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Abstract: Algorithmic pricing may lead to more efficient and contestable markets, but high-impact,
low-probability events such as terror attacks or heavy storms may lead to price gouging, which
may trigger injunctions or get sellers banned from platforms such as Amazon or eBay. This work
addresses how such events may impact prices when set by an algorithm and how different markets
may be affected. We analyze how to mitigate these high-impact events by paying attention to external
(market conditions) and internal (algorithm design) features surrounding the algorithms. We find
that both forces may help in partially mitigating price gouging, but it remains unknown which forces
or features may lead to complete mitigation.

Keywords: pricing algorithms; artificial intelligence; sustainable business models; digital products;
PSO; competition; price gouging
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1. Introduction

In 2017, London suffered a terror attack. Given the memories of the metro attacks
of 2005, many Londoners tried to reach home with ride-hailing services, such as Uber.
However, some users were charged up to 2.5 times the normal fare to get home [1]. This
rise in fares was a consequence of a pricing algorithm that was not capable of handling this
emergency. This was not the first time that Uber faced such an event. In 2013, when New
York was in the midst of a storm, Uber increased its fares up to eight times the usual fares [2].
Both events caused a great deal of uproar and led to price gouging accusations. More
recently, in March 2020, during the first weeks of confinement because of the COVID-19
pandemic in Europe, sellers on Amazon and eBay were warned that price gouging would
not be tolerated and could lead to permanent suspensions of accounts [3,4]. Such policies
especially affect sellers that use pricing algorithms given that they are more sensitive to
changing market conditions and change prices tens or even hundreds of times per day [5].
Only in Amazon’s case, this policy has led to the suspension of almost 4.000 selling accounts
just in the US in the first weeks of the pandemic [3]. Thus, independent of whether price
gouging is necessary to bring balance to the market, it is certain that an accusation of
price gouging may drive some firms out of business. Given that companies that set prices
with autonomous algorithms are more exposed because of their high-frequency pricing, it
becomes essential to understand how those high-impact, low-probability (HILP) events
influence algorithms that set prices [6].

Algorithmic pricing is a method of automatically setting prices using preprogrammed
instructions to maximize sellers” profits, and as traditional businesses start their digital
transformation, interest in those algorithms rises because of their potential to lead to higher
profits, cost reductions, efficiency gains, and more competitive markets [7], which may
result in more sustainable business models [8]. However, in the light of the previous
examples, some questions arise. To what extent can HILP events influence algorithmic
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pricing? Are there market conditions that make some markets more sensitive to HILP
events? The previous examples show that such events must be taken seriously. Amazon
and eBay have a “zero tolerance” policy regarding price gouging. Thus, avoiding price
gouging is essential for third-party sellers to keep doing business on those platforms. Other
related questions are how to mitigate such price gouging events and what can be done to
prevent such raises.

To continue the progress made in analyzing the societal and economic impact of
pricing algorithms, we take a simulation approach and analyze how a particle swarm
optimization (PSO) algorithm implemented to set prices in a simple canonical market
environment may be affected by HILP events. To do so, we construct artificial intelligence
(AI) pricing agents and let them interact in computer-simulated markets. In this framework,
we address how HILP events influence the price set by algorithms in differentiated and
undifferentiated markets and whether market forces or specific algorithmic designs can
mitigate their impact.

We find that the PSO works quite well in setting prices near the optimal one and that
such a behavior is robust to different parameters, as other works have shown [9,10]. Then,
we analyze how a HILP event distorts the optimal price predicted by the PSO and how
competition with a seller that does not use pricing algorithms and a change in the design
of the PSO may mitigate its impact. To the best of our knowledge, this is the first time
that the effect of HILP events in pricing algorithms is addressed. Additionally, this work
also contributes to the recent literature on algorithmic pricing policies by addressing how
different factors (market forces and design) influence the algorithm performance. In this
regard, we are not aware of similar works that address these factors.

