
show that over 90% of pollution comes from industry. Therefore, efficient treatment of
industrial pollution is the key to environmental governance.

The rapid growth of the Chinese economy has always come at the cost of huge energy
consumption and environmental damage. At present, it is the world’s second largest
economy and energy-consuming country, and the discharge of various types of pollution
is close to the self-recovery limit of the environment, thus placing extreme pressure on
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environmental pollution control. The Chinese government has taken corresponding mea-
sures against air pollution. In addition to launching the “National Ambient Air Quality
Standard”, which was fully implemented on 1 January 2016, the following areas show
what actions are being taken.

Investment Department of the National Bureau of Statistics: The continuous im-
provement in the level of fixed asset investment continues to play a key role in national
development, as evidenced by the ninth series of reports on economic and social devel-
opment achievements during the 70th anniversary of the founding of modern China.
(2) Environmental Technology Efficiency, Pollution Control, and Environmental Perfor-
mance: An analysis based on China’s provincial panel data from 1998 to 2012 set up the
implementation to require that PM2.5 reach a national standard of 35 micrograms/cubic
meter by 2030. At the same time, “13th Five-Year Plan” aims for sulfur dioxide emissions
to reach a peak before 2030. Premier Li Keqiang noted in the “Government Work Report”
of the National Sessions in 2019 that the emissions of sulfur dioxide and nitrogen oxides
fell by 3% in 2019, and the concentration of fine particulate matter (PM2.5) in key areas
will continue to decline. It is thus necessary to strengthen industry and coal burning.
(3) Treatment of the three major pollution sources of motor vehicles. Therefore, in terms
of environmental governance, one can see that the China government’s determination
and actions toward the environment have always been very strong. However, due to
the long-term use of the extensive economic development model of high material, high
energy consumption and high pollution, there is still a certain gap between the efficiency of
China’s industrial pollution control and theoretical expectations. Therefore, in the context
of China’s continuous strengthening of industrial pollution control facilities and costs
and innovative pollution control technologies, this study will use the meta Dynamic DDF
model to scientifically evaluate the environmental governance efficiency of the industrial
sectors in 30 provinces and cities in China from 2010 to 2017. Thereby, we can objectively
and accurately understand the history and current situation of China’s industrial pollution
and treatment, and provide a basis for policy formulation to improve the efficiency of
industrial pollution treatment. The research in this paper has the following contributions.
First, it fully considers the two aspects of energy utilization and pollution control, so as to
comprehensively and systematically calculate the environmental efficiency and environ-
mental pollution control efficiency of the industrial sector; second, in the research method,
adopting the dynamic DEA concept can evaluate the efficiency of environmental pollution
control in different periods. The introduction of the meta concept effectively overcomes
the heterogeneity of decision-making units. The meta DDF distance function model makes
the evaluation results more accurate; third, the various inputs and a detailed analysis
of the output elements can clearly understand the specific reasons for the insufficient
efficiency of environmental pollution control in the industrial sector to formulate targeted
improvement measures.

The rest of this study runs as follows. Section 2 is a literature review. Section 3 is
the research method. Section 4 is the empirical results. Section 5 is the conclusions and
policy implications.

2. Literature Review

Academic circles have taken different perspectives on environmental efficiency, but
the names they use are not necessarily the same. In order to accurately define the different
connotations of environmental efficiency and conduct an appropriate analysis, this research
denotes the term eco-efficiency to be the input ratio measured after energy and environ-
mental factors are incorporated into the production activities of an enterprise, industry,
or region. The economic value created by a unit of energy and environmental load effec-
tively improves an economy’s overall benefits and social welfare under the condition of
limited energy and environmental resources (Zeng and Niu [2]). Environmental pollution
control efficiency (or environmental pollution treatment efficiency) refers to the technical
efficiency calculated by taking the pollution discharge and pollution control investment in
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the production process as input and the pollution control amount as the output, expressed
as the ratio of investment in environmental treatment to the reduction in pollutants (Tu
et al. [3]). Environmental efficiency measures the friendliness of different industries or
regional economic development to the energy environment, while environmental pollution
control efficiency measures the effectiveness of environmental pollution control. These two
indicators reflect energy utilization and environmental pollution.

Results in the literature on environmental efficiency and environmental pollution
control efficiency are relatively fruitful. Song et al. [4] proposed a radial slack-based model
(RSBM) and an RSBM-Malmquist-Luenberger index to evaluate provincial environmental
efficiencies in China from 2004 to 2012, showing that the environmental efficiencies in
the east region are the highest, while those in the central region are the lowest. Thus far,
China’s domestic research on environmental efficiency has no unified definition. In fact,
when studying the environmental efficiency of a certain industry, it is generally referred to
as environmental efficiency, energy environmental efficiency, or ecological efficiency; or
when studying and measuring the environmental efficiency of a certain area, it is called
regional environmental efficiency or environmental regulatory efficiency. Other terms are
environmental governance efficiency, environmental governance investment efficiency, and
ecological civilization construction efficiency.

Studies have also adopted spatial panel econometrics to analyze the relationships
among economic growth, environmental efficiency, and energy consumption. Results
reveal that the ratios of direct to total elasticity and those of direct to total effect for capital,
labor, and energy input variables are fixed (Song et al. [4]). Zhang and Choi [5] employed
SBM-DEA to study the environmental efficiency of various provinces in China, presenting
the results that most provinces have low energy efficiency, and that there are differences in
environmental efficiency among regions. Chen and Jia [6] considered undesired output
factors and combined the DEA method and the Slacks-based Measure (SBM) model to
measure the environmental efficiency of Chinese industries from 2008 to 2012. Their results
noted that, except for a few developed provinces, the environmental efficiency of Chinese
industries is generally low. Wu et al. [7] utilized a two-stage DEA model to evaluate
the environmental efficiency of undesired output and conducted empirical research on
30 provinces and cities in 8 regions of China. Their results showed the validity of the model
and reflected the real conditions of the environment in eight regions.

Yao et al. [8] used panel data from China’s provincial industrial sector from 1998 to
2011 and estimated the change in China’s carbon dioxide emission efficiency and its driving
forces according to the meta-frontier non-radial Malmquist CO2 emission performance
index (MNMCPI). They found that the average carbon dioxide emissions of the industrial
sector in the eastern, central, and western regions declined 5.53% in total, sequentially.
Castellet and Molinos-Senante [9] considered that each pollutant removed by a sewage
treatment plant will have a different impact on the environment and used a weighted slacks-
based measure model to measure the efficiency of the plant. Their analysis found that
sewage treatment plants have a lot of room in terms of saving personnel and energy
costs. Giovanna et al. [10] employed the approaches of AHP and NDDF to analyze
the environmental treatment efficiency of 96 sewage treatment plants in Tuscany (Italy).
Feng et al. [11] used the DDF model to analyze the wastewater treatment efficiency of
31 provinces and cities in China from 2011 to 2015. The results show that the wastewater
treatment effect in economically developed areas is better, and the wastewater treatment
efficiency in China needs to be improved. Considering energy saving, pollution treatment,
and external environmental heterogeneity, Liu et al. [12] adopted a modified three-stage
data envelopment analysis (DEA) model to evaluate the ecological efficiency of 30 provinces
and cities in China in 2015, and the results indicate that economic development factors
such as level, technological innovation, environmental regulation, and industrial structure
have affected the ecological efficiency of various regions. Wu et al. [13] improved the DEA
model to avoid non-homogeneous problems and used it to analyze the environmental
performance of 38 industrial sectors in China for 5 years. The results show that the
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environmental performance of China’s industrial sector is still low and uneven, but 38
industrial sectors. The overall efficiency keeps an upward trend. Zhang et al. [14] used the
dynamic SBM method to analyze the environmental treatment efficiency of industrial water
pollution in 30 provinces and cities in China from 2011 to 2015. The study found that the
efficiency of industrial water pollution treatment in 30 provinces and cities fluctuates, and
the level of industrial output imbalance with industrial wastewater treatment performance.
Wang and Feng [15] used a two-stage network-based super DEA approach to analyze
the overall efficiency and ecological efficiency of China’s industrial sector during the
production phase and pollutant treatment phase. Their study found that the overall
efficiency of the industrial sector significantly improved in the production phase and the
wastewater treatment phase.

