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Abstract: Understanding the potential groundwater resource distribution is critical for sustainable
groundwater development, conservation, and management strategies. This study analyzes and
maps the groundwater potential in Busan Metropolitan City, South Korea, using random forest
(RF), gradient boosting machine (GBM), and extreme gradient boosting (XGB) methods. Fourteen
groundwater conditioning factors were evaluated for their contribution to groundwater potential
assessment using an elastic net. Curvature, the stream power index, the distance from drainage,
lineament density, and fault density were excluded from the subsequent analysis, while nine other
factors were used to create groundwater potential maps (GMPs) using the RF, GBM, and XGB models.
The accuracy of the resultant GPMs was tested using receiver operating characteristic curves and
the seed cell area index, and the results were compared. The analysis showed that the three models
used in this study satisfactorily predicted the spatial distribution of groundwater in the study area.
In particular, the XGB model showed the highest prediction accuracy (0.818), followed by the GBM
(0.802) and the RF models (0.794). The XGB model, which is the most recently developed technique,
was found to best contribute to improving the accuracy of the GPMs. These results contribute to the
establishment of a sustainable management plan for groundwater resources in the study area.

Keywords: random forest; gradient boosting machine; extreme gradient boosting; groundwater
potential assessment; groundwater potential map

1. Introduction

Groundwater quality is typically superior to that of surface water, and is less suscepti-
ble to weather changes and contamination from the land surface. Therefore, groundwater
is widely used as a secondary water source with a reliable and safe supply of water re-
sources. However, in recent decades, ensuring sustainable groundwater resources has
been threatened by an increased demand and the excessive exploitation of groundwater
resources that result from population growth and economic development.

Because groundwater resources are not infinite, it is imperative to secure sustainable
and high-quality water resources through efficient utilization and systematic management.
Groundwater potential maps (GPMs) are useful to establish sustainable groundwater
development, conservation, and management strategies [1,2]. These maps show where
groundwater can be accessed without expensive and labor-intensive endeavors and provide
insights into further groundwater resources. For this reason, it is essential to secure an
accurate spatial prediction in potential groundwater resource areas.

To this end, GPMs based on geographic information systems and remote sensing are
widely used. In earlier studies, various statistical techniques, such as the frequency ratio, in-
dex of entropy, weights of evidence, evidential belief function, and logistic regression, have
been applied [3–9]. These techniques can easily be applied and interpret the correlations
between groundwater and groundwater conditioning factors.

Recently, machine learning techniques, a branch of artificial intelligence, have been
widely adopted in various fields. These techniques rely on the concept that systems
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can learn from data, recognize patterns, and make choices with the least human inter-
vention [10]. Various machine learning techniques, such as artificial neural networks
(ANN), support vector machines (SVM), linear discriminant analysis, quadratic discrimi-
nant analysis, the k-nearest neighbor algorithm, multivariate adaptive regression splines,
and decision trees [11–17], have widely been adopted for the analysis and mapping of
groundwater potential.

Among these machine learning techniques, the tree-based algorithm is one of the most
commonly used techniques. In particular, an ensemble model that improves the goodness-
of-fit and prediction ability of decision trees has widely been adopted [18]. The ensemble
model is a meta-algorithm that combines multiple machine learning techniques into a
single surrogate model, and utilizes bagging, boosting, and stacking to reduce variance
and deviation, thereby enhancing prediction accuracy [19].

Bagging (bootstrap aggregating) is an ensemble technique that predicts results by
generating multiple decision trees independently of each other [20]. In boosting, multiple
decision trees are grown sequentially using information from existing trees [21]. The ran-
dom forest (RF) and gradient boosting machine (GBM), which are representative algorithms
for bagging and boosting, respectively, have been extensively applied for groundwater
potential analysis [11–17,22–24].

In previous studies, various techniques have been applied that focus on the generation
of a robust model. The key to a robust model is to improve model accuracy and secure
generalization performance. Machine learning, especially tree-based ensemble models,
have been demonstrated to have excellent prediction performance through comparative
studies with the above-mentioned machine learning techniques [11–14]. Although ensem-
ble models have provided reliable and accurate results, most studies showed that these
models had high accuracy for training data, but decreased accuracy for validation data.