We find that, after a HILP event, only in differentiated markets do prices return
to normal but, in undifferentiated markets, prices remain higher than optimal, which
may raise price gouging concerns. Additionally, neither factor is capable of completely
mitigating the HILP event, although they partially mitigate it. In both cases, the final price
remains higher than optimal, which would explain why the only solution found to deal
with such events in the last decade was either to suspend the algorithmic pricing or to set
price caps [11,12]. In this regard, a key warning for sellers that use algorithmic pricing
is to test HILP events in their algorithms. The sustainability of many digital businesses
also relies on avoiding unnecessary price gouging accusations, which can be generated by
pricing algorithms unintentionally.

2. E-Commerce, Digital Transformation, and Algorithmic Pricing

The development of e-commerce has followed a growing trend in recent decades,
where many companies have changed the way they connect not only with their customers
and suppliers but also with other stakeholders: administration, financial entities, etc. [13].
Something that has contributed significantly to the growth of electronic commerce in recent
years has been the commitment of many organizations to including a digital transformation
within their strategies [14].

Digital transformation is based on the application of technology to increase productiv-
ity, value, and social well-being through the creation of new models, processes, software,
and systems for business. Digital transformation is revolutionizing organizations in all
sectors, breaking down the barriers between people, companies, and “things” [15]. From
an economic perspective, the objectives of digital transformation are mainly found in
the implementation of new and innovative business models as well as in the increase in
income generation, the productivity of organizations, and the addition of value in the
economy [16].

Within this new, highly competitive digital scenario, carrying out a good pricing
strategy plays a fundamental role, both to maximize customers’ satisfaction and to create
competitive advantages over competitors [17]. However, pricing digitally comes with
some complexity. Price is a crucial factor for companies to be competitive in markets as
transparent as today’s online. In these markets, e-commerce providers often have to adjust
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their prices in short time intervals, for example, in order to take into account the prices that
are frequently changed by their competitors [18], but they also have to be careful when
defining the factors that affect prices [19].

Although there is indeed a burgeoning and growing literature on electronic commerce
and digital transformation, there is still little research on something as important as algorith-
mic price competition and strategic behaviors [20]. This is precisely one of the objectives of
this work. Under the label of algorithmic pricing, many optimization tools and techniques
that help managers set prices could be included. The use of algorithms to set prices has
its origin in the study of the convergence towards equilibrium in game theory. Originally,
the interest was in iterative methods to solve games [21], the stability of a game (see [22]
for an introduction), or how players may learn to play a game [23]. Recently, the attention
has moved towards optimization techniques that could be used in combination with large
datasets that are updated continuously [24]. Current evidence shows that algorithmic
pricing may increase competition [25], which in turn may lead to more innovations [26].
We are interested in algorithms powered by Al that may be employed in practice. These Al
solutions should share the same feature. They must try to find a set of optimal prices that
maximizes some objective function, normally, a profit function.

However, pricing algorithms are a well-stored secret of companies, and although
there are pending causes under investigation, little is known about the architecture of
those algorithms [27]. Furthermore, when algorithms are based on artificial intelligence
(AI) techniques, the well-known black-box syndrome introduces another complexity in
the analysis process. Therefore, among all the potential frameworks, we are interested in
those that are simple and can be characterized by just a few parameters to obtain a clear
interpretation of the results. This requirement also makes it possible to keep arbitrarily
modeling choices to a minimum and to conduct a comprehensive comparative statics
analysis with respect to the parameters. Thus, under this requirement and to the best
of our knowledge, two potential candidates are the Q-learning and the Particle Swarm
Optimization (PSO) algorithms. Both have been successfully applied to experimental
economic problems [9,10,20,28,29]. Additionally, we are also interested in Al solutions that
could be applied by companies. Although little is known on the specific software that
firms use, those algorithms should not be computationally expensive, and they should be
able to deal with multi-dimensional optimization problems since many digital companies
are multi-product companies. In this regard, the Q-learning algorithm seems not to be a
good choice in its basic setting. Its downside is that the Q-learning algorithm suffers a
dimensionality problem [30]. To set prices, it must keep track of all the potential actions
(prices) it can take; thus, the complexity grows exponentially with multi-product companies,
and dealing with multidimensionality requires complex algorithms that may not be suitable
for all companies. Additionally, the standard Q-learning algorithm applies only to discrete
actions and states. Although some works have proposed ways to solve this limitation,
such as [31], we are not aware of similar works in economics. A related problem is that we
need to specify the space-state environment; in other words, we need to define the range
of prices. A large price range may be unfeasible computationally, and a short-range may
miss the optimal prices. For example, if it is optimal to give a product for free (and to set
a positive price on another), that would not be accomplished by a Q-learning algorithm
that only considers positive real numbers. Additionally, no one will wait eight minutes to
compute an optimal price due to testing many different prices to know the fare of an Uber
ride. Thus, algorithms must balance complexity and exhaustiveness.

