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Abstract: Calcium sulfoaluminate cement (CSA) was used to stabilize a type of marine soft soil
in Dalian China. Unconfined compressive strength (UCS) of CSA-stabilized soil was tested and
compared to ordinary Portland cement (OPC); meanwhile the influence of amounts of gypsum in
CSA and cement contents in stabilized soils on the strength of stabilized soils were investigated.
X-ray diffraction (XRD) tests were employed to detect generated hydration products, and scanning
electron microscopy (SEM) was conducted to analyze microstructures of CSA-stabilized soils. The
results showed that UCS of CSA-stabilized soils at 1, 3, and 28 d firstly increased and then decreased
with contents of gypsum increasing from 0 to 40 wt.%, and CSA-stabilized soils exhibited the highest
UCS when the content of gypsum equaled 25 wt.%. When the mixing amounts of OPC and CSA
were the same, CSA-stabilized soils had a significantly higher early strength (1 and 3 d) than OPC.
For CSA-stabilized soil with 0 wt.% gypsum, monosulfate (AFm) was detected as a major hydration
product. As for CSA-stabilized soil with certain amounts of gypsum, the intensity of ettringite (Aft)
was significantly higher than that in the sample hydrating without gypsum, but a tiny peak of AFm
also could be detected in the sample with 15 wt.% gypsum at 28 d. Additionally, the intensity of
AFt increased with the contents of gypsum increasing from 0 to 25 wt.%. When contents of gypsum
increased from 25 to 40 wt.%, the intensity of AFt tended to decrease slightly, and residual gypsum
could be detected in the sample with 40 wt.% gypsum at 28 d. In the microstructure of OPC-stabilized
soils, hexagonal plate-shaped calcium hydroxide (CH) constituted skeleton structures, and clusters
of hydrated calcium silicates (C-S-H) gel adhered to particles of soils. In the microstructure of CSA-
stabilized soils, AFt constituted skeleton structures, and the crystalline sizes of ettringite increased
with contents of gypsum increasing; meanwhile, clusters of the aluminum hydroxide (AH3) phase
could be observed to adhere to particles of soils and strengthen the interaction.

Keywords: calcium sulfoaluminate cement; stabilized soil; unconfined compressive strength; hydra-
tion products; microstructure; sustainability

1. Introduction

Soft soil deposits exist all over the planet, such as in the economically developed areas
located on the southeast coast of China. Land resources are becoming increasingly scarce
with the development and expansion of these cities. As a result, a large number of struc-
tures need to be built on soft soil foundations. Soft soil is often a challenge for engineers
due to the mechanical properties of poor bearing capacity, low shear strength, and high
compressibility [1–5]. To improve the engineering performance of soft soils, a series of
methods including cement-based stabilization, alkali-activated treatment, and carbonation
techniques are conducted in geotechnical engineering [6–11]. Studies have indicated that
cementation can alter the characteristics of soil behaviors and significantly improve the
strength properties of soft soil. For example, artificial cementation has been applied for

Sustainability 2021, 13, 2295. https://doi.org/10.3390/su13042295 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4889-7967
https://doi.org/10.3390/su13042295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13042295
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/4/2295?type=check_update&version=2


Sustainability 2021, 13, 2295 2 of 10

soil stabilization, for column-type reinforcement in soft soils, in gravity composite struc-
tures, for liquefaction mitigation, and as in-place barriers for cutting off seepage [12–14].
Cement-based stabilization is the most common method for enhancing the performance of
soft soils used in construction projects, in which ordinary Portland cement (OPC) is always
chosen as the binder owing to its easy availability, and extensive literature is available for
reference [15–19]. OPC-treated soil has improved bearing capacity and reduced permeabil-
ity and compressibility [20,21]. For OPC-stabilized soft soils, the strength mainly originates
from hydration reactions of minerals in OPC; furthermore, hydrated calcium silicates (ab-
breviated as C-S-H, in this paper cement abbreviation has been used as followed C: CaO, S:
SiO2, A: Al2O3, $: SO3, H: H2O) and calcium hydroxide (Ca(OH)2, abbreviated as CH) are
the main hydration products [1,22]. Besides, it should be noted that potential pozzolanic
reactions between calcium hydroxide and alkali active admixtures also contribute to the
strength of OPC-based stabilization in the long term [23].