This problem, called overfitting, can be defined as the model having been trained
excessively well to fit training data. As a result, the model reproduces noise and pecu-
liarities of the training data instead of finding a general predictive rule [25,26]. Avoiding
overfitting is a crucial part of securing generalization performance. However, it is not easily
done because it can occur through various causes. Some common strategies to prevent
overfitting problems include regularization, early stopping, and abundant datasets [27,28].

An extreme gradient boosting (XGB) algorithm, which is a more regularized form of
GBM, could be a good alternative. The XGB algorithm can utilize regularization and early
stopping to reduce overfitting further, and improve prediction accuracy and generalization
capability [29]. This algorithm was developed by Chen and Guestrin [30] and improves
upon the GBM model. XGB has drawn attention in some major competitions in the big data
field, such as the Kaggle and DataCastl competitions, owing to its speed and accuracy [31].
XGB has been applied in various research domains, such as landslide susceptibility analy-
sis [32,33], particulate matter prediction [34,35], land cover classification [36,37], undrained
shear strength [38], and soil liquefaction assessment [39]. However, only a few studies
applied the algorithm in groundwater potential analysis.

Therefore, this study aimed to assess groundwater potential using RF, GBM, and
XGB techniques, and to produce GPMs based on these groundwater potential models.
In addition, the performances of the three GPMs were evaluated and compared based
on receiver operating characteristic (ROC) curves and the seed cell area index (SCAI).
Throughout this process, the ultimate aim was to determine whether the XGB model is
robust enough to create accurate GPMs.

2. Study Area

Busan Metropolitan City served as the study area. It is located at the southeastern end
of the Korean Peninsula at 128◦45′54′ ′–129◦18′13′ ′ E and 34◦53′12′ ′–35◦23′36′ ′ N. In this
study, the groundwater potential was analyzed for inland areas, excluding some island
areas located at the bottom of Busan Metropolitan City; the study area covers a total area
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of approximately 747 km2 (Figure 1). The eastern part of the study area is hilly, with an
elevation of 400–800 m, whereas the western portion consists of low-elevation plains.
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obtained from the National Geographic Information Institute.

Busan Metropolitan City is in the temperate monsoon climate zone, and touches
the Straits of Korea; thus, it is characterized by an oceanic climate. From 1981 to 2010,
the annual average temperature was 14.7 ◦C, and the average maximum and minimum
temperatures were 18.9 ◦C and 11.3 ◦C, respectively, showing little difference between
summer and winter temperatures. The annual average precipitation was 1519.1 mm, which
is considerably higher than the national average (1279.5 mm), and approximately 62% of the
annual precipitation is concentrated in May–August [40]. Most of the study area is forested
(approximately 45%), while urban and agricultural areas account for approximately 25%
and 16%, respectively.

At of the end of 2018, the amount of groundwater used in Busan Metropolitan City was
28,558,796 m3/year, which comprises approximately 29% of the exploitable groundwater
resources (97,553 thousand m3/year). Approximately 76% of the total groundwater use is
for municipal water, followed by agricultural use (fisheries) (approximately 14%), other
uses (approximately 6%, including bottled water and hot springs water), and industrial
use (approximately 4%). The amount of groundwater use per unit area of the city is
37,092 m3/year/km2, which is higher than that of the nationwide groundwater use per
unit area (29,074 m3/year/km2) [40].

In the study area as a whole, there is much room for further groundwater develop-
ment; however, nine out of 16 cities/counties/districts used groundwater in excess of the
exploitable groundwater resource capacity. In addition, charges for groundwater use were
imposed on the entire Busan Metropolitan City area. Therefore, Busan Metropolitan City is
a region with relatively high groundwater dependence, and a management plan should be
developed to ensure that groundwater resources are used more efficiently and effectively.
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3. Materials and Methods

The present study was conducted by applying the following steps (Figure 2): (1) de-
signing a geospatial database that included a groundwater wells feature class and condi-
tioning factors; (2) selecting conditioning factors by use of the feature selection function;
(3) generating training and validation datasets for modeling groundwater potential; (4) gen-
erating GPMs using RF, GBM, and XGB models; and (5) validation and performance
comparison among the produced GPMs. The dataset was prepared with a spatial resolu-
tion of 10 m, and the maps were generated using ArcGIS version 10.5 (ESRI, Inc., Redlands,
CA, USA). The statistical computations of all three models were conducted using R version
3.5.2 (Foundation for Statistical Computing, Vienna, Austria).
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3.1. Construction of the Spatial Database
3.1.1. Well Data

The groundwater well data used in this study were collected from data obtained
through field observations and measurements by Busan Metropolitan City, the groundwater
basic survey report, National Groundwater Information Center (gims.go.kr, accessed on 28
January 2020), and Korea Rural Community Corporation. The collected groundwater well
data were randomly classified into 153 total datasets, 70% of which were used as the model

gims.go.kr
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training datasets (107); the remaining 30% were used as the model validation datasets (46).
Figure 1 shows the locations of the groundwater well data used in this study.