In this regard, the PSO algorithm does not suffer the dimensionality problem, and
in its basic form, it is suitable to address multidimensional optimization problems. More
technically, another advantage of the PSO arises when the objective function is non-convex.
In such a case, Q-learning algorithms may become stuck at local optima while PSO, just by
virtue of sampling from a large population, would converge to the global solution easily.
Additionally, PSO does not require keeping track of all the potential actions, which makes it
simpler computationally. Nonetheless, a key drawback of PSO is that it is not as intuitive or
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closely linked to economic modeling as Q-learning, which would explain its relative lack of
use in economics. In general, Q-learning is more economically sound than PSO because the
former is based on the Bellman equation, which is broadly used in economics. Lastly, there
are also other limitations when using PSO. For example, in comparison with Q-learning,
PSO algorithms do not “learn” strategies but they “select” good outcomes. In other words,
if we are interested in analyzing strategies, PSO is not a good option, but if we are interested
in analyzing outcomes (like in this work), this constraint is not binding. However, there
are other reasons to focus on PSO. For example, from an economic point of view, there is
evidence that Q-learning algorithms may lead to collusive outcomes [20,29], while there
is no such evidence with PSO yet. Additionally, PSO does not require the problem to be
differentiable, which makes its application to markets that show discontinuities possible.
Finally, some readers that are familiar with this literature may question why we do not
consider genetic algorithms (GA). On the one hand, PSO has the same ability to find a
global optimum as genetic algorithms but can find optima faster than GA [32]. On the
other hand, from an economic point of view, some modeling options may seem arbitrary
but have a considerable impact on the outcomes [9]. Therefore, the best option to carry out
our experiment is the PSO algorithm.

3. Materials and Methods
3.1. The Particle Swarm Optimization (PSO) Algorithm

PSO is a stochastic optimization technique that is based on generating random points
in a multidimensional space (particles) that move towards an optimal solution by sharing
information about which points perform better. The idea of PSO came from watching the
way flocks of birds, fish, or other animals adapt to avoid predators and to find food by
sharing information [33]. Thus, particles could share information with all other particles
(one global swarm) or may be organized in different groups (swarms) that only share
information among them. This concept can easily be extended to price competition by as-
suming that each company may control a “swarm of prices”. Another way to economically
interpret PSO is to consider that each company may test a limited set of prices (particles)
before going to the market. Then, companies choose those prices that perform better
(higher profits) and remove those that perform worse. By repeating this operation multiple
times, companies can set the best price given certain market/regulatory conditions. Note
that, to carry out those actions, companies do not need an algorithm, but the use of Al
allows them to test a broader set of prices and faster.

Initially, each firm will consider a set of k potential prices, where k is the number
of particles. The position of each particle in the real numbers represents a price. Thus,
firms can evaluate the performance of each particle (price) in terms of profits. In the first
iteration, the initial positions are randomly drawn from a U(0, 1) distribution but, as time
passes, the position of each particle will change as new information about the best positions
is available.