In terms of research methods, there are two main ones for evaluating production
efficiency: SFA and DEA. SFA has statistical characteristics and can measure production
efficiency and total factor productivity, but its general method cannot solve the common
multi-output problem in actual production. DEA does not need to set the production
function and weights in advance, can provide feasible suggestions for the improvement of
invalid units, and can effectively deal with undesired output. A large number of studies
and research results show that the DEA method is considered to be the best method
for evaluating environmental efficiency and environmental governance efficiency (Song
et al. [16], George et al. [17], Chang et al. [18], Lorenzo-Toja et al. [19]).

Farrell [16] applied the concept of the boundary production function to measure
the production efficiency level of decision-making units. It connects the most efficient
production points to the production boundary. Moreover, the gap between any real
production point and the production boundary indicates the degree of inefficiency of the
production point. Ever since Farrell [20] proposed the concept of efficiency boundary, it
has been frequently used in various types of efficiency evaluation models.

Based on the concept of Farrell [20], Charnes et al. [21] extended their theory to
establish a generalized mathematical linear programming model that can measure multiple
inputs and multiple outputs of fixed returns to scale, calling it the CCR model. Both
the CCR and Farrell models assume that all decision-making units are at fixed returns
to scale. However, in actual situations, there may also be increasing returns to scale
(IRS) or decreasing returns to scale (DRS). Therefore, Banker et al. [22] proposed the BCC
model in 1984 and revised the fixed returns to scale assumption by the CCR model into
variable returns to scale (VRS). Because the CCR model and the BCC model measure
radial efficiency, they assume that input items or output items can increase or decrease in
equal proportions, however, this assumption is not applicable in all situations. Therefore,
Tone [23] proposed the Slack-Based Measure (SBM) in 2001, used the difference variable
as the basis for measurement, considered the slack between the input and output items,
and applied a non-radial estimation method and a single value (scalar) to present the SBM
efficiency. The efficiency value is between 0 and 1. In addition to the above, DDF (Direction
Distance Function) is a commonly used efficiency measurement tool when considering
unintended output, because DDF can deal with reduced input and increased output at the
same time.

Chung et al. [24] proposed the concept of the output-oriented distance function,
which is an extended radial output distance function (RDF). The traditional DDF is a ray
measurement mode, and the efficiency calculation fails to include all non-zero differences
and all sources of inefficiency. Therefore, the efficiency value obtained will be overestimated.
In order to solve this type of problem, Färe and Grosskopf [25] and Chen et al. [26]
established a non-guided direction distance function. Compared to other methods, their
function is better, because it provides more reasonable and accurate estimation results.

Traditional DEA mainly focuses on a static comparison when evaluating efficiency and
lacks an evaluation and analysis of different time periods. The development of dynamic
DEA window analysis, proposed by Kloop [27], was first used for dynamic analysis,
but did not analyze the effect of carry-over activities between two periods. Fare and
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Grosskopf [28] were the first to use a carry-over variable in DEA analysis. Following Färe
et al. [25], Tone and Tsutsui [29] extended the model to dynamic analysis of slack-based
measures. Traditional DEA usually assumes that all producers have the same level of
production technology when performing efficiency evaluations, but the decision-making
units under evaluation often vary due to differences in geographical locations, national
policies, and social and economic conditions. Thus, Battese and Rao [30], Battese et al. [31]
and O’Donnell et al. [32] set the common boundary as the concept of the meta-frontier and
applied it to DEA efficiency estimation. The common boundary is estimated through all
the group samples, and then the decision-making units are divided into groups. The group
frontier of each group is estimated separately, and then the common boundary and the
group are used. The distance value between group frontiers is used to evaluate whether the
production technology level used by the group samples is close to the potential production
technology level of the common boundary.

In summary, the evaluation index system and measurement methods of environmental
efficiency and environmental pollution control efficiency are becoming more and more per-
fect. However, many scholars regard the decision-making unit (DMU) as a ‘black box” to
measure the relative relationship between initial input and final output efficiency, ignoring
the complexity of the DMUs’ internal structure and leading them either only to look at the
overall efficiency of energy and environment in the production process or only to study
the efficiency of environmental governance investment in the pollution control process,
thus lacking a systematic analysis of the two perspectives of energy utilization and pollu-
tion control. Existing studies have also generally investigated industrial environmental
efficiency or environmental pollution control efficiency in a broad manner, and thus there
is a lack of subdivided research on various sectors of industry. Performance evaluation
based on the DDF non-ray distance function is better and can provide more reasonable and
accurate estimation results. However, Fare et al. [25]’s DDF non-radial distance function
fails to consider inter-period continuous effects and different production technologies.
Therefore, our research combines Tone and Tsutsui [29]’s dynamic DEA and O’Donnell
et al. [32]’s common boundary (meta-frontier) and proposes the meta Dynamic DDF model
to measure the performance of China’s wastewater treatment and to individually evaluate
the technology gap.

3. Model Selection and Research Methods
3.1. Meta Dynamic DDF Model

Combining Tone and Tsutsui [29]’s dynamic DEA and O’Donnell et al. [32]’s meta-
frontier, we propose the meta Dynamic DDF model and construct it as follows.

The technology or production possibility set (PPS) is defined as the set of all pairs (x,
y), where x is a vector of m inputs and a vector y of s outputs.

L(y) = {(x, y)|x can produce y}

Considering the direction vector (gx, gy) of each input and output (x, y), the direction
distance function (DDF) is defined as follows:

D
(

xj, yj, gx, gy
)

= sup{β|(x − βgx, y + βgy) ∈ L(y)}.(gx
j , gy

j ) =
(

gx
ij, . . . , gx

mj , gy
ij, . . . , gy

xj

)
Here, D̃ (xj, yj, gx, gy) is relative to the jth DMU, the input and output of DMUj (xj, yj).

According to the above direction distance function, we then introduce the dynamic and
common boundary (meta-frontier) architecture, which is the meta Dynamic DDF model.
Its model description runs as follows.

(1) Meta-frontier (MF)

We first assume that due to differences in management types, resources, regulations,
or environments that all manufacturers are composed of DMUs in groups—namely, (N =
N1 + N2 + . . . + NG). We then assume that the DMU exists in each time t, where t = 1,
. . . , T. In each time period, DUMm inputs xt

ij (i = 1, . . . , m) produce K1 desirable outputs



Sustainability 2021, 13, 2579 6 of 25

qdt

kj (k = 1, . . . , K2) and K2 undesirable outputs qut

kj (k = 1, . . . , K2), and Zt
dj (d = 1, . . . , D)

is the carryover variable. Under the common boundary, the DMU can choose the most
favorable final output weight to maximize its efficiency value. Therefore, the efficiency of
DMU k under the common boundary can be solved by the following linear programming
procedure.

The efficiency of DMUs is:
maxθ∗∗

s.t.
G
∑

g=1

n
∑

j=1
λt

gjx
t
gij ≤ xt

ip − θt
1Rx,t

ip ∀i, ∀t

G
∑

g=1

n
∑

j=1
λt

gjz
t
gdj ≤ zt

dp − θt
1RZ,t

dp ∀d, ∀t

G
∑

g=1

n
∑

j=1
λt

gjq
dt

gkj ≥ qdt

k + θt
1Rqdt

kp ∀k, ∀t

G
∑

g=1

n
∑

j=1
λt

gjq
ut

gkj ≤ qut

k − θt
1Rqut

kp ∀k, ∀t

G
∑

g=1

n
∑

j=1
λt−1

gj zt
gdj =

G
∑

g=1

n
∑

j=1
λt

gjz
t
gdj

G
∑

g=1

n
∑

j=1
λt

gj = 1 ∀t

λt
j ≥ 0 ∀i, ∀t

Total efficiency is θ∗∗ = ∑T
t=1 γtρ

t, where ρt stands for period efficiencies, and γt is
the weight assigned to period t. For each t, γt ≥ 1 and ∑T

t=1 γt = 1.