To apply machine learning, data in areas without any groundwater wells were needed
to analyze the groundwater potential. The geographical data of the area without wells
were extracted with an interval of 20 px (100 m). Then, the same number of areas with
wells were determined by a random selection method. The value of 0 was assigned to these
areas for analysis by using the GBM, RF, and XGB models.

Finally, the training and validation datasets were generated by assigning new values
to all groundwater conditioning factors and applying them to the data, including 214 points
and 92 points. The training dataset was used to obtain models using RF, XGB, and GBM.
The validation dataset was used to verify the modeled outputs.

3.1.2. Groundwater Conditioning Factors

A total of fourteen groundwater conditioning factors were selected based on a litera-
ture review of previous studies. These factors were constructed using thematic maps such
as topographic digital maps, geological maps, and land cover maps that were obtained
from the government and related organizations (Table 1).

Table 1. Data sources used in this study.

Category Factor Source Scale
(Resolution) GIS and Data Type

Well location -
National research paper

Local research paper
Field survey

- Point

Topographical
factors

Elevation Topographic
digital map 1 1:5000 Polyline, point

Slope degree
Slope aspect
Curvature

Digital
elevation model 10 × 10 m Raster

Hydrological
factors

Topographic wetness index
Stream power index

Distance from drainage
Drainage density

Digital
elevation model 10 × 10 m Raster

Geological
factors

Lithology Geology map 2 1:50,000 Polygon
Distance from lineament

Lineament density Hill-shaded map 10 × 10 m Raster

Distance from fault
Fault density Geology map 1:50,000 Polyline

Land cover Land cover Land cover map 3 1:25,000 Polygon
1 Topographic digital maps were obtained from the National Geographic Information Institute, Korea; 2 Geological maps were obtained
from the Korea Institute of Geoscience and Mineral Resources, 3 and cover maps were obtained from the Ministry of Environment, Korea.

Topographic factors such as elevation, slope degree, slope aspect, and curvature were
extracted from a digital elevation model (DEM) created using a 1:5000 topographic digital
map from the National Geographic Information Institute (Figure 3). The topography of a
region is subject to erosion and sedimentation, which in turn affect the physicochemical
properties of the soil, and the concentration and movement of surface water and groundwa-
ter; thus, topography is one of the key factors that influences a wide range of environmental
variables [41].
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Hydrological factors include the topographic wetness index (TWI), the stream power
index (SPI), distance from drainage, and drainage density (Figure 4). Both TWI and SPI
are factors used to consider the flow characteristics of surface water and groundwater
according to topographic factors and are calculated using the following equations [42]:

TWI = ln
(

α

tanβ

)
(1)

SPI = As × tanβ (2)

where As is the specific catchment area, β is the local slope gradient, and α is the local
upslope area. In addition, the drainage density is a factor related to permeability and
surface runoff. Higher values of drainage density lead to lower values of permeability and
higher values of surface runoff. Moreover, drainage density has an indirect effect on the
study area’s groundwater potential [43]. The drainage density of each cell was calculated
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by dividing the surface area (km2) by the total length of the drainage (km) in the same cell.
The drainage density values were calculated using the line density function, whereas the
distances from the drainage were determined using the Euclidean distance function using
the ArcGIS 10.5 software.
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For the geological factors of this study, lithology, distance from lineament, lineament
density, distance from fault, and fault density were considered (Figure 5). These factors
were acquired from the geologic map (1:50,000) of the Korea Institute of Geoscience and
Mineral Resources. The lithology of the study area was classified into igneous rock, alluvial
rock A, alluvial rock B, and metamorphic rock. In this case, alluvial rocks were further
categorized according to permeability; alluvial rock A refers to permeable rocks composed
of sandstone and gravel, and alluvial rock B refers to non-permeable rocks composed of
shale and clay. The geomatica 2016 software (PCI Geomatics, Markham, ON, Canada)
was used to extract the lineament by utilizing a hill-shade map that was generated from
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the DEM. The hill-shade map was generated by rendering the images considering a solar
zenith angle of 45◦ and solar azimuth angles of 45◦, 90◦, and 135◦.