In other words, the position of each particle is influenced by the locations of the
best particles (those that provide the largest profits), and such an influence is called
“evolutionary velocity (v;x)”, which determines the change of its position. Thus, a particle
position is determined by the best position it has found before (pﬁ) and the best position
any other particle in its swarm (or in the global swarm if there is only one swarm) has
found before (p). Formally, the price p; ; at a time ¢ is updated as follows:

Pit = Pit—1 + Vit—1 1)

Vg1 = Woi o + hur(ph — pip—1) + ua(p® = pis1) )

where w is an inertia weight factor that represents how past actions (prices) influence the
current action (price); /1 and I, are learning parameters and are called self-confidence factor
and swarm confidence factor, respectively; and u; and u; are U(0, 1) random numbers. Note
that Equation (1) can be rewritten as Ap; = v;;, which resembles a gradient similar to the
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best-response function of a classical economic model. Similarly, by rewriting Equation (2),
we have Av; = f(p;, pl, p8,w), which resembles the slope of the best-response function.
However, we have to be aware that this is only a resemblance and that the way PSO works
differs from traditional economic modeling.

In economic games, the payoff of a firm also depends on the prices of other companies.
Thus, a price that was optimal in a previous iteration may not perform well in the current
iteration and vice versa. Thus, pg and p3 may change over time. In fact, at each iteration,
we may have new different values for these parameters. In this sense, each firm will have a
vector Mg, s = [, g of size m that represents the memory of each firm. In this vector, firms
will record the last m values of pﬁ and p¢, and among them, they will choose those with the
best performance (largest profits).

Lastly, Reference [34] stated that the inertia weight w in Equation (2) is critical for the
PSO’s convergence behavior. There is a trade-off between exploration and exploitation. As
it is common in algorithmic pricing, an initial large w is desirable to explore the space that
decreases over time to exploit the best results [9,20]. In this sense, we assume the following;:

wr = (1 wo)’ ®)
where w is a constant initial decrease parameter.

3.2. Market Environment

We use a simple model of price competition with LOGIT demand and, for simplicity’s
sake and without loss of generality, we assume constant marginal costs [35]. Other cost
functions better resemble some of the motivating examples, especially the case of Uber.
However, we are interested in comparing the theoretical equilibrium price with the algorith-
mic one, and the constant marginal cost assumption keeps the model simple. Nonetheless,
other cost functions were tested, but the qualitative results remain robust. This model has
been applied extensively in empirical work, and it also is a useful framework to address
algorithmic price competition [20]. Following the literature on algorithmic pricing, each
company will face this demand function at each time ¢. In the motivating examples, it may
represent how sellers set prices on Amazon for each 20 or 30 min, or how Uber and Lyft set
prices in specific areas. This price competition game assumes that there are n differentiated
products and an outside good. Formally, the demand for product i is as follows:

%4p;
e r
9= """ o 4)

P B
j=1€ Botet

Parameter 4; is the product quality of product 7, which can be thought of as an index
that captures vertical differentiation. Product 0 is the outside good, so 4y is an inverse
index of aggregate demand. y captures how different the products in the consumers’ eyes
are; thus, it is an index that represents the horizontal differentiation. The case of perfect
substitutes is obtained in the limit as 4 — 0. In our model, we assume two different
scenarios, one where the horizontal differentiation is high and another where it is low. Each
product is supplied by a different firm, so # is also the number of firms. Lastly, the profits
of each company are 71; = (p; — ¢;)q;, where c; is the marginal costs.

3.3. Baseline Parametrization

PSO is nondeterministic. Thus, it is not guaranteed to return to the same solution
in each run. Additionally, given the different parameters that are possible to modify, the
speed and accuracy of the algorithm may differ. Therefore, it is fundamental to analyze the
robustness by comparing the performance of the algorithm under alternative parameter
values against the theoretical equilibrium.

