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Abstract: As one of the 17 Sustainable Development Goals, it is sensible to analysis historical urban
land use characteristics and project the potentials of urban sustainable development for a smart
city. The cellular automaton (CA) model is the widely applied in simulating urban growth, but the
optimum parameters of variables driving urban growth in the model remains to be continued to
improve. We propose a novel model integrating an artificial fish swarm algorithm (AFSA) and CA
for optimizing parameters of variables in the urban growth model and make a comparison between
AFSA-CA and other five models, which is used to study a 40-year urban land growth of Wuhan.
We found that the urban growth types from 1995 to 2015 appeared relatively consistent, mainly
including infilling, edge-expansion and distant-leap types in Wuhan, which a certain range of urban
land growth on the periphery of the central area. Additionally, although the genetic algorithms
(GA)-CA model and the AFSA-CA model among the six models due to the distance variables, the
parameter value of the GA-CA model is −15.5409 according to the fact that the population (POP)
variable should be positively. As a result, the AFSA-CA model regardless of the initial parameter
setting is superior to the GA-CA model and the GA-CA model is superior to all the other models.
Finally, it is projected that the potentials of urban growth in Wuhan for 2025 and 2035 under three
scenarios (natural urban land growth without any restrictions (NULG), sustainable urban land
growth with cropland protection and ecological security (SULG), and economic urban land growth
with sustainable development and economic development in the core area (EULG)) focus mainly on
existing urban land and some new town centers based on AFSA-CA urban growth simulation model.
An increasingly precise simulation can determine the potential increase area and quantity of urban
land, providing a basis to judge the layout of urban land use for urban planners.

Keywords: an artificial fish swarm algorithm; machine learning; optimization; landscape indicators;
scenario simulation; sustainable urban development

1. Introduction

More than 56% of dwellers now from four corners of the globe resided in urban
areas, with increasing number of inhabitants reaching to 68% by 2050. China will see
an astonishing increase to 80% of the urban population in 2050 [1]. Due to the rapid
flow of people into urban areas across the past decades, the speed of urbanization is
projected to continue [2]. As a result, various problems, such as traffic congestion, landscape
fragmentation, and global warming, follow close on another [3–5]. Although the impact of
all these problems should not be contributed to human activities, some of them are partly
addressed by human’s behaviors. Henceforth, authorities and citizens across the world
together have taken action to regulate urban growth patterns. In the highly competitive
urban areas, the right spatial layout of limited land resources will be an effective means to
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reduce the influence of urban land growth. However, this spatial layout of urban growth
is unlikely to rely on a supply of maps and labors resembling the conditions in the last
decades because the competition is stiff and the technology develops fast. The smart
city is not just analyzing the urban development characteristics and human behaviors
but assisting with technology [6]. The improvements of technology applying in urban
simulation process allow us to study the potential trend and make various projections of
urban growth for consequent generations. With the aid of these technologies, it is easier
for relevant researchers to explore the spatial change trend of urban area and seek valid
planning alternatives for the sustainable development in cities.

The cellular automaton (CA) simulation model, which is a bottom-up and discrete
model with a series of cells, is the most widely used for projection of urban growth and
estimate the impact of urbanization [7,8]. At the global scale, Professor Li and his team
presented a fine spatial resolution of 1 km to project possible urban growth under shared
socioeconomic pathways in the Yangtze River Delta region, USA, and other representative
countries [9]. It is projected that the highest figure for these zones in the newly urban
land from current cropland by 2100 will reach to around 63%. At the local scale, to tackle
the problems between urbanization, such as land use, land planning policies, and the
unparalleled economic process, Yang et.al predicted the future land use patterns by 2030 in
the Beijing–Tianjin–Hebei, before studying historical land use characteristics in the past
15 years, with a combination of CA model and other effective models [10]. Taking into
government agent and residents agents, Xu et.al conquered the limitation of the impact
of human activities on urban growth cells to achieve the goal of learning heterogeneity in
various interactions [8]. However, the CA model is partly limited by the impact of spatial
variables closely related to urban growth, especially the weight parameter corresponding
to each spatial variable affecting directly the simulation accuracy [11].

It is necessary to reduce inaccurate and time-consuming possibilities in the subjective
determination process of the weight parameters of these variables [11]. Wu and Web-
ster [12] used binary logistic regression (BLR) to obtain the parameters in the CA model.
This method optimizes the smallest gap by calculating the difference between the simu-
lated result and the actual result. However, BLR is suitable for linear relationships, and
changes in urban land use and variables are non-linear [11]. Subsequently, many machine
learning methods have been combined with CA models, such as evolutionary algorithms
(e.g., genetic algorithms (GAs)), swarm intelligence methods (e.g., ant colony algorithms
(ACOs) [13]), the particle swarm optimization (PSO) algorithm [14], biogeography-based
optimization (BBO) [15]), artificial neural networks [16], and support vector machine [17].
However, artificial neural networks work as “black boxes”, which is not conductive to the
interpretation of the principle [11,18]. PSO is mainly used for continuous problems, and
may fall into local optima, whereas the ACO algorithm has certain requirements for the
parameters, and is slow to converge [19]. The BBO optimization unconstrained problem
can obtain good optimization results, but because the traditional gene transfer method
is less efficient in obtaining information, it can only use the existing information of the
population [20]. GA selects individuals through crossover and mutation, but the selection
probability of crossover and mutation directly affects the convergence of the algorithm [21].

The artificial fish swarm algorithm (AFSA) is one of the most advanced swarm intel-
ligence algorithms [22]. This algorithm is a behavior-based algorithm that was inspired
by the social behaviors of fish, and it combines artificial intelligence technology with bi-
ology [23,24]. The AFSA algorithm has the characteristics of a fast convergence speed,
insensitivity to the initial values, strong adaptability, and strong fault tolerance [25]. As a
result, it is better able to optimize non-linear functions in complex environments. In addi-
tion, the strong fault tolerance helps it to jump out of locally optimal solutions. Therefore,
when the AFSA algorithm is applied to global optimization, it has distinct advantages over
the other algorithms [26,27]. It has also been used in many different applications, including
engineering problems [28–30], biological problems [25], and trial and error detection [31].
Liu et.al detected the weak character signal by optimizing the system parameters with
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AFSA [32]. Zhao et.al identified true flaws without any prior knowledge about structures
integrating AFSA and the artificial bee colony [29], while AFSA is used to solve large-scale
reliability-redundancy allocation problem [33], and it is applied to solve the o–1 multidi-
mensional knapsack problem in the study of Md. Abul Kalam Azad et al. [30]. To date,
although the AFSA algorithm has been applied in many different fields, to the best of our
knowledge, it has not been used in urban growth research.