(2) Group-frontier (GF)

The efficiency of the decision-making unit is:
maxθ∗g

s.t.
n
∑

j=1
λt

jx
t
ij ≤ xt

ip − θt
1Rx,t

ip ∀i, ∀t

n
∑

j=1
λt

jz
t
dj ≤ zt

dp − θt
1RZ,t

dp ∀d, ∀t

n
∑

j=1
λt

jq
dt

kj ≥ qdt

k + θt
1Rqdt

kp ∀k, ∀t

n
∑

j=1
λt

jq
ut

kj ≤ qut

k − θt
1Rqut

kp ∀k, ∀t

n
∑

j=1
λt−1

j zt
dj =

n
∑

j=1
λt

jz
t
dj

n
∑

j=1
λt

j = 1 ∀t

λt
j ≥ 0 ∀i, ∀t

(3) Technology gap ratio (TGR)

The production frontiers of the g groups are included in the meta-frontier. The
technical efficiency under the meta-frontier must be less than the technical efficiency under
the group frontier. The ratio of the two frontiers is called the Technology Gap Ratio (TGR):

TGR = θ∗∗
θ∗g

3.2. Input, Desirable Output, and Undesirable Output Efficiencies

Hu and Wang’s [33] total-factor energy efficiency index can be used to overcome any
possible biases in the traditional energy efficiency indicators. There are five key efficiency
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models: energy consumed, GDP, Wastewater, Waste Gas, and Waste Solid, where “I”
represents area and “t” represents time. The efficiency models are therefore:

Input efficiency =
Target input
Actual input

Undesirable output efficiency =
Target Undesirable output
Actual Undesirable output

Desirable output efficiency =
Actual Desirable output
Target Desirable output

If the target inputs and undesirable outputs equal the actual inputs and undesirable
outputs, then the efficiencies are 1, which indicate overall efficiency. However, if the target
inputs and undesirable outputs were less than the actual inputs and undesirable outputs,
then the efficiencies were less than 1, which indicated overall inefficiency.

If the target desirable outputs are equal to the actual desirable outputs, then the
efficiencies are 1, indicating overall efficiency. However, if the target desirable outputs
are more than the actual desirable outputs, then the efficiencies are less than 1, indicating
overall inefficiency.

4. Data Processing and Analysis of Empirical Results
4.1. Data and Variables

From past research on energy and environment, the inputs are generally labor, fixed
assets, and energy consumption, such as in Hu and Wang [33], Li et al. [34], Wang and
Wei [35], and Du et al. [36]. Outputs are mainly GDP, CO2, and SO2, such as in Li et al. [34],
Wang and Wei [35] and Wang et al. [37]. This study utilizes panel data from 30 provinces in
China. Traditional research has divided China into eastern, central, and western regions
based on geographical location, but these classifications do not directly reflect production
technology level variations. Therefore, based on the World Bank’s classification for rich
and poor countries, we divide the 30 provinces into high-income cities and upper-middle-
income cities, with the upper-middle-income economies’ GNI per capita between $3896
and $12,055 and the high-income economies’ GNI per capita at $12,056 or more. The
high-income cities are Beijing, Shanghai, Tianjin, Jiangsu, Zhejiang, Fujian, Guangdong,
Shandong, Inner Mongolia, Chongqing, Hubei, Shaanxi, Jilin, and Liaoning (14 provinces
in total). The upper-middle income cities are Niaoning, Ningxia, Hunan, Hainan, Henan,
Hebei, Xinjiang, Sichuan, Qinghai, Jiangxi, Anhui, Shanxi, Heilongjiang, Guangxi, Guizhou,
Yunnan, and Gansu (16 provinces in total). Among the 14 provinces and cities in the
high-income group, 9 are provinces in the eastern region, 3 are provinces in the central
region, and 2 are provinces in the western region. This is basically in line with the current
situation of China’s regional economic development, that is, the eastern region is relatively
developed and the central and western regions are relatively backward.

We extract the data for 2010 to 2017 from the Statistical Yearbook of China, the De-
mographics and Employment Statistical Yearbook of China, and the Statistical Yearbooks
from each province. Figure 1 reveals the framework of the Network Dynamic Model of
inter-temporal efficiency measurement and the variables (see Table 1).
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Table 1. Input and output variables.

Input Variables
Output Variables

Carry-OverDesirable Output
Variables

Undesirable Output
Variables

Labor

GDP

Wastewater

Fixed assets
Energy consumption Waste gas
Water consumption Waste solid

Total treatment
(Data source: Authors’ collection).

Table 2 lists the basic statistics of various input and output indicators for the high-
income and upper-middle-income groups. In the high-income group, water consumption
in the input elements, waste gas emissions in the undesired output elements, and solid
waste emissions are all lower than the upper-middle-income group. Moreover, the average
values of the other input factors and output factors in the high-income group are higher
than those of the upper-middle-income group.
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Table 2. Descriptive statistical analysis.

Variable/Cluster
High-Income Upper-Middle-Income

Mean Std. Dev. Min Max Observations Mean Std. Dev. Min Max Observations

labor overall 2822.85 1814.76 728.70 6649.70 N = 112 2594.25 1709.52 307.65 6767.00 N = 128
energy~e overall 16,854.60 9250.79 6724.00 38,899.00 N = 112 12,372.38 7260.36 1359.00 30,385.8 N = 128

asset overall 18,175.94 11,927.56 4962.10 55,202.70 N = 112 12,824.70 9326.52 1016.90 44,496.9 N = 128
wuse overall 194.21 149.06 22.50 591.30 N = 112 208.18 138.06 25.80 590.14 N = 128

treatm overall 291,773.90 258,105.2 10,946.00 1,416,464.00 N = 112 172,705.50 144,347.30 4354.00 889,518 N = 128
gdp overall 29,705.55 19,552.42 7925.60 89,705.23 N = 112 14,608.28 10,119.09 1350.40 44,552.8 N = 128

wastew~r overall 294,562.10 217,446.6 67,147.00 938,261.00 N = 112 173,096.30 113,206.40 21,292.00 433,487 N = 128
Waste gas overall 157.45 106.17 16.38 440.15 N = 112 159.45 100.99 4.35 453.57 N = 128
wastes~d overall 8906.86 8194.64 629.00 32,434.00 N = 112 11,823.75 9574.15 212.00 45,575.8 N = 128

(Data source: Authors’ collection).
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4.2. Analysis of the Production Efficiency of Various Factors
4.2.1. Labor Efficiency

From 2010 to 2017 (see Figure 2), the average labor efficiency in China has shown
an upward trend, from 0.6129 to 0.6988, and the allocation of labor resources has been
continuously optimized. The average labor efficiency of the high-income groups in each
year is higher than the national average labor efficiency, while the average labor efficiencies
of the upper-middle-income groups are lower than the national average labor efficiency.
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The labor efficiency of the provinces of China’s high-income groups has shown an
increasing trend, from 0.7410 in 2010 to 0.833 in 2017. Among them, the labor efficiencies of
Beijing, Tianjin, and Shanghai are all 1 in the 8 years, thus realizing effective allocation of
labor resources. The labor efficiencies of Inner Mongolia and Fujian have declined slightly,
while the labor efficiencies of nine provinces, including Liaoning, Jilin, Jiangsu, Zhejiang,
Shandong, Hubei, Guangdong, Chongqing, and Shaanxi, show an upward trend.

The labor efficiencies of China’s upper-middle-income groups have also shown an
increasing trend, from 0.5008 in 2010 to 0.5812 in 2017. Among them, Hainan has a labor
efficiency of 1 in all 8 years, thus achieving effective allocation of labor resources. The
labor efficiencies of five provinces including Hebei, Shanxi, Qinghai, Ningxia, and Xinjiang
have declined slightly, and the labor efficiencies of nine provinces including Heilongjiang,
Anhui, Jiangxi, Henan, Hunan, Guangxi, Sichuan, Guizhou, Yunnan, and Gansu have
shown an upward trend.

4.2.2. Energy Consumption Efficiency

From 2010 to 2017 (see Figure 3), China’s average energy consumption efficiency
presents a downward trend, from 0.7727 to 0.6957. The average energy consumption
efficiency of the high-income groups in each year is higher than the national average energy
consumption efficiency. However, the average energy consumption efficiencies of the
upper-middle-income groups are lower than the national average energy consumption effi-
ciency.