The land cover was extracted using a 1:25,000 sub-basin land cover map published by
the Ministry of Environment (Figure 6). The sub-basin land cover map divides the land
cover into 23 categories using the SPOT-5 image. In this study, these items were reclassified
into seven categories: urban, agricultural, forest, grassland, wetlands, bare land, and water.
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3.2. Selection of Groundwater Conditioning Factors

As many groundwater conditioning factors were considered in this study, selecting
the most appropriate variables by reducing redundancy played a key role in the evaluation
of groundwater potential. Removing noise in this way improves the model accuracy,
computation speed, and model analysis capability. Therefore, in this study, feature selection
was performed prior to model analysis.

In the present study, irrelevant and insignificant variables were selected using an
elastic net (Enet). As a regularized regression method, Enet is used to eliminate the ordinary
least squares regression method’s limitations. In this method, a penalty parameter is used
as a regularization parameter, which represents the bias added to the regression coefficient
in the equation [44]. The linear regression model that was used in the L1 regularization
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method is called the least absolute shrinkage and selection operator (LASSO), while the
model that used L2 is called a ridge operator [45].

Enet provides a balance between the two, because it uses a combination of the L1
and L2 regularization methods. The L1 regularization method aims to reduce the num-
ber of regression coefficients to zero to generate a sparse model. In comparison, the L2
regularization method has no constraint in the number of selected variables and supports
the grouping effect; this stabilizes the L1 regularization path [46,47]. Therefore, Enet re-
gression is prominent in the selection of variables due to its flexibility, variable group
selection feature, and variables being selected based on their correlation and predictive
capability [48].

3.3. Groundwater Potential Modeling
3.3.1. Random Forest

Ensemble is a method of generating multiple prediction models and combining them
to create a final prediction model. RF is a typical example of the ensemble method, which is
a tree-based ensemble algorithm that uses the concept of bagging. This unique learning and
prediction algorithm is popular as it facilitates the process using random data recursively
at each node of the tree and utilizes an error minimization method [49].

RF generates multiple bootstrapped samples using a given training dataset, and then,
uses them to create a prediction model by combining them. In this case, bootstrapping
is a type of resampling, where a large number of smaller samples of the same size is
repeatedly drawn with replacement, thereby ensuring the reliability of the prediction
model and contributing to the improvement of prediction performance. Notably, the data
not extracted are referred to as “out-of-bag (OOB)” and are used to estimate the prediction
error and evaluate the variable importance [50]. The class membership and design of the
model (output) are decided by a majority voting process among all trees [51].

3.3.2. Gradient Boost Machine

GBM, also known as gradient-boosted regression tree or gradient tree bosting, is a
boosting ensemble algorithm. As in the case of bagging, the boosting algorithm also gener-
ates multiple prediction models. In contrast to bagging, the boosting method sequentially
generates multiple decision trees using information from previously grown trees. More
specifically, in the gradient boosting process applied in this method, a gradient descent
algorithm that minimizes the loss for the entire ensemble is used to fit each tree to the
residuals of the previous model [26]. The final objective of the method is to minimize the
model bias by making the weak learner (each tree) focus on the “harder” samples [52].

3.3.3. Extreme Gradient Boosting

XGB is a boosting ensemble algorithm that can be regarded as an improved GBM.
The XGB model integrates several weak learners (each tree) to develop a strong learner
through additive learning [53]. Therefore, both XGB and GBM follow the gradient boosting
principle. However, XGB improves the training process and prevents overfitting. To
this end, XGB implements second-order derivatives to minimize the loss function and
obtain more accurate trees, whereas ordinary GBM uses first-order derivatives [25,30].
In XGB, parallel computation is automatically implemented during training to enhance
computational efficiency [53]. In addition, it incorporates various regularization features to
prevent overfitting. The final prediction of XGB is the sum of the weighted contributions of
all decision trees used [25].

4. Results
4.1. Feature Selection

Table 2 shows the results of applying the Enet algorithm to the fourteen groundwater
conditioning factors used in this study using the “glmnet” package. Enet has two tuning
parameters, λ and α, which represent the overall strength of the penalty and the balance
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between the L1 (LASSO) and L2 (ridge) penalties, respectively [44]. The optimized values of
λ and α were 0.05043 and 0.5, respectively, and were obtained using 10-fold cross-validation.