Sustainable development is to satisfy the needs of current people without doing
harm to the future generation’s lives. Wuhan is an important part of the regional urban
development system of China. It is the largest transportation network hub in China, and
plays a crucial role in shaping the national agricultural strategy. With the potentials of
urban growth simulation, it is easier to analyze the historical characteristics of urban
areas and provide the spatial planning references on urban areas through quantitative
analysis and the efficient technology [34]. Henceforth, the contributions of our study may
be multiple. Firstly, the urban land in the study area was spatially linked to various urban
growth-related variables. The traffic road variable was calculated by the Euclidean distance
to obtain raster data. The AFSA algorithm and five other comparison methods were used to
obtain the weight features of all the variables. BLR was applied to establish the relationship
between the urban land-use change and a set of related variables. The weight parameters
of the AFSA, ACO, BBO, PSO, and GA algorithms were then optimized in the MATLAB
environment. Once the urban cell conversion probability was calculated, the various
integrated CA models were then used to simulate the urban growth changes from 2005 to
2015 in Wuhan. Finally, after the model assessment, the urban land use for 2025 and 2035
was predicted by the integrated urban growth models. The main intention of this study is
to propose a possible solution for urban growth simulation: (1) to determine the weight
parameters of driving variables about urban growth, (2) to explore the characteristics of
historical urban growth patterns in local scale, and (3) to provide potential projections
under three simulation scenarios with relatively reasonable urban growth simulation model
(approximately 20 years).

2. Case Study Area and Data
2.1. Study Area

Wuhan, the capital city of Hubei province in China, has an area of about 8494.41 km2

(Figure 1). With one of the largest transportation network hubs in China, Wuhan plays
a key role in shaping national agricultural strategy. Wuhan’s urban development has
followed the growth modes of axis development, ring filling, and annular layer expansion
(Chen et al., 2019). In early 2019, Wuhan issued a new urban plan for the time period of
2017 to 2035. According to the new plan, the entire city of Wuhan is divided into four
groups: the central activity area; the deputy city centers; the new city centers; and the town
center areas, which are represented using different shapes and colors in Figure 1. The city’s
three rings divide the city into the following areas: the central activity area, the deputy city
centers (which include Jianghan Bay, Sixin, Nanhu, Luxiang, Yangchunhu, Songjiagang,
Wuhu, Yujiji, Zhuankou, and Leopard), and other areas. The group/town centers are the
sub-districts or townships. Based on the new plan, Wuhan will not be a traditional urban
city, as most sites will be unique areas, such as Jiangxia, Wulijie, and Cangjie. There is also
a growing inconsistency between urban land use and cultivated land protection in Wuhan.
Hence, it is crucial to improve the urban economic development of Wuhan by optimizing
the allocation of land resources.
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2.2. Data Acquisitions

The data used in this study can be roughly divided into two categories: land-use data
and auxiliary data (Table 1). A span of ten years can reveal comprehensively the historical
characteristics of urban growth and the reasonable potentials of future urban areas. The
first two periods are used to determine the weights of variables, and the last one is for
optimizing the model. The land-use datasets (1995, 2005, and 2015) were obtained from the
Data Centre for Resources and Environmental Sciences at the Chinese Academy of Sciences
(http://www.resdc.cn/data.aspx?DATAID, accessed on 18 January 2021). The accuracies of
these datasets are 92.90%, 94.30%, and 93.00%, respectively [35], and the spatial resolution is
30 × 30 m. The remote sensing interpretation of the land use was mainly based on Landsat
Thematic Mapper /Enhanced Thematic Mapper Plus and Landsat 8 remote sensing data.
The data projection system was the Albers equal-area Conic projection. The south standard
parallel was 25◦ N, the north standard parallel was 47◦ N, and the central longitude was
105◦ E. The origin of the coordinates was the intersection of the central longitude and the
equator. In line with the aim of this study, we extracted data from the designated regions
and reclassified the data into three categories on the basis of the land-cover use: urban,
non-urban, and water.

http://www.resdc.cn/data.aspx?DATAID
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Table 1. The response and explanatory variables used in this study.

Dataset Type Year Full Meaning Acquisition
Method Purpose

LUD1 GRID 1995 Land-use in 1995 Reclassification To create the land-use patterns
LUD2 GRID 2000 Land-use in 2000 Reclassification To create the land-use patterns
LUD3 GRID 2015 Land-use in 2015 Reclassification To create the land-use patterns
D-nat Shpfile 2015 Distance to national road Euclidean distance Global driving factor
D-hig Shpfile 2015 Distance to highway Euclidean distance Global driving factor
D-pro Shpfile 2015 Distance to provincial road Euclidean distance Global driving factor
D-rai Shpfile 2015 Distance to railway Euclidean distance Global driving factor
D-cou Shpfile 2015 Distance to country road Euclidean distance Global driving factor
POP GRID 2015 Population Resample Global driving factor
DEM GRID 2015 Digital elevation model Resample Global driving factor
GDP GRID 2015 Gross domestic product Resample Global driving factor
NEI GRID - Neighhood cell - Local driving factors

It is not necessary for urban land models to include all the relevant factors, especially
in the case of non-sensitive factors [36]. Considering the natural and economic situation
in Wuhan, the transportation network, population (POP), digital elevation model (DEM),
and gross domestic product (GDP) were selected as the auxiliary data in this study. The
auxiliary data were traffic data (distance to roads), natural attribute data (e.g., DEM),
social attribute data (e.g., GDP and POP), and planning data. The distance to different
levels of road and the DEM data were obtained from the Geospatial Data Cloud Platform
(http://www.gscloud.cn/sources/accessdata/310?pid, accessed on 18 January 2021), then
we used the Euclidean distance to calculate the spatial distance. GDP and POP data were
also obtained from RESDC (http://www.resdc.cn/data.aspx?DATAID, accessed on 18
January 2021). The time span of these factors was the year of 2015. The planning data were
extracted from the urban master planning map (2015–2030 and 2018–2035) produced by
the City Planning Office of Wuhan.

3. Methodology

In this study, we developed a novel combined model (AFSA-CA) to simulate urban
growth. As shown in Figure 2, the proposed model includes the following main steps:

(1) Preparation of training data: the land-use data are reclassified and divided into urban
land, non-urban land, and water. Each variable is then associated with each grid cell
in the study area, and the Euclidean distance is used to calculate the distance to each
level of road.

(2) Optimized the parameter of each variable: In the MATLAB R2014 a software environ-
ment, the acquired data samples are used to obtain the weight of each variable by the
six methods (BLR-CA, ACO-CA-CA, BBO-CA, PSO-CA, GA-CA, and AFSA-CA).

(3) Calibrating CA models for urban growth land simulation: the conversion probabilities
acquired by the six methods are applied to calibrate the urban land expansion model
with the cell neighborhoods, the constraint coefficients, and random factors.

(4) Accuracy assessment: The performance of the calibrated models is evaluated us-
ing a visual comparison, the Kappa coefficient, and the figure of merit (FoM), and
landscape indicators.