Initially, we focus on a baseline economic environment that consists of a symmetric
duopoly (n = 2) in two scenarios of low (u; = 0.01) and high (u; = 1) differentiation
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with ag = 0,4; = 1.18, and ¢;; = 0.18 or ¢; y = 0 in the scenarios, respectively. On the
other hand, the baseline PSO algorithm consists of 5 particles (k = 5) with [; = [, = 1.75,
wy = 0.025, and m = 5. We also limit the range of evolutionary velocity, v; € [—0.3,0.3].
This is a common assumption to avoid “jumping” between corner solutions. Similar
parametrizations can be found in works where prices are also set by algorithms, such
as [10] or [20]. The comparison between two scenarios with low and high differentiation is
not trivial, as shown by [36], when using a Q-learning algorithm to set prices. Thus, we
pay special attention to comparing both scenarios.

4. Results: Optimal Simulated Prices

In this section, we focus on the baseline scenario and explore the optimality of the
PSO solution. This exercise aims to show that PSO can be implemented as a price-setting
algorithm. To do so, we perform different experiments. For our purposes, an “experiment”
consists of 1500 repeated iterations. Each experiment is run under the same set of parame-
ters 30 times to reduce the stochastic noise. We choose 1500 iterations to guarantee that
PSO is stable. Five hundred iterations are enough, but after the HILP event, we allow twice
that number to guarantee that the shock does not generate instability. On the other hand,
30 repetitions of the same framework are enough to find patterns. We have tried more
iterations, but there are no differences in the results.

In Figure 1, we depict the average price and demand of the base model at each one of
the 1500 iterations. The PSO algorithm reproduces quite successfully the price and demand
of the differentiated market. On the other hand, it sets a higher-than-optimal price in the
undifferentiated market. This result is also found by [36] using a Q-learning algorithm.
Nonetheless, demands are quite volatile in this market, as we observe in Figure 1. Thus,
PSO may “learn” to avoid large confrontations by setting prices higher than optimal.
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Figure 1. Simulated demands and prices over 1500 iterations in the two markets with high (red) and
low differentiation (gold). In blue and black are their theoretical counterparts.

Although in Figure 1 the parameters are fixed, the results are robust to changes in the
parameters. The stability analysis is available in Appendix A.

4.1. High-Impact, Low-Probability (HILP) Events

To simulate a HILP shock that reproduces something similar to the motivating ex-
amples, we assume that, at the 500th iteration, a shock occurs and each price “jumps” to
a new position equal to the current price plus one and that the profits associated with
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those new positions are twice the current ones. For example, if the best-found price at the
499th iteration was 0.25 and the associated profits were 1, after the shock, the best-found
price and profits would be 1.25 and 2, respectively. We experimented under more mild
conditions, i.e., with price jumps ranging from 0.25 to 1 and profits increasing from 25%
up to 100%. In all the cases, the conclusions remained the same. In the end, those jumps
must be significant to be noticeable and, more importantly, to raise concerns about their
negative consequences (e.g., to enforce the price gouging policies of Amazon or eBay).
In this sense, it is relevant to distinguish between peak-and-valley and HILP events. For
example, energy markets face peak-and-valley events every day, but rarely do they face
events that shut down the entire grid, which would be an example of HILP events. Those
events are the ones we are interested in and the ones we try to simulate in this paper.

In Figure 2, we observe the consequences of a HILP event in how the PSO set prices.
In the aftermath of the event, prices tend to decrease slowly towards the initial values but
always remain higher than before. This process of convergence is slow, and it takes several
iterations to drive the prices down, with almost 250 iterations in the differentiated market
while almost 100 iterations in the undifferentiated market.
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Figure 2. High-impact, low-probability (HILP) event on demands and prices in the two markets.