The energy consumption efficiencies of provinces in China’s high-income groups
have shown a downward trend, from 0.8829 in 2010 to 0.8094 in 2017. Among them,
the energy consumption efficiencies of Beijing, Tianjin, and Shanghai are 1 in all 8 years,
thus realizing the effective use of energy. The energy consumption efficiencies of eight
provinces including Inner Mongolia, Liaoning, Jilin, Jiangsu, Zhejiang, Fujian, Shandong,
and Shaanxi have declined slightly, while the energy consumption efficiencies of three
provinces including Hubei, Guangdong, and Chongqing have an upward trend.
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Figure 3. Average energy cons (Data source: Authors’ collection).

The energy consumption efficiencies of provinces in China’s upper-middle-income
groups have also shown a downward trend, from 0.6763 in 2010 to 0.5962 in 2017. Among
them, Hunan and Hainan both have energy consumption efficiency of 1 in all 8 years,
thus hitting effective use of energy. The energy efficiencies of 13 provinces including
Hebei, Shanxi, Inner Mongolia, Anhui, Jiangxi, Henan, Guangxi, Yunnan, Gansu, Qinghai,
Ningxia, and Xinjiang have declined, while the energy consumption efficiencies of two
provinces including Sichuan and Guizhou have an upward trend.

4.2.3. Water Efficiency

From 2010 to 2017 (see Figure 4), China’s average water use efficiency has shown
an upward trend, rising from 0.4982 to 0.5865. The average water efficiency of the high-
income groups in each year is higher than the national average water efficiency. However,
the average water efficiencies of the middle- and high-income groups are lower than the
national average.
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The water use efficiencies of provinces in China’s high-income groups have shown
an upward trend, from 0.6232 in 2010 to 0.7021 in 2017. Among them, Beijing and Tianjin
have water use efficiency of 1 in all 8 years, realizing effective use of water resources. The
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water use efficiencies of 6 provinces including Inner Mongolia, Jilin, Jiangsu, Fujian, Shan-
dong, and Hubei have declined slightly, while the water use efficiencies of five provinces
including Liaoning, Zhejiang, Guangdong, Chongqing, and Shaanxi have illustrated an
upward trend.

The water use efficiencies of provinces in China’s upper-middle-income groups have
also shown an upward trend, from 0.3887 in 2010 to 0.4853 in 2017. Among them, Hainan
has water use efficiency of 1 for all 8 years, thus achieving the effective use of water
resources. The water use efficiencies of six provinces including Hebei, Shanxi, Anhui,
Henan, Ningxia, and Xinjiang have declined, while the water use efficiencies of nine
provinces including Heilongjiang, Jiangxi, Hunan, Guangxi, Sichuan, Guizhou, Yunnan,
Gansu, and Qinghai have shown an upward trend.

4.2.4. Investment Efficiency of Pollution Control

From 2010 to 2017 (see Figure 5), the average investment efficiency of China’s in-
dustrial pollution control has shown an upward trend, rising from 0.6962 to 0.8795. The
average investment efficiency of industrial pollution control for the high-income groups
is higher than the average pollution control investment efficiency of the middle- and
high-income groups. Moreover, the investment efficiencies of industrial pollution control
for the middle-high-income groups are lower than the national average pollution control
investment efficiency.
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The investment efficiencies of industrial pollution control in the provinces of China’s
high-income groups have shown an upward trend, from 0.6979 in 2010 to 0.8698 in 2017.
Among them, the investment efficiencies of industrial pollution control in Beijing, Tianjin,
and Shanghai are 1 in all 8 years, realizing the effective allocation of industrial pollution
control investment. The investment efficiencies of industrial pollution control in Inner
Mongolia and Shandong declined slightly, while the investment efficiencies of industrial
pollution control in eight places including Liaoning, Jilin, Jiangsu, Zhejiang, Fujian, Hubei,
Guangdong, and Chongqing have an upward trend.

The investment efficiencies of industrial pollution control in China’s upper-middle-
income groups have also shown an upward trend, from 0.6947 in 2010 to 0.7538 in 2017.
Among them, the investment efficiency of Hainan’s industrial pollution control in all
8 years is 1, as it has been able to effectively realize pollution control. The investment
efficiencies of industrial pollution control in seven provinces including Hebei, Shanxi,
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Inner Mongolia, Anhui, Henan, Ningxia, and Xinjiang have declined, while investment in
industrial pollution control in eight provinces including Jiangxi, Hunan, Guangxi, Sichuan,
Guizhou, Yunnan, Gansu, and Qinghai Efficiency is on the rise.

4.2.5. GDP Efficiency

From 2010 to 2017 (see Figure 6), China’s GDP efficiency average has shown an
upward trend, rising from 0.8700 to 0.9149. The average GDP efficiency of the high-income
group in each year is higher than the average GDP efficiency of the national and upper-
middle-income groups. Contrarily, the GDP efficiency of the upper-middle-income group
is lower than the national average GDP efficiency.
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Figure 6. Average GDP efficiency of each group from 2010 to 2017. (Data source: Authors’ collection).

The GDP efficiencies of provinces in China’s high-income groups have shown an
upward trend, rising from 0.9127 in 2010 to 0.9220 in 2017. Among them, the GDP effi-
ciencies of Beijing, Tianjin, and Fujian are 1 in all 8 years, achieving optimal output. The
investment efficiencies of industrial pollution control in Inner Mongolia, Liaoning, Jilin,
Zhejiang, Hubei, and Guangdong have declined slightly, while the GDP efficiencies in
Shanghai, Jiangsu, Shandong, Chongqing, and Shaanxi have shown an upward trend.

The GDP efficiencies of provinces in China’s upper-middle-income groups have also
shown an upward trend, rising from 0.8326 in 2010 to 0.9086 in 2017. Among them, GDP ef-
ficiencies of Hunan’s industrial pollution control in all 8 years is 1, thus effectively realizing
optimal output. The GDP efficiencies of four provinces including Hebei, Shanxi, Yunnan,
and Gansu have declined. The GDP efficiencies of 11 provinces including Heilongjiang,
Anhui, Jiangxi, Henan, Hunan, Guangxi, Hainan, Sichuan, Guizhou, Qinghai, and Ningxia
have shown an upward trend.

4.2.6. Wastewater Efficiency

From 2010 to 2017 (see Figure 7), the average wastewater treatment efficiency in China
has shown an upward trend, rising from 0.8139 to 0.8641. The average waste gas treatment
efficiencies of the high-income groups are higher than the average wastewater treatment
efficiencies of the middle- and high-income groups. Moreover, the wastewater treatment
efficiencies of the upper-middle-income groups are all lower than the national average
wastewater treatment efficiency.
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The efficiencies of wastewater treatment in various provinces of China’s high-income
groups have shown an upward trend, from 0.8712 in 2010 to 0.9011 in 2017. Among
them, the wastewater treatment efficiencies of Beijing, Tianjin, and Shanghai are 1 in all 8
years, realizing effective wastewater treatment. The efficiencies of wastewater pollution
treatment in four provinces including Inner Mongolia, Liaoning, Shandong, and Shaanxi
have declined slightly. Conversely, the efficiencies of wastewater pollution treatment in
eight places including Jilin, Shanghai, Jiangsu, Zhejiang, Fujian, Hubei, Guangdong, and
Chongqing have shown an upward trend.

The efficiencies of wastewater treatment in various provinces in China’s upper-middle-
income groups have also shown an upward trend, from 0.7638 in 2010 to 0.8316 in 2017.
Among them, Hainan’s wastewater treatment efficiency is 1 in all 8 years, realizing effec-
tive waste water treatment. The efficiencies of wastewater pollution treatment in seven
provinces including Hebei, Shanxi, Heilongjiang, Anhui, Henan, Gansu and Xinjiang
have declined, while the efficiencies of wastewater treatment in eight provinces includ-
ing Jiangxi, Hunan, Guangxi, Sichuan, Guizhou, Yunnan, Qinghai, and Ningxia have an
increasing trend.