(5) Future scenario simulation: the proposed model (AFSA-CA) is applied to simulate
the urban land growth in 2025 and 2035 under different scenarios.

http://www.gscloud.cn/sources/accessdata/310?pid
http://www.resdc.cn/data.aspx?DATAID
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3.1. The Urban CA Model

The urban CA model is composed of unit space, unit, unit state, neighborhood,
conversion rule, and time. The acquisition of conversion rules is the core of the urban CA
model [37]. In the simulation of urban land use growth, the conversion probability of a
cell can be determined by a multi-criteria judgment method based on a series of factors.
Since these factors and the development of land cells do not meet the conditions of normal
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distribution, we can use logistic regression technology to modify the urban CA model [38].
The conversion probability of the study area is summarized by the following formula:

Pg(sij = urban) =

(
1 +

n

∑
i
(−(a0 + ωixi))

)−1

(1)

In the formula, Pg is the global transformation probability, Sij is the state of the cell,
a0 is a constant, xi is a series of influence factors, and ωi is the weight corresponding to
each factor.

Considering the spatial compactness, urban planning, and subjective constraints, etc.,
neighborhoods (Neib), constraints (Suit), and random factors (Rand) are usually added to
the urban CA model. Neib means that the central cell is affected by other surrounding cells,
which can be expressed as:

Neib =
∑ con(Uij = urban)

n× n− 1
(2)

In the formula, con () is a conditional function, assuming Uij is a city cell, then con ()
returns 1; if Uij is a non-urban cell, con () returns 0.

Suit represents the constraint conditions in the urban land growth simulation, which
can be expressed as:

Suit = con(Tij 6= water) (3)

In the formula, Tij represents the land use type of the cell. If Tij is a water area, con ()
returns 0; otherwise, it returns 1.

Rand represents the random interference function, used in the urban CA model to
reflect the uncertainty of urban land use changes, which can be expressed as:

Rand = 1 + (− ln(a))k (4)

In the formula, a is a random number of [0,1], and k is a parameter that controls the
degree of influence of a, and the value is an integer of [1,10].

In summary, the transformation probability Pg, the neighborhood constraint Neib, the
constraint factor Suit and the random variable Rand are multiplied to modify Pg, which can
be expressed as:

Pg =

(
1 +

n

∑
i
(−(a0 + ωixi))

)−1

× Neib× Suit× Rand (5)

Set the threshold Pthre for transforming non-urban cells into urban cells, and compare
Pg with the magnitude to determine the state of Uij at t + 1. When Pg > Pthre, Uij is
transformed into a city cell, otherwise, Uij keeps the original state of the cell.

The simulation process for each cell can be summarized as follows: the cell can only
change if it conforms to the development probability. The simulation period in this study
was divided in two phases: calibration of the model for 2005–2015, and simulation of the
future land use.

3.2. Six Optimization Methods

In Section 3.1, a series of factors have different effects on urban cell transformation.
Here, we call the degree of this effect the weight parameter of each factor. A cost function is
usually designed for solving optimization problems. Mathematical or intelligent methods
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are then applied to obtain the parameters that minimize the objective function. The function
can be depicted as: 

f (x) =
n
∑
i
( fai − fsi)

2

fsi =

(
1 +

n
∑
i
(−(a0 + ωixi))

)−1 (6)

where f (x) represents the objective function (Equation (1)); fai and fsi represent the actual
land-use state and the simulated land-use state, respectively, which is made up of the urban
land state (1) and non-urban land state (0); a0 is a constant; and ωi is the weight of factor xi.

We propose a new algorithm, artificial fish school algorithm, to obtain the optimal
parameter combination of influencing factors, and construct AFSA-CA. The BLR and other
intelligent algorithms with the optimized CA model are compared with it (Figure 2).

3.2.1. AFSA Optimization Process

The AFSA algorithm is inspired by the natural behavior of fish populations, and
applied to solve similar optimization problems [39]. For optimization problems, the food
concentration optimization variable around an artificial fish corresponds to a parameter
solution set. Assuming that there are m spatial variables corresponding to the parameters
of m + 1 spatial variable, the dimension of the food concentration is m + 1; the optimal
value of food concentration indicates the pros and cons of the solution.

It has powerful search capabilities, is not prone to falling into local optima, and
helps to achieve global optimality. It also features a robust design, simple operation,
and flexibility of use [39]. Through continuous learning and repeated trials of the selected
models, the field of view of the artificial fish and the step size (Equation (7)) are dynamically
adjusted to speed up the search and improve the balance between the global and local
search capabilities, in addition to generating search points to find a better location.

Step = Stepmax − (Stepmax − Stepmin) ∗ Step/MAXGEN

Vision = Visionmax − (visionmax − visionmin) · step
/

MAXGEN (7)

The vision parameter is equal to the visual range of AFSA, and vi is the position where
AFSA wants to move in the visual range. If vi has a better environment than the current
position v, it goes without saying that AFSA moves toward vi. Distv−vi represents the
distance moved and is calculated from the Euclidean distance (Equation (3)).

Distv−vi =
2
√

∑D
d=1(v− vi)2 (8)

At the end of each iteration of executing the AFSA algorithm, the vision value is
updated. Xiaolei et al. (2002) found that when the step size of AFSA is set as a larger value,
and the larger the vision parameter value, the faster the convergence, but after convergence,
it is necessary to search for a better position to avoid local search. If the vision value is set
as a smaller value, the convergence speed drops sharply. Therefore, the dynamic vision
and step values should be set to fit the global search.

In order to solve the problem of determining the maximum value, the AFSA algorithm
uses the idea of collective cooperation, i.e., the higher the physical concentration of artificial
fish, the closer the value for the artificial fish will be to the optimal solution. Figure 3 is used
to describe the process of determining the solution domain, where G1 is the global optimal
solution, L1 is the constrained optimal solution, and Y represents the set of global optimal
solutions. On this basis, it is possible to find a more accurate global optimal solution for the
solution field. In fact, the center of gravity is usually considered to be the global optimal
solution in the range of the solution domain.
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The behavior of the artificial fish is divided into four groups: clustering, randomiza-
tion, chasing, and foraging. The best position is then determined by evaluating the values
obtained by analyzing these behaviors. As in the other intelligent bionic algorithms, the
AFSA algorithm first initializes the parameters and randomly generates initial values. The
parameters of the AFSA algorithm include the total number of artificial fish, the try number,
the number of iterations, the maximum number of iterations, the move step of the artificial
fish, the crowding factor, and the field of view (Table 2).

Table 2. Algorithm parameter set.

Set Parameters Expression Form Significance

Total number N A set of candidate solutions
Try_number Try_number Maximum number of heuristics per move

Iterations NC Number of repetitions
Max-iterations NC_max Maximum number of repetitions

The artificial fish movement
distance step Distance of each step

Crowding factor δ Judgment on merits of the environment
Field of view vision Range of vision

Through the neighborhood search, the relevant information is obtained to determine
the best information. If, through evaluation, it is found that the searched information is
better than the information displayed on the bulletin board, the bulletin board is updated
to achieve optimization; otherwise, the search continues. The entire process of the AFSA
algorithm is shown in Figure 4.



Sustainability 2021, 13, 2338 10 of 25

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 26 
 

to achieve optimization; otherwise, the search continues. The entire process of the AFSA 
algorithm is shown in Figure 4. 