The algorithm interprets that a significant increase in prices is necessary to bring
balance to the market. However, our results show that the effect is not homogeneous. In
the differentiated market, the algorithm can return to the neighborhood of the original
equilibrium price. In other words, the algorithm is capable of detecting unusual shock
and of returning to the original price afterward. This could be the case of those cities that
experienced HILP events but that have a differentiated supply of ride-hailing services
or cases that are less extreme than HILP events. In those cases, surge pricing is short-
lived. In the undifferentiated market, prices never return to previous levels. It is this case
that may raise new concerns given that, after a HILP event, prices never return to the
original equilibrium. This case represents situations in which products may be essential
and undifferentiated in consumers’ eyes. For example, after a terror attack on public
transportation, people want to go home but do not care about whether you can choose
the music played or the type of car. Uber is a great example of the impact of these HILP
events. Although its algorithm can deal with peak-and-valley events such as storms, fairs,
or conferences, HILP events such as terror attacks or heavy storms have led to situations
so extreme that required suspension of the algorithmic pricing in the US, the UK, France,
and Australia [1,11,37,38]. Similarly, retailers have experienced similar effects. A study by
the US Public Interest Research Groups (PIRGs) has found that prices of essential products
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on Amazon were more than 50% higher than average six months after the first hit of
the COVID-19 pandemic in the US [39]. Although PIRGs are advocacy groups and their
findings can be called into question, similar concerns have arisen in Spain, Romania, Italy,
and Greece, where competition authorities have announced investigations into price hikes
regarding sanitary products [40]. Thus, it is likely that platforms may consider that unusual
high prices during extended periods violate their price gouging policies, which may get
sellers suspended or banned and may drive some of them out of business. Even if selling
platforms do not take steps to prevent price gouging, in some US states and European
countries, consumer protection laws can be enforced, which may have even worse effects
on the long-term sustainability of those sellers [40].

So far, these results show that, even in situations where there is only one global
equilibrium, a significant shock may move prices away from equilibrium and keep them
in supracompetitive levels when companies use pricing algorithms. Thus, an interesting
question is what can we do to mitigate such an impact.

4.2. Mitigating Factors

The previous results highlight that a HILP event may completely distort the market.
In this regard, an exhaustive analysis of the different methods, protocols, or forces that may
mitigate such events is out of the scope of this work. The study of algorithmic regulation
and policies is still in its infancy. To the best of our knowledge, the only work that analyses
algorithmic pricing policies so far is [36] that focuses on policies to mitigate collusion.
We focus on two factors that are general enough to be common to any market in which
algorithmic pricing is in use: market forces and algorithmic design.

4.2.1. Market Forces

As classical industrial organization theory shows, strategic interactions with competi-
tors play a key role in setting prices. In this regard, an interesting scenario to consider
is when only one of the companies uses algorithmic pricing while the other sets prices
following a best-response function, as in classical theoretical models. In Figure 3, we
observe that the initial shock is less severe than before, which also implies a faster recovery.
However, neither in the low differentiated nor in the highly differentiated markets do the
prices completely returned to their previous levels. In fact, the relative increase in the
low differentiated market is larger than in the highly differentiated one. Nonetheless, the
return is faster than before. Thus, market forces may limit but not mitigate the effect of
HILP events. Despite the competition, algorithms may be trapped in higher-than-optimal
prices as a consequence of algorithmic pricing. This result is consistent with the anecdotal
evidence of the motivating examples, given that the only solution to deal with such events
was either to suspend the algorithmic pricing or to set price caps. This situation raises
another concern for public authorities. Prices stay above competitive levels despite just one
company using algorithmic pricing, which may raise concerns about tacit collusion. How-
ever, whether those high prices are consistent with collusive practices or a design feature or
are a simple failure of the algorithm to learn the real equilibrium is unknown. Nevertheless,
the message is clear. If not taken into account, HILP events may lead to higher-than-optimal
prices, which may trigger the price gouging policies of selling platforms and may put
sellers that use price algorithms at risk.
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Figure 3. Impact on demands and prices: market forces.