4.2.7. Waste Gas Efficiency

From 2010 to 2017 (see Figure 8), the average value of China’s waste gas treatment
efficiency has a downward trend, from 0.5014 to 0.4952. The average exhaust gas treatment
efficiencies of the high-income groups are higher than the average exhaust gas treatment
efficiencies of the upper-middle-income groups. Moreover, the exhaust gas treatment
efficiencies of the upper-middle-income groups are all lower than the national average
exhaust gas treatment efficiency.

The exhaust gas treatment efficiencies of various provinces in China’s high-income
groups have shown an upward trend, from 0.6255 in 2010 to 0.6493 in 2017. Among them,
the exhaust gas treatment efficiencies of Beijing, Tianjin, and Fujian are 1 in all 8 years,
realizing effective exhaust gas treatment. Inner Mongolia, Liaoning, Jilin, Shandong, and
other four provinces have a slight decline in their efficiency of waste gas pollution control,
while the efficiencies of waste gas pollution control in six places including Zhejiang, Fujian,
Hubei, Guangdong, Chongqing, and Shaanxi have shown an upward trend.
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The efficiencies of waste gas treatment in China’s upper-middle-income groups have
shown a downward trend, from 0.3928 in 2010 to 0.3604 to 2017. Among them, Hainan’s
waste gas treatment efficiency is 1 for all 8 years, realizing effective waste gas treatment.
The treatment efficiencies of waste gas pollution in seven provinces including Hebei,
Heilongjiang, Anhui, Yunnan, Qinghai, Ningxia, and Xinjiang have declined, while the
treatment efficiencies of industrial waste gas in eight provinces including Shanxi, Jiangxi,
Henan, Hunan, Guangxi, Sichuan, Guizhou, and Gansu have an upward trend.

4.2.8. Waste Solid Efficiency

From 2010 to 2017 (see Figure 9), the average value of China’s solid waste treatment
efficiency exhibits a downward trend, from 0.5014 to 0.3619. The average solid waste
treatment efficiency of the high-income groups in each year is higher than the average solid
waste treatment efficiency of the country and the upper-middle-income groups, and the
solid waste treatment efficiencies of the middle- and high-income groups are all lower than
the national average solid waste treatment efficiency.
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The efficiencies of solid waste treatment in the provinces of China’s high-income
groups have shown a downward trend, from 0.7198 in 2010 to 0.5167 in 2017. Among
them, the efficiencies of solid waste treatment in Beijing, Tianjin, and Shanghai are 1 in all
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8 years, realizing effective treatment of solid waste. The efficiencies of solid waste pollution
control in nine provinces including Inner Mongolia, Liaoning, Jilin, Jiangsu, Zhejiang,
Fujian, Shandong, Hubei, and Shaanxi show a downward trend, while the efficiencies of
solid waste pollution control in Guangdong and Chongqing show an upward trend.

The efficiencies of solid waste treatment in various provinces in China’s upper-middle-
income groups also show a downward trend, from 0.4475 in 2010 to 0.2264 to 2017. Among
them, Hainan has achieved solid waste treatment efficiency of 1, which denotes effective
treatment. With the exception of Hunan’s solid waste treatment efficiency showing an
upward trend, other provinces and cities have shown a downward trend.

The above results show that after considering energy input and pollution control,
in the environmental pollution control of China’s industrial sector, the level of sewage
treatment is generally on the rise, and the high-income group is higher than the high-
income group. This is in line with the existing research of Wang and Feng [15]. The
research conclusions of Song et al. [16] are basically the same. The slight difference is
that the research in this article found that the efficiency of waste gas treatment and solid
waste treatment in China’s industrial sector showed a downward trend during 2010–2017,
while Wang and Feng [15] found that the governance levels of the two were not improved
significantly during 2004–2015. The difference in the research results may lie in the selection
of the research period, and the efficiency of the allocation of elements during the period
has not yet appeared. Air pollution is one of the most concerning environmental pollution
problems in Chinese society in recent years. During 2013–2017, only the central air pollution
prevention and control special funds were allocated 5 billion yuan, 9.8 billion yuan, 10.6
billion yuan, 11.18 billion yuan and 16 billion yuan, respectively, showing an increasing
trend year by year. At the same time, there are problems in air pollution prevention such
as insufficient matching of fund use with key prevention and control tasks, and lagging
progress in fund implementation.

4.3. Analysis of Meta Technical Efficiency and Group Technical Efficiency

We adopt the meta frontier method to construct the production frontier with the
input-output data of all years of the decision-making units. The calculation results appear
in Table 3.

Under the meta frontier, the average environmental governance efficiency of China’s
industrial sector from 2010 to 2017 is 0.7810, of which the average environmental gov-
ernance efficiency of the high-income groups is 0.8728, and the average environmental
governance efficiency of the same groups is 0.7006. We see that the overall efficiency of
environmental governance in China’s industrial sector is relatively high, but there is still
a gap between the efficiency of environmental governance in the upper-middle-income
groups and high-income groups, which have not reached the national average. In the
high-income group, the efficiencies of environmental governance in Beijing, Tianjin, and
Shanghai from 2010 to 2017 are 1, realizing effective environmental governance. Provinces
and cities showing a downward trend in environmental governance efficiency include
Inner Mongolia, Zhejiang, Shandong, and Shaanxi, while provinces and cities showing
an upward trend in environmental governance efficiency include Liaoning, Jilin, Jiangsu,
Fujian, Hubei, Guangdong, and Chongqing. In the middle- and high-income groups,
the environmental governance efficiency of Hainan Province is 1 from 2010 to 2017, thus
achieving effective governance of environmental pollution. The provinces and cities show-
ing a downward trend of environmental governance efficiency include Hebei, Shanxi,
Heilongjiang, Anhui, Henan, Gansu, and Xinjiang, while the provinces and cities showing
an upward trend of environmental governance efficiency include Jiangxi, Hunan, Guangxi,
Sichuan, Guizhou, Yunnan, Qinghai, and Ningxia.
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Table 3. China’s environmental governance efficiency under the meta frontier and group frontier from 2010 to 2017.

Cluster DMU
MTE GTE

2010 2011 2012 2013 2014 2015 2016 2017 Average 2010 2011 2012 2013 2014 2015 2016 2017 Mean

High-
income

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Inner

Mongolia 1.0000 1.0000 0.9989 0.9796 0.9761 1.0000 0.9275 0.8986 0.9726 1.0000 1.0000 0.9989 0.9796 0.9761 1.0000 0.9279 0.9030 0.9732

Liaoning 0.7947 0.8100 0.8132 0.8236 0.7609 0.8079 0.9726 0.9994 0.8478 0.7947 0.8100 0.8132 0.8236 0.7609 0.8132 0.9779 0.9994 0.8491
Jilin 0.7275 0.7673 0.7976 0.7834 0.7718 0.7797 0.8831 0.7745 0.7856 0.7275 0.7673 0.7976 0.7834 0.7718 0.7909 0.8868 0.7957 0.7901

Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Jiangsu 0.8339 0.8021 0.7876 0.7673 0.7943 0.7916 0.8333 0.9982 0.8260 0.8510 0.8054 0.7888 0.7674 0.7945 0.7915 0.8335 1.0000 0.8290

Zhejiang 0.8440 0.8100 0.8074 0.7256 0.7243 0.6924 0.7415 0.7851 0.7663 0.8526 0.8166 0.8101 0.7268 0.7249 0.6928 0.7417 0.7856 0.7689
Fujian 0.8135 0.7774 0.8589 0.7888 0.7670 0.7700 0.8086 1.0000 0.8230 0.8671 0.8284 0.8803 0.8285 0.8014 0.8036 0.8483 1.0000 0.8572

Shandong 0.8026 0.7856 0.7710 0.7590 0.7596 0.7215 0.7895 0.7386 0.7659 0.8026 0.7856 0.7710 0.7590 0.7596 0.7215 0.7895 0.7386 0.7659
Hubei 0.6173 0.6159 0.6259 0.6368 0.6611 0.8212 0.7643 0.9559 0.7123 0.6329 0.6166 0.6264 0.6383 0.6619 0.8217 0.7653 0.9759 0.7174

Guangdong 0.9929 1.0000 0.9638 1.0000 1.0000 1.0000 1.0000 1.0000 0.9946 0.9929 1.0000 0.9649 1.0000 1.0000 1.0000 1.0000 1.0000 0.9947
Chongqing 0.9026 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9878 0.9312 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9914