 
Figure 4. Flowchart of the artificial fish swarm algorithm (AFSA) algorithm. 

The following are the behaviors of artificial fish: 
(1) AF-Prey  

AF-Prey denotes the most basic behavior of living creatures. Since the basic behavior 
of artificial fish is foraging, the algorithm functions by observing the winding process 
close to a food site in water. This is done by pinpointing the high concentrations of fish in 
the water, determined by their direction of swimming, which in turn signals a high food 
concentration. 

()RandVisualXX ij ⋅+=
 (9)

In formula (9), iX is the information regarding the current position of an artificial 
fish. Within a certain range of perception, the artificial fish randomly selects their next 
point and obtains another position jX . To better simulate randomness, the Rand () func-
tion is added, with a value range from 0 to 1. Since the maximum and minimum values 
can be interchanged in function optimization problems via functions such as inverse, the 
choice of maximum and minimum values is dependent on the actual problem. If the value 
to be optimized is a maximum value, i.e., iY  < jY , the artificial fish moves one step to-
ward the randomly selected direction. The mathematical expression is illustrated as fol-
lows: 

Initialize AF scale N, initial position of each artificial fish, parameters of visual field Visual, 
Step, δ, Try_number and NC_max

Start

Calculate the fitness of each artificial fish and compare it with the status of the bulletin 
board. If it is weaker, assign it to the bulletin board.

AF-Prey AF-RamdomAF-FollowingAF-Assembling

Each artificial fish updates its position with four behaviors

Check if termination conditions are met

Output the optimal parameters

The End

No

YES
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The following are the behaviors of artificial fish:

(1) AF-Prey

AF-Prey denotes the most basic behavior of living creatures. Since the basic behavior
of artificial fish is foraging, the algorithm functions by observing the winding process
close to a food site in water. This is done by pinpointing the high concentrations of fish in
the water, determined by their direction of swimming, which in turn signals a high food
concentration.

Xj = Xi + Visual · Rand () (9)

In formula (9), Xi is the information regarding the current position of an artificial fish.
Within a certain range of perception, the artificial fish randomly selects their next point
and obtains another position Xj. To better simulate randomness, the Rand () function is
added, with a value range from 0 to 1. Since the maximum and minimum values can be
interchanged in function optimization problems via functions such as inverse, the choice
of maximum and minimum values is dependent on the actual problem. If the value to be
optimized is a maximum value, i.e., Yi < Yj, the artificial fish moves one step toward the
randomly selected direction. The mathematical expression is illustrated as follows:

Xt+1
i

= Xt
i
+

Xj − Xt
i

‖Xj − Xt
i‖
· Step · Rand () (10)

Conversely, if the value that needs to be optimized is a minimum value, i.e., Yi > Yj,
the artificial fish moves a step forward. If the above-stated conditions are not satisfied, it
is necessary to randomly select the state of the resulting movement to predict the future
movement. If the conditions for actualizing forward motion are still not obtained after
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many attempts, a random direction can be chosen to affect forward movement. The
function equation for random movement is as follows:

Xt+1
i

= Xt
i
+ Visual · Rand () (11)

(2) AF-Assembling

Fish generally select their swimming direction based on the behavior of other fish.
Swimming in groups, which is called aggregation behavior, is not only convenient for
foraging, but also offers protection against predators. In the case of fish, the fish group
does not require a leading fish as the fish choose their surroundings based on each other’s
relative motion.

This behavior of fish groups for foraging and protection maintains their survival.
Therefore, as an algorithm, every fish should move as close as possible to the center of their
surroundings and avoid crowding. This can be described, mathematically, as follows:

Xt+1
i

= Xt
i
+

Xc − Xt
i

‖Xc − Xt
i‖
· Step · Rand () (12)

where Xi denotes the current position information of the artificial fish. When dij < vision, the
surrounding neighborhood of the artificial fish is searched. When the average concentration
of central food in the neighborhood is greater than the average concentration of food in
the neighborhood where the artificial fish are located, the location is considered to be
optimal, and the artificial fish are then moved to the new central position; otherwise, they
feed directly.

(3) AF-Following

Fish ascertain their movement based on the swimming direction of other fish; when
they receive information about a better location with more food, they quickly follow the
fish or fish group to reach the new location. In rear-end behavior, each artificial fish moves
toward a position of higher value, followed by the fish or fish group. This behavior is used
in the optimization algorithm, and can be calculated as follows:

Xt+1
i

= Xt
i
+

Xj − Xt
i

‖Xj − Xt
i‖
· Step · Rand () (13)

where Xi is the current positional information of an artificial fish. When dij < vision, the
surrounding neighborhood of the artificial fish is searched. When the average concentration
of central food in the neighborhood is found to be greater than the average concentration of
food in the neighborhood where the artificial fish are located, the new position is considered
to be better, prompting movement of the artificial fish to this central position; otherwise,
they feed directly.

(4) AF-Random

It is unique to see fish swimming freely in the water, which is manifested in the
form of a haphazard swimming direction. In essence, this random behavior of fish is
aimed at enlarging the scope of their field of search, to reach a position with greater food
concentration.

This random behavior of fish is to find optimal solutions in a fast way, i.e., the range of
the fish’s vision is adjusted, a state is randomly selected, and the fish swims in that direction.
However, this random foraging behavior is usually not rigorous. The pseudo-code of the
AFSA algorithm is shown in Table 3.
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Table 3. The pseudo-code of the artificial fish (AF) algorithm is given in Algorithm AF.

Algorithm 1: The Pseudo-code of the AF Algorithm

Procedure the initial artificial fish swarm
Set gen = 1

While gen <= MAXgen
Print the food consistency and positions for fishes

Assess the print result
Calculate the behavior

Float AF-prey
Float AF-follow
Float AF-swarm
Float AF-random

If the maximum of the dependent > the best of the gen
Produce the best solution

And if
Define the best solution

Record current best solution
Gen = gen + 1

End repeat

3.2.2. Five Optimization Methods for Comparison

BLR is an empirical technique utilized for modeling urban growth where binary values
are dependent and independent in the SPSS software. BLR can be used to easily establish
the contribution of every urbanization driving force as an independent variable [40]. The
dependent variable takes the value of 1 (changed cell) or 0 (non-changed cell), and is
estimated as shown in the following formula:

BLR = exp(a0+ai∗xi)/(1 + exp(a0+ai∗xi)) (14)

However, since the study of urban dynamics needs to consider both the spatial
and local characteristics of the independent variables, BLR is a static model with serious
defects [11]. However, we can take this traditional method as a base comparison.

These swarm intelligence optimization algorithms (ACO, BBO, PSO, and AFSA) are
among efficient optimization algorithms. To achieve the optimal optimization results,
it is sensible to simulate complex, intelligent swarm behaviors between simple animal
individuals, such as their information interactions and collaborations. Although the design
ideas of these algorithms are different, and the performance and application fields have
some limitations, these algorithms generally have some commonalities.