However, OPC also exhibited a limitation of engineering performance in several
aspects, such as relatively low strength development, and inclined erosion of hardened
pastes [24,25]. On the other hand, OPC poses significant environmental concerns asso-
ciated with carbon dioxide (CO2) emissions released during its manufacturing process.
With the annually increased consumption of OPC, there is a strong need for sustainable
development [26–28]. To improve the performance of cement-based materials and reduce
CO2 emissions, special types of cement were applied as an alternative to OPC in certain
situations, in which calcium sulfoaluminate (CSA) cement has attracted attention [29–32].
CSA has characters of rapid hardening, high early strength, resistance to sulfate attack,
and tailored expansion [33]. The main components of CSA are ye’elimite (C4A3$), belite
(C2S) and gypsum (C$·H2), and the main hydration of CSA at an early stage is the reaction
between C4A3$ and C$·H2 [30,34,35].

In previous studies related to CSA cement-based stabilization, Gastaldi et al. [36] studied
the hydration of CSA cement with different contents of sulfate and silicate. Vinoth et al. [37]
investigated the early strength development of two types of CSA cement using ultrasonic
pulse velocity and measuring unconfined compressive strength. Li and Chang [38] ex-
amined the effects of C$·H2 on the CSA hydration system investigating the mechanical
properties, hydration process, and hydration mechanism. Lan and Glasser [39] investigated
CSA cement hydration by studying scanning electron microscope images and isothermal
calorimetry of CSA cements, simulating various clinker mineralogies including lime, C$·H2,
C2S, and CSA. Tang et al. [40] investigated the hydration stages and phase transforma-
tion between ettringite and monosulfate of CSA cement. Winnefeld and Lothenbach [27]
studied the hydration of CSA with different water-to-cement ratios.

However, the use of CSA cement in geotechnical applications has been explored in
a limited way as yet. Furthermore, soil structure is different from that of cement paste;
hence the experience gained from cement paste cannot be applied directly in soft soil
stabilization [13,28,41]. In this paper, CSA was used to stabilize a type of marine soft soil in
Dalian China. The strength of CSA-stabilized soil was tested and compared to that of OPC;
meanwhile, the influence of amounts of C$·H2 in CSA and cement content in stabilized
soils on the strength of stabilized soils were investigated. X-ray diffraction (XRD) tests
were employed to detect generated hydration products; meanwhile, a scanning electron
microscope (SEM) was used to analyze microstructures of CSA-stabilized soils.

2. Materials and Methods
2.1. Raw Materials of the Experiments

In this manuscript, soft soil was collected from a coastal region in Dalian, a city in
northeast China. OPC and CSA clinker were commercial products and purchased from
Xiaoyetian Cement Company and Beijixiong Cement Company, respectively. C$·H2 was
an analytic reagent. Chemical compositions and particle size distributions of raw materials
are respectively shown in Table 1 and Figure 1.
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Table 1. Chemical composition of raw materials (wt.%).

Raw Materials CaO Fe2O3 MgO Al2O3 SiO2 SO3 Na2O K2O TiO2 Others

Soft soil 5.55 8.65 6.41 22.48 43.88 0.83 3.42 5.77 2.19 0.82
OPC 73.74 3.42 3.50 5.82 9.15 1.86 0.29 0.90 0.88 0.44

CSA clinker 53.95 2.23 2.60 29.04 3.28 4.85 0.13 0.75 2.93 0.24
Gypsum 41.18 - - - - 58.82 - - - -
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Figure 1. Particle size distribution of raw materials.

2.2. Specimen Preparation

Collected soft soils were firstly dried in an oven at 100 ◦C for 24 h and sieved through
passing a sieve with 2 mm mesh. Afterward, dried and sieved soils were mixed with
distilled water to prepare wet soils with a water content of 41%, which was closed to the
natural moisture content of the soft soils. CSA clinker and different amounts of C$·H2
were mixed to prepare CSA, and C$·H2 respectively accounted for 0, 5, 10, 15, 20, 25, 30,
35, and 40 wt.% in CSA. For both OPC and CSA, grouts with a binder ratio of 0.5 were
prepared, and then adequately mixed with the wet soils. The procedure above simulated
treating processes in practical engineering to the maximum extent. After mixing, pastes
were poured into a cylindrical mold measuring ϕ5 × H10 cm and cured with sealed plastic
wraps in a chamber under conditions of 20 ± 2 ◦C and more than 95% relative humidity.