Shaanxi 0.7745 0.7741 0.8277 0.8103 0.7885 0.6886 0.7007 0.6638 0.7535 0.7818 0.7758 0.8277 0.8103 0.7885 0.6886 0.7007 0.6669 0.7550

Upper-
middle
income

Hebei 0.8151 0.7069 0.6655 0.6416 0.6361 0.6258 0.6876 0.6907 0.6837 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Shanxi 0.6952 0.7376 0.6748 0.6269 0.5753 0.5761 0.5420 0.6027 0.6288 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Heilongjiang 0.8389 0.7383 0.7712 0.6850 0.6947 0.6841 0.6788 0.7717 0.7328 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Anhui 0.7110 0.6776 0.6627 0.6041 0.6017 0.5774 0.6884 0.6208 0.6430 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Jiangxi 0.7981 0.7790 0.7695 0.6951 0.6681 0.6333 0.7016 0.9323 0.7471 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Henan 0.6469 0.6466 0.6070 0.5972 0.6104 0.6168 0.6735 0.5641 0.6203 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hunan 0.6357 1.0000 0.7715 0.8464 1.0000 1.0000 1.0000 1.0000 0.9067 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Guangxi 0.6745 0.6576 0.6389 0.6209 0.6026 0.5970 0.6376 0.8682 0.6621 0.8237 0.9632 0.9684 0.9249 0.9128 0.9276 0.9249 1.0000 0.9307
Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Sichuan 0.7983 0.6673 0.7472 0.7073 0.7110 1.0000 0.8778 1.0000 0.8136 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Guizhou 0.6838 0.7942 0.6629 0.6056 0.5831 0.6783 0.8724 1.0000 0.7350 0.9545 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9943
Yunnan 0.7147 0.5553 0.5426 0.5492 0.5686 0.5492 0.5630 1.0000 0.6303 0.9848 0.8447 0.9043 0.9130 0.9178 0.8887 0.8451 0.8895 0.8985
Gansu 0.6705 0.6166 0.6479 0.6432 0.6583 0.8516 0.6167 0.6082 0.6641 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Qinghai 0.6764 0.5978 0.6473 0.6490 0.6522 0.6460 0.5708 0.7024 0.6428 0.8608 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9826
Ningxia 0.4556 0.4581 0.4673 0.4735 0.4982 0.5776 0.5569 0.5885 0.5095 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Xinjiang 0.6195 0.6594 0.6326 0.6183 0.6422 0.6256 0.6458 0.5608 0.6255 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9485 0.9936

(Data source: Authors’ collection).
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Under the group frontier, the environmental governance efficiencies of the high-
income group and the upper-middle-income group are 0.8766 and 0.9863, respectively.
Compared to the common frontier, efficiency performance has improved, especially the
middle-high-income group as it is close to the effective state. This is because the DEA
efficiency measurement method evaluates relative efficiency, and the improvement of GTE
is the result of the convergence of the frontier boundaries within the group caused by the
regrouping of decision-making units on the meta frontier. It is thus necessary to use the
meta-frontier method to measure the efficiency of regional environmental governance.

In the high-income group, the efficiencies of environmental governance in Beijing,
Tianjin, and Shanghai from 2010 to 2017 are 1, thus realizing effective governance of envi-
ronmental pollution. Provinces and cities showing a downward trend in environmental
governance efficiency include Inner Mongolia, Jiangsu, Zhejiang, Shandong, and Shaanxi,
while those showing an upward trend in environmental governance efficiency include
Liaoning, Jilin, Fujian, Hubei, Guangdong, and Chongqing. Among the upper-middle-
income groups, 11 provinces including Hebei, Shanxi, Heilongjiang, Anhui, Jiangxi, Henan,
Hunan, Hainan, Sichuan, Gansu, and Ningxia have achieved group efficiency and effec-
tiveness. Guangxi shows an upward trend in environmental governance efficiency, while
Yunnan and Xinjiang show a downward trend in environmental governance efficiency.

4.4. Analysis of the Technology Gap Ratio

Based on the calculations of MTE and GTE in various provinces and cities, this paper
uses the technology gap ratio (TGR) to analyze the gap in environmental governance effi-
ciency in various regions (see Table 4). According to Tables 2 and 3, the overall and regional
findings of China’s environmental governance efficiency show that GTE is significantly
higher than MTE. The average technology gap efficiency values of the high-income groups
and upper-middle-income groups are 0.9951 and 0.7117, respectively, indicating that there
is a gap between each region’s actual technology level and the potential best technology
level, with 0.49% and 28.83% room for improvement, respectively. The actual technology
level of the high-income group is closest to the potential best technology level, but there is
still a gap between the high-income group and the potential best technology level.

Between 2010 and 2017, among the high-income groups the five provinces of Beijing,
Tianjin, Shanghai, Shandong, and Guangdong have a technology gap ratio of 1, indicating
that their actual technology level is in the leading position in China and has reached the
potential best technology level. The other eight provinces in the high-income group, Inner
Mongolia, Jilin, Jiangsu, Zhejiang, Fujian, Hubei, Chongqing, and Shaanxi, all fluctuate
within the range of [0.9, 1], indicating that they have higher levels of actual technology and
are close to the potential best technology level in the country.

Table 4. The technical gap of China’s environmental governance efficiency from 2010 to 2017.

Cluster DMU 2010 2011 2012 2013 2014 2015 2016 2017 Mean

High-
income

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Inner Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9951 0.9993
Liaoning 1.0000 1.0000 1.0000 1.0000 1.0000 0.9936 0.9946 1.0000 0.9985

Jilin 1.0000 1.0000 1.0000 1.0000 1.0000 0.9858 0.9959 0.9734 0.9944
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Jiangsu 0.9800 0.9959 0.9985 0.9998 0.9998 1.0000 0.9998 0.9982 0.9965

Zhejiang 0.9899 0.9919 0.9966 0.9983 0.9991 0.9994 0.9998 0.9994 0.9968
Fujian 0.9382 0.9385 0.9757 0.9521 0.9571 0.9583 0.9531 1.0000 0.9591

Shandong 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hubei 0.9754 0.9989 0.9991 0.9976 0.9988 0.9994 0.9987 0.9794 0.9934

Guangdong 1.0000 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
Chongqing 0.9692 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9962

Shaanxi 0.9906 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 0.9954 0.9980
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Table 4. Cont.

Cluster DMU 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Upper-
middle
income

Hebei 0.8151 0.7069 0.6655 0.6416 0.6361 0.6258 0.6876 0.6907 0.6837
Shanxi 0.6952 0.7376 0.6748 0.6269 0.5753 0.5761 0.5420 0.6027 0.6288

Heilongjiang 0.8389 0.7383 0.7712 0.6850 0.6947 0.6841 0.6788 0.7717 0.7328
Anhui 0.7110 0.6776 0.6627 0.6041 0.6017 0.5774 0.6884 0.6208 0.6430
Jiangxi 0.7981 0.7790 0.7695 0.6951 0.6681 0.6333 0.7016 0.9323 0.7471
Henan 0.6469 0.6466 0.6070 0.5972 0.6104 0.6168 0.6735 0.5641 0.6203
Hunan 0.6357 1.0000 0.7715 0.8464 1.0000 1.0000 1.0000 1.0000 0.9067

Guangxi 0.8188 0.6827 0.6597 0.6713 0.6602 0.6435 0.6894 0.8682 0.7117
Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Sichuan 0.7983 0.6673 0.7472 0.7073 0.7110 1.0000 0.8778 1.0000 0.8136
Guizhou 0.7164 0.7942 0.6629 0.6056 0.5831 0.6783 0.8724 1.0000 0.7391
Yunnan 0.7257 0.6574 0.6001 0.6015 0.6196 0.6179 0.6662 1.1242 0.7016
Gansu 0.6705 0.6166 0.6479 0.6432 0.6583 0.8516 0.6167 0.6082 0.6641

Qinghai 0.7858 0.5978 0.6473 0.6490 0.6522 0.6460 0.5708 0.7024 0.6564
Ningxia 0.4556 0.4581 0.4673 0.4735 0.4982 0.5776 0.5569 0.5885 0.5095
Xinjiang 0.6195 0.6594 0.6326 0.6183 0.6422 0.6256 0.6458 0.5913 0.6293

(Data source: Authors’ collection).