(1) Animals tend to form small social groups. Thus, individuals need to rely on the
power of group cooperation to survive and perform activities.

(2) In terms of information exchange, social groups survive through information ex-
change. The ACO algorithm interacts with the information of pheromones, while the
PSO and AFSA algorithms directly interact with the current position information.

(3) Positive feedback is required, and effective suppression is also required. For example,
the ACO algorithm relies on the pheromone evaporation mechanism and AFSA
introduces a “crowding” factor.

(4) The algorithms avoid falling into local extrema and introduce random factors. For
example, the ACO algorithm selects paths randomly, a random number is used in
PSO, and random steps are used in AFSA.

For the comparison, the intelligent algorithms were calibrated using the same samples.
The basic principle of ACO is to find the path by randomly selecting attribute nodes. Due
to this kind of random selection of attribute nodes, it is a relatively time-consuming process.
Therefore, a heuristic function is introduced into the search process to save search time.

The BBO algorithm is an optimization algorithm based on biological population,
which was proposed by Simon in 2008 [41]. The living environment of each biological
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species contains characteristic variables, such as temperature, precipitation, and landform,
which jointly determine the capacity of this habitat. Habitat capacity is usually expressed
in terms of a fitness index. The higher the fitness index, the more population the habitat
contains. Two indicators that directly reflect habitat fitness are the immigration rate and
out-migration rate. This species migration model is shown in Figure 5.
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As can be seen in Figure 5, the immigration rate is decreasing and the out-migration
rate is increasing. Assuming that the probability of S is Ps, then the probability of P being
in the time range from T to ∆t is denoted as

Ps =


Ps+1µs+1 − Ps(λs + µs)

Ps−1µs−1 + Ps+1µs+1 − Ps(λs + µs)
Ps−1µs−1 − Ps(λs + µs)

(15)

When the species population number reaches Smax, P = [P0, P1, · · ·, PN ]
T , then P can

continue to be expressed as follows:

A =



−(λ0 + µ0) µ1 0 · · · 0

λ0 −(λ1 + µ1) µ2
. . .

...
...

. . . . . . . . .
...

...
. . . λn−2 λ0 µn

0 · · · 0 λn−1 −(λn + µn)


(16)

The difference between the PSO and ACO algorithms is that the flying space of
birds requires not only a range of vision, but also the movement speed, to determine the
probability of getting food. The basic principle of the ACO algorithm is that there are n
particles in a group searching in a certain space S, where each particle records its original
position and flight speed. When the search reaches the optimal solution, it compares this
with the other optimal solutions in the group, and updates its position in time to obtain
the global optimal solution. Generally speaking, the position and velocity functions of
particles are expressed as follows:

νi = ω · νi0 + c1 · rand () · (li − xi0) + c2 · rand () · (Gi − xi0) (17)

xi = xi0 + νi (18)

where w represents the inertia value; vi0, vi represent the initial speed and the running speed
of the particles; xio and xi represent the initial position and the position of the particles; and
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li and Gi represent the local and global optimal solutions. C1 and C2 represent the learning
factors and are usually between 0 and 2. Rand () represents a random number, which is
usually between 0 and 1.

The concept of GAs was first developed by Holland in 1960, following the original
evolutionary process of “survival of the fittest” and “natural selection” [42]. GAs consist of
two important steps: crossover and mutation. Crossover retains the best chromosome of
each individual, while mutation creates mutated offspring.

All of these algorithms can be applied to optimize the variable of model urban growth
model, as relatively good alternatives to traditional search [31,43]. Beginning with the
initial population of each grid cell, the process is run for 50 generations, to search for better
rules for each grid cell, in order to define the parameters of the variables and the constant
values. In this study, the obtained rules for 2005 could then be used to predict the values
for 2015. The same rules could also then be applied to simulate the future values for 2025
and 2035.

3.3. Accuracy Assessment

The six optimization methods are to calibrate CA model under the same data back-
ground (land use data and variable data) and equipment environment. The simulation
assessment of CA models needs robust proof (Jenerette and Wu, 2001). Visual inspection is
one way to compare the actual and simulated areas (Ward et al., 2000). In this study, we
also validated the agreement of the CA models using statistical methods, including the
Kappa coefficient, FoM [44], urban accuracy (UA), and total accuracy (TA). The range of
the Kappa coefficient is from 0 to 1, with a higher value representing stronger agreement
(McHugh, 2012). The FoM value contains three indices: hits, misses, and false alarms. The
hits indicate correctly forecast urban growth cells; misses represent actual urban growth
cells that are missing in the simulation; and false alarms indicate disagreement between
the actual and simulated cells. UA and TA are point-to-point checks. The formulas for the
statistical measures are as follows:

Kappa = (P0 − Pc)(1− Pc) (19)

Pc =
(a1 × b1 + a2 × b2)

n2 (20)

where P0 is the ratio of the number of correctly simulated grid cells to the total number of
grid cells, and Pc is the ideal consistency. a1 and b1 denote the actual and simulated urban
cells, respectively. Similarly, a2 and b2 represent the actual and simulated non-urban cells,
respectively.

FoM =
Hits

Hits + Misses + FalseAlarms
(21)

where “Hits” are the number of actual or simulated urban cells; “Misses” are simulated as
non-urban cells; and “FalseAlarms” are simulated as urban cells, but are not in fact actual
urban cells.

Landscape indicators can measure the spatial urban form [11,45]. We choose three
landscape indicators to measure the form of urban growth: the number of urban patches
(NP), average perimeter ratio (PARA_MN) and average Euclidean nearest neighbor dis-
tance (ENN_MN). NP refers to the number of patches in urban land use, ENN_MN is
the shortest linear distance between a patch and its same neighbor defined by Euclidean,
and PARA_MN is the ratio of the perimeter to the area of the urban patch. NP_MN and
ENN_MN can be used to measure the fragmentation of land use patterns, while PARA_MN
describes the regularity of urban patches.

Merely describing the various characteristics of the patch is not enough to verify the
accuracy of the simulation. The landscape similarity (Sl) proposed by Chen, Li, Wang, Liu
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and Ai [45] can be used to calculate the similarity between simulation and real urban land
growth. The specific formula is shown in Equation (18):

Sl = 1− 1
n

n
∑
i

∆li

∆li =
|lis−lia |

lia
× 100%

(22)