4.2.2. Design

Another potential way to mitigate the impact of HILP events is to design the PSO in
such a way that those events have limited effects. This may be accomplished by designing
the algorithm to “tend” to set competitive prices. A simple way to introduce such a behavior
is by introducing a new learning parameter (/3) that is influenced by an exogenous price
level defined by the company (p®); technical details are reported in Appendix B. This last
case may represent those situations in which the company knows that, historically, prices
are normally around p©. In this way, companies let the algorithm look for better prices but
with a tendency to look in the neighborhood of that price. Another possibility is to assume
that pC is imposed by authorities. For example, that may be the case in regulated markets.
Following the motivating examples, in an emergency, some algorithms may be trapped in
price gouging solutions, but this learning parameter will “force” prices to move away from
those solutions. To make this example simple, we assumed that p® is exogenously set and
that it is equal to the theoretical equilibrium prices, which may be a good representation of
historical prices. However, other ways of setting p© could be made, for which the impact
may differ from the one analyzed here.

The interesting point of this modification is how it may deal with a HILP event. In
Figure 4, we observe that, after the shock, it starts a correction phase. As in the previous
section, the effect takes longer in the differentiated market than in the undifferentiated
one. Intuitively, market contestability may play a key role in how PSO set prices. Note
that, in comparison with the differentiated market, in the undifferentiated one, PSO sets
proportionally larger prices after a shock, which may be a consequence of learning to avoid
confrontation. In this regard, it seems that market forces and design may help to mitigate
price gouging, but in the case of the PSO, they alone are not enough to remove it. Although
it may look like a trivial problem, such events are exceptional, and it seems to be a defying
challenge for algorithms, given that, since 2013, the only solution so far is to suspend the
algorithm. In conclusion, the results show that concerns about price gouging will be more
common with algorithmic pricing. This raises a new concern for companies that rely on
selling goods on platforms such as Amazon or eBay because they could be banned if their
algorithms get stuck on higher-than-optimal solutions. Thus, addressing HILP events
should become an essential part of algorithmic testing. If not, the sustainability of digital
sellers can be compromised.
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Figure 4. Impact on demands and prices: modified particle swarm optimization (PSO).

5. Conclusions

Algorithms setting prices for products are a reality in many businesses, such as ride-
hailing services or web-based markets such as Amazon, and they are essential for the
sustainability of long-term strategies of many companies. However, emergencies such
as heavy storms, wildfires, or terror attacks have shown that such algorithms may lead
to significant increases in prices that are sustained over time, which may backfire on
companies in the form of price gouging accusations. Thus, it is increasingly relevant to pay
attention to algorithmic pricing not only because of the life-saving consequences that a fair
price can have in emergencies, such as a bottle of water after a hurricane [41] or airfares
during an evacuation [42], but also because a price gouging accusation may get sellers
banned from platforms, which may endanger their businesses.

The preliminary results presented in this work show that we cannot simply ignore
the role of HILP events on price algorithms. Especially in undifferentiated markets, prices
after a HILP event may remain higher than optimal, which would more likely induce price
gouging accusations. Although competition and the introduction of specific instances in
the design of the algorithm may help in mitigating those increases, they cannot be removed
completely. Currently, the only way to mitigate those situations is to “disconnect” the
algorithm. However, at that point, it may be too late. These results send a clear message.
As the use of algorithms to set prices expands, it is more likely that we will experience
price gouging after HILP events. In this regard, we recommend testing HILP events in
sellers’ algorithms before going to the market. Unintentionally, pricing algorithms may
generate price gouging episodes that may compromise the long-term sustainability of
many digital sellers.