Table 2. Regression coefficients of conditioning factors in this study using Enet.

Regression Coefficient

(Intercept) 0.81012
Elevation −0.00009

Slope degree −0.00631
Slope aspect (North) –

Slope aspect (Northeast) 0.01545
Slope aspect (East) –

Slope aspect (Southeast) −0.01922
Slope aspect (South) −0.06565

Slope aspect (Southwest) –
Slope aspect (West) –

Slope aspect (Northwest) –
Curvature (Flat) –

Curvature (Convex) –
Topographic wetness index −0.00095

Stream power index –
Distance from drainage –

Drainage density −0.03666
Lithology (Alluvial rock A) 0.06866
Lithology (Alluvial rock B) –

Lithology (Metamorphic rock) –
Distance from lineament −0.00004

Lineament density –
Distance from fault −0.00002

Fault density –
Land cover (Farmland) −0.26278

Land cover (Forest) −0.22511
Land cover (Grassland) −0.03889
Land cover (Wetland) −0.36148

Land cover (Bare land) –
Land cover (Water) −0.47592

The results represent the importance (contribution) of the conditioning factors in
predicting groundwater potential. If the conditioning factor does not contribute to the
groundwater potential, the regression coefficient is left uncalculated. As a result, five
conditioning factors with no values (curvature, SPI, distance from drainage, lineament
density, and fault density) were excluded from the further analysis of groundwater potential
because these conditioning factors may negatively affect the accuracy of the model.

4.2. Groundwater Potential Mapping

The RF, GBM, and XGB models were trained using training datasets to design ground-
water potential models. To improve predictivity, each model should be optimized using
several hyperparameters. The parameters of each model were optimized using a grid search
algorithm based on the “caret” package in the training process. In the present study, GPMs
were obtained using RF, GBM, and XGB models based on these optimized hyperparameters.

Finally, the GPMs were reclassified into five possible groups using the natural breaks
classification method with characteristics of natural grouping inherent to the data. All of
the GPMs had a different range of groundwater potential index (GPI) values. In addition,
there is no specific standard to set a threshold for potential classes. Thus, we used the
natural breaks classification method that automatically determines thresholds according
to the principle of reducing the variance within the classes and maximize the variance
between classes [54].
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4.2.1. Random Forest

In the RF model, the “randomForest” package was used to obtain the groundwater
potential model. The parameter of ntree denotes the number of trees in the forest, whereas
the parameter of mtry denotes the number of variables tested at each node. The parameters
of ntree and mtry were optimized at the values of 370 and 3, respectively.

According to the results of the RF model, the GPI values ranged between 0.03–0.97. To
produce the GPM, these values were reclassified into the following five categories, based on
their potential: very low (0.03–0.18), low (0.18–0.36), moderate (0.36–0.56), high (0.56–0.76),
and very high (0.76–0.97). The area percentages of the classes were found to be 24.69%,
26.95%, 20.73%, 15.88%, and 11.76%, respectively (Figure 7a, Table 3).
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Table 3. Potential ranges and area distributions of each potential class of the groundwater potential maps (GPMs).

Class/Model
RF GBM XGB

Range 1 Area (%) 2 Range Area (%) Range Area (%)

Very low 0.005–0.215 24.67 0.026–0.182 34.66 0.313–0.398 25.96
Low 0.215–0.371 26.95 0.182–0.359 21.04 0.398–0.456 26.32

Moderate 0.371–0.542 20.73 0.359–0.559 14.76 0.456–0.520 20.75
High 0.542–0.729 15.88 0.559–0.762 14.15 0.520–0.595 14.74

Very high 0.729–0.997 11.76 0.762–0.969 15.39 0.595–0.702 12.23
1 Class range of each groundwater potential index produced by the respective model; 2 Area ratio of each class to the total area of the study area.

4.2.2. Gradient Boosting Machine

In the GBM model, a priori parameters of n.minobsinnode, interaction.depth, bag.fraction,
and shrinkage were optimized utilizing the “caret” package. Then, the groundwater model
was obtained using the “gbm” package. In this model, n.minobsinnode denotes the minimum
number of observations in a terminal node, interaction.depth denotes the maximum depth of
a tree, bag.fraction denotes the subsampling fraction, and shrinkage denotes the learning rate.
The optimization values for the parameters of n.minobsinnode, interaction.depth, bag.fraction,
and shrinkage were found to be 8, 8, 0.9, and 0.01, respectively.