4. Results
4.1. Actual Urban Growth Characteristics during the Periods of 1995–2005 and 2005–2015

We first reclassified the land use data in the study area and extracted the land use in
two periods for superimposition (1995–2005 and 2005–2015). Due to the study of urban
land use growth, we regard the water area as the land use type as unchanged, so it is the
water area in early 1995. Then we identified the spatial distribution and growth types of
newly added urban land (Figure 6). As mentioned earlier, the change in water area was
considered in this study to be negligible, and the water area was considered to be a constant.
The urban land growth of Wuhan dramatically changed during the two periods. In 1995,
Wuhan’s non-urban land made up 76.4% of the total, and by 2005, this had decreased
to 75.4%. During this period, the urban land increased from 310.36 km2 to 371.2 km2.
However, from 2005 to 2015, the urban land use increased significantly, to 508.86 km2. The
red and pink areas mainly appeared near the existing urban land. In addition, the urban
growth types from 1995 to 2015 appeared relatively consistent, mainly including infilling,
edge-expansion and distant-leap types. In the first period (1995–2005), many urban patches
of edge-expansion type were found in the existing urban land and few urban patches of
distant-leap type appeared around the third ring. In the second period (2005–2015), many
urban patches of infilling type appeared near Wujiashan and Jinyinhu, and the urban
patches of distant-leap type were found in existing yellow zones. However, the patches of
edge-expansion type were decreasing. Consequently, the urban land growth was not only
concentrated in the central area, but it also showed a certain range of urban land growth
on the periphery of the central area.
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4.2. Optimized Parameters of Driving Factors in Six Methods

In this study, the driving factors were the distances to national road, highway, provin-
cial road, railway, and country road, plus POP, DEM, and GDP, calculated by the Euclidean
distances (Figure 7). Then, the training sample points of the urban grid cells and non-urban
grid cells were used to establish a spatial link with the driving factors. Thirdly, these points
with other constraint factors were used to calibrate the CA transition rules for 1995 to 2005
by the AFSA algorithm and the other methods.
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We conducted the experiments on a computer with an AMD Ryzen i5-4460 CPU@
2.30 Hz, 8.00 GB memory and Windows 7. In the MATLAB R2014a environment, the
optimized AFSA code, as discussed in attachment materials, was run to obtain the optimal
weights of the driving factors, after a number of experiments. The initial “vision” value was
Xmax/2 (where Xmax denotes the maximum visual search range); the dynamic step size
was visual/8; the minimum value of visual was 0.2; the maximum value was 10; and the
minimum and maximum values of the step size were 0.02 and 10, respectively. MAXGEN
represents the maximum number of iterations. The parameter weight combination value
(Table 3) is mostly negative.

In this study, the swarm intelligence algorithms and the BLR method were chosen to
establish a model comparison. The swarm intelligence approach has a wide range of applica-
tions, robust design, and greater application value. The BLR method is an empirical model
that requires a linearly independent variable, and is typically used to define the relationship (0
or 1) between one or more driving factors and the actual binary reality. The weight values of
the CA parameters obtained using the various models are listed in Table 4. Since the urban
growth area is negatively correlated with distance, the distance should be negative. Among
the six models, however, only the GA-CA model and the AFSA-CA model fit the facts. In



Sustainability 2021, 13, 2338 17 of 25

addition, the POP variable should be positively correlated with the urban growth, but the
parameter value of the GA-CA model is −15.5409.

Table 4. The parameters of the cellular automaton (CA) models.

Variable BLR-CA ACO BBO-CA PSO-CA GA-CA AFSA-CA

D-nat −4.3100 −10.1042 −5.2933 −3.9468 −16.4928 −4.9734
D-hig −5.4880 −0.5539 −8.2734 −4.1205 −2.1272 −1.1546
D-pro −4.6970 1.9882 4.0829 1.0876 −3.2782 −19.5246
D-rai −10.238 −3.1680 −13.6067 −1.5529 −15.2515 −2.1672
D-cou 0.9850 6.0789 −6.9345 8.4651 −18.3324 −1.2427
POP 1.6110 −3.1961 12.7117 9.6026 −15.5409 1.1224
DEM −7.4510 9.0272 14.4608 15.9637 −15.0850 1.4027
GDP 0.0450 −2.2814 −8.2408 16.8328 −4.7409 −17.7256

Constant −1.4580 −4.1444 −14.431 −4.1565 −4.1230 −0.3092

4.3. Simulated Results of Six Optimized CA Models

After acquiring the transition probability matrix using ArcGIS, the results were input
into the CA model to simulate the urban land-use change of Wuhan from 2005 to 2015. The
urban land growth simulation experiments were implemented in Matlab 2014a. According
to the previous literature and constant trial and error experiments, we selected the 7 × 7
extended Moore neighborhood and 2 as a parameter that controls the degree of Rand [18].
After obtaining the conversion probability of each cell according to formula 5 mentioned in
Section 3.1, the increased urban land area of Wuhan was regarded as the end condition of
CA models. By dividing the total number of new increased urban land cells by the number
of iterations, the transformed number of cells in each iteration can be calculated [46]. The
number of iterations in our study was set to 20 as the ten-time span.

The results of the AFSA-CA model simulation are shown in Figure 8. This shows the
actual urban land use and the AFSA-CA model simulation for 2015. The simulation image
on the right shows a pattern of agglomerative growth in the central area of Wuhan, in
addition to a point-like expansion in the south and north of the edge of the central area,
while the farther area outside the central area shows a leap-forward expansion form. This
is highly consistent with Wuhan’s actual expansion. To better verify the accuracy of the
simulation, the Kappa coefficient, FoM, UA, and TA were compared, and the results are
shown in Table 4. In the Kappa coefficient calculation, a value higher than 0.6 indicates
strong consistency, and subsequent lesser values indicate medium or weak consistency. The
AFSA-CA model in Kappa coefficient of 0.7948 represents a strong agreement between the
actual value and the simulated value. Based on the above conclusions, it can be said that
the AFSA-CA model is able to obtain satisfactory modeling parameters for the calibration
of the urban growth in Wuhan. The value of FoM is defined as the ratio between the
observed value and the correct region of the predicted value, ranging from 0 to 1, where
the higher the score, the better the simulation results of the urban land-use change model.
Here, the AFSA-CA model obtains a FoM value that is 0.02 higher than the result of the
GA-CA model. At the same time, the other two indicators—UA and TA—can also be used
to indicate the fit of the simulation model. The UA of the AFSA-CA model is equal to
0.8157, indicating that the urban area is close to the actual value. In addition, the TA is equal
to 0.9771, and the analog error is 0.0229, indicating a very high simulation success rate.

The simulation results of the five comparison models shown in Figure 8 display
different degrees of urban land-use growth. The PSO-CA model shows the most obvious
difference, and the simulation results show excessive dot-like expansion, i.e., the north of
Wuhan appears expanded as dotted lines, which is inconsistent with reality. The map of
the BLR-CA model shows a large increase in the dotted pattern for the south of Wuhan.
The other models also show different degrees of expansion. As mentioned in Section 3.2,
AFSA has the advantages of a fast convergence speed, insensitivity to the initial values,
strong adaptability, and strong fault tolerance. In contrast, BLR is a static model with
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serious defects, because variables driving changes of urban growth are non-linear rather
than linear relationships. Therefore, the AFSA-CA model is superior to the GA-CA model,
and the GA-CA model is superior to all the other models.
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The accuracy of the five models is represented by the verified Kappa coefficients, FoM,
UA, and TA (Table 5). The Kappa coefficient of the GA-CA model is verified to be 0.7777,
which is 0.2 times higher than the BLA-CA value, and is higher than the values of the
other models. The parameter analysis and simulation analysis results are also consistent.
In addition, the Kappa coefficient of PSO-CA is as low as 0.7168, and the UA is only
0.7416, further affirming the precision of the previous analysis. However, compared to the
AFSA-CA model, the simulation accuracy of the GA-CA model falls short. For example,
the TA value of AFSA-CA reaches 0.9771, but the TA value of GA-CA value is only 0.9753.