Nonetheless, this work presents several limitations worth highlighting. First, we
assume a specific demand function that, although general, is by no means exhaustive to
cover all potential markets. Similarly, we assume only one optimization algorithm but,
in real markets, companies may use pricing algorithms that differ from the PSO. In this
regard, the intuition of our results is that HILP events may cause a significant disruption
even in simple markets. However, the exact disruption will depend on the market and the
specific algorithms used. Finally, a key limitation is the lack of information regarding the
specific algorithms in use in real markets. Algorithms are a well-stored secret and such a
circumstance limits to what extent an empirical approach is possible.
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Therefore, a future area of research is to address what happens in other market
environments, such as those where consumers are not fully rational or those where the
companies are multi-sided platforms, as in [43]. An underexplored case that also deserves
attention is when there are more than two competing companies. To the best of our
knowledge, there is no such work yet despite the significant influence that the number of
competitors has in the markets. On the other hand, in this work, we have focused on the
shock and posterior mitigation of a HILP event. Nonetheless, the identification of early
warnings is also interesting, which could help in diminishing the effect of those shocks. In
this sense, prevention is as relevant as mitigation and risk management could provide an
interesting base to address these concerns. Empirically, it could be interesting to address
whether social networks or search analytics tools can identify some early warnings that
can “feed” the algorithms and that can react by setting a price cap to avoid price gouging,
for example.
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Appendix A. PSO Convergence and Stability

A key step when analyzing a pricing algorithm is its sensitivity to different parame-
ters. In this regard, we conducted a set of experiments aimed at showing how different
parameters influence the price predicted by the PSO and how it differs from the optimal
one. In Figure A1, we analyze the difference between the theoretical price and the PSO
predicted price. In Figure A1, a positive value represents that the PSO was not able to reach
the optimal price. On the other hand, a negative value represents that the PSO price is
higher than optimal. We observe that, in all the experiments, at least 75% of the simulations
predict the optimal price with a deviation smaller than 0.2. Nonetheless, it is interesting to
observe that differentiation may play a role in those errors. Surprisingly, as differentiation
increases (from blue to red boxes), the deviation tends to favor lower-than-optimal prices.
It is also worth highlighting that, when differentiation is high, some simulations may lead
to extremely low prices while the opposite is true in the undifferentiated market. This
result naturally raises collusive concerns. It would be possible that PSO “learns” that the
best option for “survival” is to avoid confrontation. However, analyzing this concern is
out of the scope of this work, but it is worth paying attention to, as other works have
highlighted (see [20,44] or [29]), and it remains an open question for future work.
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Figure A1l. Prices, parameter sensitivity, and difference between optimal and simulated prices in
30 simulations.

Similarly, in Figure A2, we analyze the variability of the predicted demands with
respect to the optimal ones. Although at first sight it may look like the PSO fails to estimate
demand when differentiation is low, this extreme variability is common in models of price
competition with no differentiation, as a small change in price may lead to great changes in
demands. In this sense, the algorithm reproduces a key feature of the market. On the other
hand, the demand when differentiation is high tends to be well predicted. Thus, different
configurations of PSO parameters may lead to different price predictions, but in more than
75% of the cases, those predictions are near the theoretical optimum price (value zero in
Figures A1 and A2). Note, however, that we have focused on two extreme cases, but when
differentiation is neither too low nor too high, PSO predicts prices closer to the optimal one.
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Figure A2. Demands, parameter sensitivity, and difference between optimal and simulated demands
in 30 simulations.
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Appendix B. PSO Design with Exogenous Price Levels

Formally, the modification of Section 4.2.2 requires including this new learning pa-
rameter in Equation (2), which now becomes

ip1 = woipg + g (ph— pir1) + laua(p — pis1) + lus(p® — pis_1) (A1)

where uz ~ U0, 1]. This modification is not trivial, and it modifies the internal behavior
of the algorithm. However, it influences neither its stability nor the intuitions of previous
sections. All the results, data, and code in this regard are available upon request. The
more relevant change is that, on average, the model performs better this time, but this is a
consequence of assuming that p© is equal to the equilibrium prices. This assumption is
fundamental, and assuming other prices may completely change the results. For example,
in an early version of this experiment, it was assumed that p© was equal to marginal costs,
which drove prices in the differentiated market to become extremely low. However, the
stability of the PSO remained similar. Other factors also influence the price of the service,
such as quality or brand positioning. Although we focus on prices, all those features play a
passive role in this framework via the LOGIT demand. However, it remains unknown how
algorithms perform when those features play a more active role.
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