Among the middle and high-income groups, the technology gap ratio of Hainan is 1
from 2010 to 2017, indicating that it has achieved the potential best technology level in the
country. For Hebei, Shanxi, Heilongjiang, Anhui, Henan, Gansu, Qinghai, and Xinjiang,
their technology gap ratios have fluctuated and showed a downward trend. Those with a
technology gap ratio that fluctuates and shows an upward trend include seven provinces,
Jiangxi, Hunan, Guangxi, Sichuan, Guizhou, Yunnan, and Ningxia.

4.5. Inefficiency Analysis of Environmental Pollution Control

In order to further explore the reasons for the inefficiency of environmental gov-
ernance in various provinces and cities and to provide decision-making reference for
improving this inefficiency, we decompose the inefficiency value (IE) of each province
and municipality with invalid environmental governance into technical level gap inef-
ficiency (TIE) and management inefficiency (MIE) (see Table 5). According to Table 4,
the main reason for the inefficiency of environmental governance in each province in the
high-income group is management inefficiency, as technical inefficiency accounts for a
small proportion. The main reason for the ineffective environmental governance of the
provinces in the middle- and high-income groups is technical inefficiency. Among them,
Hebei, Shanxi, Heilongjiang, Anhui, Jiangxi, Henan, Hunan, Sichuan, Gansu, and Ningxia
all have technical inefficiency.

Among the high-income groups in 2010, management inefficiencies were the full
cause of environmental governance inefficiency for four provinces including Liaoning,
Jilin, Shandong, and Guangdong. For other provinces such as Jiangsu, Zhejiang, Fujian,
Hubei, Chongqing, and Shaanxi, inefficiency and management inefficiency combined
together for environmental governance inefficiency, but with management inefficiency as
the main reason. Among the upper-middle-income groups, the environmental governance
inefficiencies in 11 provinces including Hebei, Shanxi, Heilongjiang, Anhui, Jiangxi, Henan,
Hunan, Sichuan, Gansu, Ningxia, and Xinjiang were entirely due to technical inefficiency.
Among them, Guangxi mainly incurs management inefficiency, and Guizhou, Yunnan, and
Qinghai mainly experience technical inefficiency.

In the high-income group in 2011, three provinces’ environmental governance ineffi-
ciencies, including Liaoning, Jilin, and Shandong, were caused entirely by management
inefficiency, while the other five provinces such as Jiangsu, Zhejiang, Fujian, Hubei, and
Shaanxi were caused by both technical and management inefficiencies. Ineffective man-
agement is the main reason for environmental governance inefficiency. Among the high-
income groups, the environmental governance inefficiencies of Hebei, Shanxi, Heilongjiang,
Anhui, Jiangxi, Henan, Guizhou, Yunnan, Qinghai, Ningxia, and Xinjiang are all due to
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technical inefficiency, while Guangxi and Yunnan are due to technical inefficiency and
management inefficiency, but technical inefficiency is still the main reason.

Table 5. Technical and management inefficiency of China’s environmental governance.

Group DMU IE
TIE MIE

Mean Percentage Mean Percentage

High-income

Inner Mongolia 0.0279 0.0005 1.93% 0.0274 98.07%
Liaoning 0.1544 0.0001 0.05% 0.1543 99.95%

Jilin 0.2147 0.0036 1.69% 0.2111 98.31%
Jiangsu 0.1759 0.0029 1.65% 0.1730 98.35%

Zhejiang 0.2346 0.0014 0.60% 0.2332 99.40%
Fujian 0.1791 0.0348 19.45% 0.1443 80.55%

Shandong 0.2344 0 0.00% 0.2344 100.00%
Hubei 0.2932 0.0042 1.42% 0.2890 98.58%

Guangdong 0.0055 0.0001 2.42% 0.0053 97.59%
Chongqing 0.0126 0.0038 30.14% 0.0088 69.86%

Shaanxi 0.2479 0.0015 0.62% 0.2464 99.38%

Upper-middle-
income

Hebei 0.3177 0.3177 100.00% 0 0
Shanxi 0.3731 0.3731 100.00% 0 0

Heilongjiang 0.2685 0.2685 100.00% 0 0
Anhui 0.3580 0.3580 100.00% 0 0
Jiangxi 0.2563 0.2563 100.00% 0 0
Henan 0.3802 0.3802 100.00% 0 0
Hunan 0.1009 0.1009 100.00% 0 0

Guangxi 0.3277 0.2410 73.56% 0.0866 26.44%
Sichuan 0.1928 0.1928 100.00% 0 0
Guizhou 0.2727 0.2669 97.88% 0.0058 2.12%
Yunnan 0.3790 0.2768 73.03% 0.1022 26.97%
Gansu 0.3382 0.3382 100.00% 0 0

Qinghai 0.3580 0.3397 94.89% 0.0183 5.11%
Ningxia 0.4919 0.4919 100.00% 0 0
Xinjiang 0.3748 0.3683 98.25% 0.0066 1.75%

(Data source: Authors’ collection).

Among the high-income groups in 2012, the environmental governance inefficiencies
of five provinces including Inner Mongolia, Liaoning, Jilin, Shandong, and Shaanxi were
caused by inefficient management, while the environmental governance inefficiencies
of Jiangsu, Zhejiang, Fujian, Hubei and Guangdong were due to both technology and
management, but with management inefficiency as the main reason. Among the high-
income groups, the environmental governance inefficiency 13 provinces including Hebei,
Shanxi, Heilongjiang, Anhui, Jiangxi, Henan, Hunan, Sichuan, Guizhou, Gansu, Qinghai,
Ningxia, and Xinjiang are all due to technical inefficiencies. Guangxi and Yunnan are due
to technical inefficiencies. Inefficiency and management inefficiency are caused together,
but technical inefficiency is the main cause of inefficiency in environmental governance.

Among the high-income groups in 2013, the environmental governance inefficiencies
of Inner Mongolia, Liaoning, Jilin, Shandong, and Shaanxi were caused by ineffective
management. The environmental governance inefficiencies of Jiangsu, Zhejiang, Fujian,
and Hubei were due to ineffective management. Technical inefficiency is caused by a
combination of technologies, but management inefficiency is the main reason. Among
the high-income groups, the environmental governance inefficiencies in 13 provinces,
including Hebei, Shanxi, Heilongjiang, Anhui, Jiangxi, Henan, Hunan, Sichuan, Guizhou,
Gansu, Qinghai, Ningxia, and Xinjiang, were entirely due to technical inefficiency, while
for Guangxi and Yunnan they were caused by technical inefficiency and management
ineffectiveness, but with technical inefficiency as the main reason.

Among the high-income groups in 2014, the environmental governance inefficiencies
of Inner Mongolia, Liaoning, Jilin, and Shandong were caused by ineffective manage-
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ment, while the environmental governance inefficiencies of Jiangsu, Zhejiang, Fujian, and
Hubei were due to both ineffective management and technology, but with ineffective
management as the main reason. Among the upper-middle-income groups, the environ-
mental governance inefficiencies of 12 provinces including Hebei, Shanxi, Heilongjiang,
Anhui, Jiangxi, Henan, Sichuan, Guizhou, Gansu, Qinghai, Ningxia, and Xinjiang were
all caused by technical inefficiency, while for Guangxi and Yunnan they were caused by
ineffective management and technical ineffectiveness, but with technical inefficiency as the
main reason.

In the high-income group in 2015, the environmental governance inefficiencies in
Shandong and Shaanxi provinces were entirely caused by ineffective management, and for
Liaoning, Jilin, Jiangsu, Zhejiang, Fujian, and Hubei they were caused by ineffective tech-
nology and ineffective management, but with ineffective management as the main reason.
Among the upper-middle-income groups, the environmental governance inefficiencies of
Guangxi and Yunnan were caused by ineffective management and technical ineffectiveness,
but with technical inefficiency as the main reason. For Hebei, Shanxi, Heilongjiang, Anhui,
Jiangxi, Henan, Sichuan, Guizhou, Gansu, Qinghai, Ningxia, and Xinjiang, the environ-
mental governance inefficiencies were completely caused by technical ineffectiveness.