Table 5. Validation of the urban land-use change prediction for Wuhan based on the different CA
models.

Variable BLR-CA ACO-CA BBO-CA PSO-CA GA-CA AFSA-CA

Kappa 0.7507 0.7701 0.7692 0.7168 0.7777 0.7948
FoM 0.6393 0.6698 0.6519 0.5976 0.6748 0.6975
UA 0.7738 0.7923 0.7914 0.7416 0.7996 0.8157
TA 0.9722 0.9744 0.9743 0.9685 0.9753 0.9771

We use four landscape metrics (NP, PARA_MN, ENN_MN and al) to compare the
simulated results in six CA models as shown in Table 6. As seen from the Table 6, AFSA-CA
has a better performance in landscape similarity than other five models. The landscape
similarity between the AFSA-CA simulated results and the actual values in 2015 is 85.91%,
which is 5.82–16.25% higher than other five simulated results. The NP value of AFSA-CA
is closer to the actual, with a difference of merely 318, while the worst result of the NP
value is a difference of 642, more than twice. Although the simulated results for GA-CA
performed well, the proposed model still maintained the better satisfactory values in the



Sustainability 2021, 13, 2338 19 of 25

urban landscape. Consequently, these landscape metrics results showed that AFSA-CA in
calibrating the parameters of CA achieves the desired goal.

Table 6. Comparison of actual and simulated various results of landscape metrics.

Variable NP PARA_MN ENN_MN Sl

Actual (2015) 1645 242.4455 440.5482 ——
Simulated (BLR-CA) 1012 170.6062 521.4226 71.18%
Simulated (ACO-CA) 1203 195.3048 509.1447 79.37%
Simulated (BBO-CA) 1108 184.6976 515.1334 75.54%
Simulated (PSO-CA) 1003 173.1665 543.6949 69.66%
Simulated (GA-CA) 1249 289.5169 512.1332 80.09%

Simulated(AFSA-CA) 1327 266.3229 498.2074 85.91%

5. Discussion and Implications
5.1. Effects of Differences Models on Urban Growth Simulation

The AFSA-CA model outperformed the other five models in simulation of the urban
growth in Wuhan under the same land use data and driving factors data. The Kappa
value of AFSA-CA model is the highest at 0.7948, with 0.0816 higher than the lowest one
(PSO-CA), while the UA and TA of AFSA-CA model are 0.8157 and 0.9771, respectively.
PSO is likely to fall into local extreme, and its optimization accuracy is poor, whereas AFSA
only uses the function value of the target problem, and has a certain adaptive ability to
the search space [39,47]. The second highest of Kappa value is GA-CA model, while its TA
reaches to 0.9753. Although the crossover and mutation selection probability of GA directly
affects the convergence of the algorithm [48], resulting in the simulation results of GA-CA
model are the closest to AFSA-CA, the urban land growth area in the east-west direction of
Wuhan is quite different from the actual situation. The other three models (BLR-CA, ACO-
CA and BBO-CA) see a relatively low in the validation indexes, such as the Kappa value of
these models being below 0.77. BLR obtained higher receiver operating characteristic curve
values [49], but the non-linear relationship of the drivers of urban growth made the LR-CA
model show a weak performance [50]. ACO and AFSA algorithms both belong to the
swarm intelligence algorithms, the “ants” of ACO have no vision to help them find the best
food source [51]. BBO performs good information sharing characteristic, but the traditional
method of gene migration is single. The urban land growth simulation has constraints, and
the migration and mutation operators must be adjusted accordingly during the simulation
process [20]. Consequently, AFSA is not affected by the initial parameter setting, and is one
of the most effective algorithms for solving nonlinear optimization problems compared
with other algorithms.

5.2. Future Scenario Simulation for Wuhan in 2025 and 2035

Urban land simulation models are conducive to formulating reasonable sustainable
development strategies and helping governments and planners [52]. The weight parameter
corresponding to each spatial variable in the CA model, which is directly determined
with the naked eye or subjectively, is time-consuming [11,53]. Based on the results, it was
apparent that AFSA-CA was the most suitable simulation model for the urban growth of
the study area. Hence, we adopted three future scenarios based on previous research: (1)
natural urban land growth without any restrictions (NULG), (2) sustainable urban land
growth with cropland protection and ecological security (SULG) and (3) economic urban
land growth with sustainable development and economic development in the core area
(EULG) [10,54].

In the first urban land growth scenario, the total conversion area of urban land
from non-urban land in 2025 and 2035 was based on an unrestricted AFSA-CA model to
predict. According to China’s ecological control plan and farmland protection policy, the
Municipal Government of Wuhan implemented protection of ecological land and farmland,
the conversion for which land-use types is not allowed. The SULG scenario limited the
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conversion of cropland, forest, grassland into urban land. However, these strict restrictions
for land conversion are harmful to urban development. Combined with the comprehensive
supporting facilities in the core area, it is more realistic to release control over the core area.
Therefore, the EULG scenario of this study was based on SULG, which only controlled the
conversion of non-urban land in areas far from the central area to urban land in the process
of urban growth.

Figure 9 shows the predicted results of 2025 and 2035 under three proposed future sce-
narios. The urban development of Wuhan follows a multi-center structure developmental
model. The urban land area of Wuhan is predicted to reach 137.65 km2 in the 10 years from
2015, accounting for nearly 8% of the total area, and representing an increase of about 1.6%.
Conversely, non-urban land is predicted to reduce to 607.19 km2. The urban land in Wuhan
is expected to continue expanding up to 2035, and the non-urban land area is predicted to
decrease. The urban land area in Wuhan is predicted to reach 762.23 km2, accounting for
nearly 9% of the total land area, and the non-urban land area is expected to decrease to
5945.16 km2, with the water area remaining largely unchanged. This growth is in line with
Wuhan’s overall urban plan. Therefore, a single-center structure results in a “siphon effect”
for the central city, with a concentration of elements such as technology and capital. It can
also result in a highly concentrated population density and a high density of buildings.
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However, the newly developed centers have different strengths and development orders,
and the development is not parallel development. The urban land growth in Wuhan shows
significant spatial heterogeneity in the different regions. The pink area in the Figure 9 which
is the existing urban land before 2015 occupies a large space, while the red and black area
mostly appear in the new district centers. Compared with the NULG scenario, the urban
land distribution in the SULG scenario is most obvious in Jiaji Yao and Gu Xu in the north
direction, while the conversion restriction in the south direction is not much different from
the urban land distribution in the NULG scenario. Under the EULG scenario, urban land
in the core area grows unrestrictedly, and the growth type is mainly infilling. Consequently,
the predicted quantity and location results of potential increased urban land in 2025 and
2035 under three different scenarios can be helpful for future urban planning.