According to the results of this model, the GPM was generated by reclassifying the
areas into the same five potential groups used to classify the RF model. The areas of very
low potential comprised 34.66%, whereas areas of low, moderate, high, and very high
potential comprised 21.04%, 14.76%, 14.15%, and 15.39%, respectively. The area percentage
of the very high potential class in the GBM GPM was found to be higher than that in the
GPMs generated by the RF and XGB models (Figure 7b, Table 3).

4.2.3. Extreme Gradient Boosting

The XGB model optimizes the greatest number of a priori parameters (six) compared
to other models. The XGB model optimized the parameters eta (learning rate) = 0.01,
max_depth (maximum depth of a tree) = 8, min_child_weight (minimum sum of instance
weight) = 1, subsample (subsample ratio of the training instance) = 0.7, colsample_bytree
(subsample ratio of columns) = 0.6, and gamma = 0.3, using the “caret” package; the
groundwater model was generated using the “XGBoost” package.

The results of this model indicate that the GPI ranged between 0.31–0.70. As for the
other models, these values were reclassified into five groups based on their potential levels:
very low (0.31–0.39), low (0.39–0.46), moderate (0.46–0.52), high (0.52–0.60), and very high
(0.60–0.70). The distribution of GPI values for each potential class showed similarity with
that of the GPM generated using the RF model. While the area percentages of the low
(26.32%) and high (14.74%) potential classes were lower than those calculated in the GPM
generated by RF, the area percentages of other classes were found to be slightly higher
(Figure 7c, Table 3).

4.3. Model Validation and Comparison

The performance and predictive capacity were analyzed using the ROC curve. The
ROC curve was plotted using the true-positive rate (sensitivity) and false-positive rate
(1–specificity). The area under the ROC curve (AUROC) was found to range between 0.5
and 1.0. A model’s classification accuracy is considered to be high when the AUROC is
>0.8. The AUROC values were analyzed for each GPM to determine their success rates;
all were found to be > 0.966. According to these results, all GPMs fit the data very well
(Table 4, Figure 8a). Moreover, the AUROC values of the predictivity were analyzed using
the validation dataset. According to the results, the XGB model provided the highest value
(0.818), followed by the GBM model (0.802,) and the RF model (0.794) (Table 4, Figure 8b).
These results reveal that the XGB model was the best groundwater prediction model among
the three models.
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Table 4. Parameters of the receiver operating characteristic (ROC) curve with the calibration and validation dataset.

AUROC Std. Error Asymptotic Sig. Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Calibration
dataset

RF 1.000 0.000 0.000 1.000 1.000
GBM 0.998 0.001 0.000 0.995 1.000
XGB 0.966 0.010 0.000 0.946 0.985

Validation
dataset

RF 0.794 0.049 0.000 0.698 0.891
GBM 0.802 0.048 0.000 0.708 0.896
XGB 0.818 0.045 0.000 0.730 0.906
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In addition, the GPMs produced from the three models were validated based on SCAI.
SCAI is the ratio of the percentage of groundwater pixels to the percentage of all pixels for
each potential class of the GPMs. Generally, SCAI values gradually decrease from very low
to very high [55,56], similar to the results of this study (Table 5). At the “very high” class,
the SCAI values of the RF, GBM, and XGB models were 0.09, 0.12, and 0.12, respectively.
Overall, the models used in this study were suitable for modeling groundwater potential.

Table 5. Seed cell area index values for the RF, GBM, and extreme gradient boosting (XGB) models.

% of
Pixels

Training Datasets Validation Datasets
Sum SCAI

No. of Wells % of Wells No. of Wells % of Wells

RF Very low 24.67 0 0.00 4 8.70 8.70 2.84
Low 26.95 0 0.00 7 15.22 15.22 1.77

Medium 20.73 0 0.00 3 6.52 6.52 3.18
High 15.88 8 7.48 15 32.61 40.09 0.40

Very high 11.76 99 92.52 17 36.96 129.48 0.09

GBM Very low 34.66 0 0.00 4 8.70 8.70 3.99
Low 21.04 0 0.00 7 15.22 15.22 1.38

Medium 14.76 4 3.74 2 4.35 8.09 1.82
High 14.15 20 18.69 12 26.09 44.78 0.32

Very high 15.39 83 77.57 21 45.65 123.22 0.12

XGB Very low 25.96 0 0.00 3 6.52 6.52 3.98
Low 26.32 2 1.87 6 13.04 14.91 1.76

Medium 20.75 17 15.89 4 8.70 24.58 0.84
High 14.74 21 19.63 15 32.61 52.23 0.28

Very high 12.23 67 62.62 18 39.13 101.75 0.12
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5. Discussion