Among the high-income groups in 2016, the environmental governance inefficiencies
of Shandong and Shaanxi provinces were entirely caused by ineffective management, while
for Inner Mongolia, Liaoning, Jilin, Jiangsu, Zhejiang, Fujian, and Hubei they were caused
by ineffective technology and ineffective management, but with ineffective management
as the main reason. Among the upper-middle-income groups, the environmental gover-
nance inefficiencies of Guangxi and Yunnan were caused by ineffective management and
technical ineffectiveness, but with technical inefficiency as the main reason. For Hebei,
Shanxi, Heilongjiang, Anhui, Jiangxi, Henan, Sichuan, Guizhou, Gansu, Qinghai, Ningxia,
and Xinjiang, their environmental governance inefficiencies were completely caused by
technical inefficiency.

In the high-income group in 2017, the environmental governance inefficiencies of
Liaoning and Shandong provinces were caused entirely by ineffective management, en-
tirely caused by technical ineffectiveness for Jiangsu, and caused by technical inefficiency
and ineffective management, but with ineffective management as the main reason for Inner
Mongolia, Jilin, Zhejiang, Hubei, and Shaanxi. Among the low- and middle-income groups,
the environmental governance inefficiency of Xinjiang was caused by ineffective manage-
ment and technical inefficiency, but with the latter as the main reason. For Hebei, Shanxi,
Heilongjiang, Anhui, Jiangxi, Henan, Guangxi, Yunnan, Gansu, Qinghai, and Ningxia,
their environmental governance inefficiencies were entirely due to technical inefficiency.

From the perspective of input and output factors, whether for high-income groups
or low- and middle-income groups, the environmental governance inefficiency of each
province from 2010 to 2017 was due to inefficiency of input factors (see Table 6).

Table 6. Input-output inefficiency value of China’s environmental governance.

Cluster DMU Input_Inefficiency Output_Inefficiency

High-income

Inner Mongolia 0.0169 0.0113
Liaoning 0.0987 0.0658

Jilin 0.1409 0.0940
Jiangsu 0.1135 0.0757

Zhejiang 0.1553 0.1035
Fujian 0.1158 0.0772

Shandong 0.1552 0.1034
Hubei 0.1993 0.1329

Guangdong 0.0033 0.0022
Chongqing 0.0076 0.0051

Shaanxi 0.1651 0.1101
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Table 6. Cont.

Cluster DMU Input_Inefficiency Output_Inefficiency

Upper-middle-
income

Hebei 0.2184 0.1456
Shanxi 0.2631 0.1754

Heilongjiang 0.1805 0.1203
Anhui 0.2507 0.1671
Jiangxi 0.1713 0.1142
Henan 0.2690 0.1794
Hunan 0.0631 0.0421

Guangxi 0.2263 0.1508
Sichuan 0.1253 0.0836
Guizhou 0.1836 0.1224
Yunnan 0.2680 0.1787
Gansu 0.2347 0.1565

Qinghai 0.2507 0.1671
Ningxia 0.3674 0.2449
Xinjiang 0.2646 0.1764

(Data source: Authors’ collection).

5. Conclusions and Policy Implications

This study uses the meta Dynamic DDF model to measure the environmental efficiency
and environmental governance efficiency of China’s industrial sector from 2010 to 2017 in
terms of overall, sub-regional, and sub-provincial perspectives. We evaluate the technical
gaps in regional environmental pollution control and explore environmental governance
inefficiency. Our findings help provide a basis for formulating relevant policies. The
research conclusions of this paper are as follows.

(1) Among the input factors from 2010 to 2017, the average values of energy efficiency,
water use efficiency, and investment efficiency of industrial pollution control show an
upward trend, while average energy efficiency shows a downward trend. Among the
output factors, China’s GDP efficiency and wastewater treatment efficiency show an
upward trend, but waste gas treatment efficiency and solid waste treatment efficiency
show a downward trend.

(2) Under the common frontier, the average environmental governance efficiency of
China’s industrial sector was 0.7810 from 2010 to 2017. The level of environmental
governance efficiency in China’s industrial sector is generally relatively high, but
the environmental governance efficiencies of high-income groups and upper-middle-
income groups still have a gap that does not reach the national average.

(3) Under the group frontier, the environmental governance efficiencies of the high-
income group and the upper-middle-income group have improved compared with
the common frontier, especially as the middle-high-income group is close to the
effective state. This proves that it is very necessary to use the Meta-frontier method to
measure the efficiency of regional environmental governance.

(4) The average technology gap efficiency values of the high-income group and the
upper-middle-income group in China’s environmental governance efficiency are
0.9951 and 0.7117, respectively. This denotes that the high-income group’s actual
technology level is closest to the potential best technology level, whereas the upper-
middle-income group is far from the potential best level. There is still a gap in its best
technology level.

(5) The main reason for the environmental governance inefficiency of each province
in the high-income group is that management is invalid, and the proportion of
technical inefficiency is relatively small. The main reason for the environmental
governance inefficiency of the provinces in the middle- and high-income groups is
technical inefficiency. From the perspective of input and output factors, whether for
high-income groups or upper-middle-income groups, the environmental governance
inefficiency in each province is caused by inefficiency of the input factors.
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Based on the above research, the policy recommendations are as follows:

(1) Improve the investment plan for environmental pollution control, and continue to
increase the human, financial, material, and technical investment in environmen-
tal pollution control. Increasing financial expenditures for environmental pollution
control, while attracting social capital, broadening the sources of environmental pro-
tection funds, actively guiding social capital into the field of environmental protection,
promoting the diversification of environmental protection investment entities, and
providing a strong economic guarantee for improving the level of environmental
pollution control; Improve the weak environment of environmental pollution con-
trol, especially the capital investment in waste gas and solid waste control, improve
the utilization efficiency of investment funds, and realize the effective allocation of
environmental pollution control.

(2) In view of the gap in environmental pollution control efficiency between high-income
groups and high-income groups, and between different provinces and cities, the
investment direction and investment direction of environmental pollution control
should be adjusted according to local conditions according to the environmental
pollution status and resource conditions of each region. In addition, each region needs
to strengthen the complementarity of resource advantages, establish and improve
a cross-regional linkage mechanism for environmental governance, promote the
establishment and implementation of the ecological compensation horizontal transfer
payment system, and realize the mutual transfer of financial funds between local
governments, thereby promoting the various regions in China’s coordination of the
economy and environment for a win-win situation.

(3) Intensify technological innovation in the field of environmental protection, actively
cultivate and introduce high-level talents, and effectively improve the efficiency of
China’s environmental pollution control. Continue to increase scientific research
investment in environmental governance in various provinces and cities in China,
adhere to the combination of industry, university and research, develop new tech-
nologies for environmental governance, increase technological innovation projects,
support the development of high-tech industries, and efficiently utilize the input
and output of scientific and technological elements in environmental governance to
promote the steady improvement of environmental governance efficiency in various
provinces and cities through technological progress.

(4) Strengthen government environmental law enforcement, establish and improve pub-
lic environmental protection supervision mechanisms, and improve environmental
pollution control and management. Implement the most stringent environmental
protection system and conduct regular assessments, incorporate an environmental
protection into the comprehensive assessment and evaluation system for provincial
and municipal leaders, and encourage governments at all levels to strengthen envi-
ronmental protection enforcement. At the same time, improve the social supervision
mechanism, effectively use the power of social supervision, such as public opinion
supervision by the news media, and actively organize the broad masses of the people
and other social forces to participate in and supervise environmental governance in
an orderly manner.

(5) Optimize the industrial structure, promote industrial upgrading, actively transform
China’s economic development mode, and achieve green growth of the regional econ-
omy. Promote the technological transformation and product upgrade of traditional
entrepreneurship, and do a good job in energy conservation and emission reduction
in industrial industries. Develop high-tech industries, transform low-end industries,
promote the sound and rapid development of energy-saving and environmentally-
friendly industries, implement clean enterprise production, prevent pollution from
the source, and protect the ecological environment.
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