Based on the results of the AFSA-CA simulation model for 2025 and 2035, the urban
development of Wuhan is predicted to be no longer a single center, but will instead
incorporate the emergence of a certain proportion of development in each new deputy
center, town center, etc. The urbanization process of Wuhan will experience different spatial
growth patterns in two periods. In the early stage, the urban land growth in remote areas
will still account for the main part of the newly added urban area. Later, the growth area of
remote areas gradually will decrease, and the urban land growth form will enter a very
mature stage [55]. In addition, the spatial development pattern of Wuhan in the future will
appear a form of multi-centered urban development [56].



Sustainability 2021, 13, 2338 21 of 25

In the NULG scenario, the urban land use in the core area will decrease, while the
deputy centers and new town centers will increase. However, disorderly urban land use
growth is not in line with China’s sustainable development strategy [54]. In the SULG
scenario, the conversion of cultivated land and ecological land into urban land is prohibited.
Figure 9b shows that the growth of urban land in remote areas has decreased significantly.
At the same time, the growth of urban land in the core area is directly restricted. In order
to adapt to the future social-economic development, the morphological characteristics of
urban development tend to be increasingly based on multi-center development [10,57,58].
The EULG scenario, and the urban development form appears to be more compact [55].
The formulation of specific urban planning should be flexible accordingly [59].

5.3. Role of Urban Growth Simulation for Smart City

Urban sustainable development and management is one of the 17 Sustainable Devel-
opment Goals [60]. The smart city is essential to enhance the urban planning and offer
more comfortable human settlements. The contradiction between the limited urban land
area and the needs of construction land use in highly competitive economic context become
increasingly intensified with different levels of land degeneration, environmental pollution
and a drastic population growth. Based on our results, the future urban growth pattern of
Wuhan should be based on placing mainly the central activity area, then developing the
city sub-center, new city center and main town center.

Regarding urban planning of Wuhan, it is in line with development of other big cities
in China. Constructing a polycentric urban structure in Wuhan is highly important to
reduce the negative impacts of high density in the city center [61]. Urban planning has
gradually popularized since 1980s. By 1990, the growth of urban space along the axis began
to weaken, and then leapfrog development became the focus of urban development [62].
Since urban land in Wuhan does not meet the needs of rapid urban development, resulting
in urban expansion of the entire city, urban planning is adjusted accordingly [63]. In the
simulation, the central area expansion denotes mainly concentrated growth, and the point-
like growth of the edge area began to appear in the later stage. Therefore, the formulation
of specific urban planning should be flexible [64].

Such simulation help explore the relative impacts of variables on urban land use
changes and the characteristics of urban growth pattern [65]. Moreover, artificial intel-
ligence algorithm provides explicit information on potentials of urban areas. Projecting
the potential urban areas under different scenarios can make a comparison between the
modelled results and the plans, and provide references about whether relevant policies and
plans need to be adjusted with authorities and planner researchers. It is a comprehensive
and scientific method to support urban growth patterns.

6. Conclusions

The AFSA-CA model proposed in this study incorporates historical characteristics
of urban growth, driving factors and a novel algorithm, for improving the prediction
accuracy of urban growth processes. Six different methods from traditional to intelligent
algorithm technology were combined with the CA model to explore the characteristics
of urban growth, while a series of measures were applied for the verification, including
the Kappa coefficient, FoM, UA, TA, and landscape indicators. Based on the confusion
matrix calculation and other verification indexes, the range of the total precision difference
between BLR-CA and AFSA-CA, and BLR-CA and GA-CA, was found to be 5% and 3%,
respectively. The verification results showed that the AFSA-CA model performed better
than the other five models, due to an optimal advantage for solving nonlinear optimization
problems, which AFSA is not affected by the initial parameter setting. Furthermore, we
projected the potential patterns of urban growth under different scenarios in the 20 years to
come, before understanding historical land use characteristics in past 20 years, the political
restrictions on cultivated land and ecological land, and actual local development conditions.
We found that the potentials of urban growth in Wuhan for 2025 and 2035 under three
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scenarios (NULG, SULG, and EULG) focus mainly on existing urban land and some new
town centers based on AFSA-CA urban growth simulation model.

The smart city refers to the use of information and communication technology to ana-
lyze the key information of the urban system, and promote the harmonious and sustainable
development of the city. Only cities that integrate these data and science and technology
to improve urban efficiency, equity, sustainability, and quality of life can be called smart
cities. The Ministry of Science and Technology of China recognized Wuhan as the first
batch of innovative pilot cities and launched a pilot smart city construction. The national
and local authorities have introduced relevant plans integrating the planning concepts and
technological advantages at domestic and international first-class institutions for smart city
construction of Wuhan. In accordance with the foundational principle of people’s liveli-
hood first, priority will be given to projects that are closely related to people’s livelihood
for first demonstration construction. Through management, control and optimization, the
infrastructure of a smart city is associated with its operational functions and planning. As
cities develop smarter, long-term changing information can provide new immediacy for
the construction of urban simulation models. Accordingly, simulating different models of
future cities can better understand the complex science of cities.

According our results, we have some suggestions for the urban areas planning in
Wuhan: firstly, it is necessary to consider the development of town centers because the
central area has been saturated in urban land use; secondly, intensive developing in the
central area is not suitable environment for dwellers, so increasing traffic networks for
remote areas are inevitable; finally, it is necessary to design different plans under various
scenarios to cater for the needs of future development. Although the prediction may
dissatisfy the actual urban land needs due to emergencies (such as COVID-19), a more
precise simulation can determine the potential increase area and quantity of urban land,
providing a basis to judge the layout of urban land use for urban planners. However,
whether AFSA is able to avoid radically is still a matter within scientific communities,
despite of excellent performance in the tolerance of local extrema. Under the limitations of
experimental data and environment, this study focuses on urban growth simulation of a
local scale by six different integrated models, where the characteristics of urban growth
patterns differ from geographic and economic context. Henceforth, further research is to
apply this research method to other regions and countries, to enlarge the practicality of
the method.
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Abbreviations

CA the cellular automaton
BLR binary logistic regression
GAs genetic algorithms
ACOs ant colony algorithms
PSO particle swarm optimization
BBO biogeography-based optimization
AFSA artificial fish swarm algorithm
Neib neighborhoods
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Suit constraints
Rand random factors
UA urban accuracy
TA total accuracy
NP the number of urban patches
PARA_MN average perimeter ratio
ENN_MN average Euclidean nearest neighbor distance
POP population
DEM digital elevation model
GDP gross domestic product
LUD1 Land-use in 1995
LUD2 Land-use in 2005
LUD3 Land-use in 2015
D-nat Distance to national road
D-hig Distance to highway
D-pro Distance to provincial road
D-rai Distance to railway
D-cou Distance to country road
NEI Neighhood cell
NULG natural urban land growth without any restrictions
SULG sustainable urban land growth with cropland protection and ecological security
EULG economic urban land growth with sustainable development and economic

development in the core area
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