This study was aimed to produce GPMs using the RF, GBM, and XGB models and
compare prediction performances of groundwater potential. The main concern as to test
the robustness und accuracy of the XGB model. The AUROC values of the all success
rate curves were relatively high, almost reaching a value of 1. Contrastingly, the AUROC
values of the prediction rate curves decreased by approximately 20%. In particular, the
prediction performance of the XGB model was superior to that of the RF and GBM models.
In addition, the difference between the success rate and prediction rate curves of the GPM
generated by the XGB model was found to be 0.148. This was the lowest value calculated
among the three models; the GBM model performed second best (0.196), followed by the
RF model (0.206).

These results present the same trend as the findings of previous studies. As mentioned
in introduction, the XGB model has been applied to various fields, but hardly to ground-
water research. Recent studies used the XGB model to predict groundwater level [57,58],
analyze groundwater salinity [59], and assess groundwater quality [60]. In these studies,
the XGB model had more accurate results compared to ANN, SVM, and multiple linear re-
gression methods. Especially, Naghibi et al. [61] assessed the groundwater spring potential
using RF, parallel random forest, and XGB models. All models yielded AUROC values of
approximately 86%, with the XGB model showing the highest values.

The superior results are likely due to the advantages of the XGB model. The XGB
model, which improves the loss function by Taylor expansion, provides gradient conver-
gence quickly and more accurately as compared to other methods. This model can handle
missing/sparse data and contribute to a higher speed/accuracy using cross-validation,
early stop, and parallel processes [31,39,62]. In addition, this model effectively avoids over-
fitting using many strategies, such as the normalization of the objective function, shrinkage,
and column subsampling [39]. Through these advantages, the XGB model ensures excellent
prediction performance, applying not only to classification, but also to linear regressions.

The GPMs proposed in this study can be used to establish a sustainable groundwa-
ter usage and management policy for the study area. For example, we compared the
groundwater potential areas and annual groundwater usage in each administrative district
(Figure 9). The groundwater potential areas were calculated via the ratio of the high and
very high potential classes from the GPM generated by the XGB model to each adminis-
trative district’s total area. The annual groundwater usage, as of June 2020, was obtained
from the Public Data Portal in Korea [63] and calculated as the percentage of the entire
study area.

Among the administrative districts, the annual groundwater usage in Haeundae,
Geumjeong, and Gijang accounted for more than 10% of the total groundwater usage in
the study area. However, the potential area ratio was relatively low in these districts as
compared to others. Therefore, these regions need efficient policy for a sustainable ground-
water use. The GPM, as reference data, could help to establish such policy and support
decision-making processes. In the future, the accuracy of the GPM can be further improved
by examining a wider range of groundwater conditioning factors for the study area, such
as hydraulic and hydrological factors, topography, pedological factors, and precipitation.
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6. Conclusions

In this study, GPMs for Busan Metropolitan City, South Korea, were created using
RF, GBM, and EGB models; the results were comparatively analyzed using AUROC and
SCAI, for which a spatial database of groundwater wells and groundwater conditioning
factors was constructed. Fourteen groundwater conditioning factors were obtained from
thematic maps obtained from the government and related organizations. These factors
were evaluated for their contributions to groundwater potential using Enet. Finally, nine
groundwater conditioning factors were selected, including altitude, slope degree, slope
aspect, TWI, drainage density, lithology, distance from lineament, distance from fault, and
land cover. Groundwater potential analyses and mapping were performed with these
nine groundwater conditioning factors using the RF, GBM, and EGB models. The GPMs
produced by RF, GBM, and EGB were evaluated using AUROC and SCAI. Overall, the
three GPMs exhibited good performance with the used training and validation datasets.
These results indicate that all the studied models were successful in creating GPMs for the
study area. Since the EGB model outperformed the RF and GBM models, it can improve
predictive performance with its powerful capability. It is suggested that the GPM generated
by this model in the present study can be used efficiently and cost-effectively to investigate
groundwater resources in Busan Metropolitan City. It can further be used to prepare
groundwater management plans for a sustainable use of groundwater resources.
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