2.3. Methods of Tests

After curing for 1, 3, and 28 d, specimens of stabilized soils were tested for uncon-
fined compressive strength (UCS) according to ASTMD-2166 (American Society of Testing
Materials). The rate of loading was controlled to be 1.00 mm/min. For each UCS test, six
specimens were tested to obtain the average value and standard deviation.

At curing ages of 1, 3, and 28 d, a certain amount of crashed hardened paste of
stabilized soil was immersed in isopropanol to remove free water and terminate hydration.
After immersing for 24 h, the hardened pastes of stabilized soils were dried at 35 ◦C and
ground to pass a sieve with 45 µm mesh. XRD was conducted on a Bruker D8 advance
Davinci design X-ray diffractometer (CuKα1,2 radiation, λ1 = 0.15406 nm, λ2 = 0.15444 nm)
to test the ground pastes of stabilized soils. The operating voltage and current were
40 kV and 40 mA, respectively. Patterns of XRD were collected from 5 to 120◦ (2θ) with
a 0.02◦ step size, and each step time equaled 0.1 s. To determine the phases in pastes of
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stabilized soils, Evolution (Bruker) software was used to analyze obtained patterns with
the crystallographic database of ICDD-PDF 2019.

To characterize the microstructures of stabilized soils, the scanning electron mi-
croscopy (SEM) test was performed on a field emission scanning electron microscope
(Zeiss ΣIGMA HD type) with an accelerating voltage of 3/5 kV to examine crushed pieces
of hardened paste.

3. Results and Discussion
3.1. UCS of CSA-Stabilized Soil

Gypsum is a significant part of CSA cement, and there is an optimal content of C$·H2
in CSA cement for mortar or concrete of CSA cement. To investigate the influence of
contents of C$·H2 on CSA-stabilized soils, the UCS of CSA-stabilized soils with different
C$·H2 contents were compared in Figure 2 (for both CSA and OPC-stabilized soils in
Figure 2, the ratio of cement to dry soils equaled 0.12).

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 12 
 

and 40 mA, respectively. Patterns of XRD were collected from 5 to 120 ° (2θ) with a 0.02 ° 124 

step size, and each step time equaled 0.1 s. To determine the phases in pastes of stabilized 125 

soils, Evolution (Bruker) software was used to analyze obtained patterns with the crystal-126 

lographic database of ICDD-PDF 2019. 127 

To characterize the microstructures of stabilized soils, the scanning electron micros-128 

copy (SEM) test was performed on a field emission scanning electron microscope (Zeiss 129 

ΣIGMA HD type) with an accelerating voltage of 3/5 kV to examine crushed pieces of 130 

hardened paste. 131 

3. Results and Discussion 132 

3.1. UCS of CSA-Stabilized Soil 133 

Gypsum is a significant part of CSA cement, and there is an optimal content of C$·H2 134 

in CSA cement for mortar or concrete of CSA cement. To investigate the influence of con-135 

tents of C$·H2 on CSA-stabilized soils, the UCS of CSA-stabilized soils with different 136 

C$·H2 contents were compared in Figure 2 (for both CSA and OPC-stabilized soils in Fig-137 

ure 2, the ratio of cement to dry soils equaled 0.12). 138 

 139 

Figure 2. Influence of contents of gypsum on calcium sulfoaluminate cement (CSA)-stabilized 140 

soils: (a) unconfined compressive strength (UCS) of CSA-stabilized soils with different gypsum 141 

contents, (b) UCS of ordinary Portland cement (OPC)-stabilized soils. 142 

As Figure 2 shows, for CSA-stabilized soils, UCS of CSA-stabilized soils at 1, 3, and 143 

28 d firstly increased and then decreased with contents of C$·H2 increasing from 0 to 40 144 

wt.%, and CSA-stabilized soils exhibited the highest UCS when contents of C$·H2 equaled 145 

25 wt.%. It should also be noted that when contents of C$·H2 varied from 0 to 25 wt.%, 146 

early strength (1 and 3 d) of CSA-stabilized soils generally exceeded 60% of the strength 147 

at 28 d. However, when contents of C$·H2 were more than 25 wt.%, early strength of CSA-148 

stabilized soils significantly decreased. In terms of early strength, the UCS of CSA-stabi-149 

lized soils with optimal content of C$·H2 (25 wt.%) was more than twice that of OPC-150 

stabilized soils. However, for strength at 28 d, the UCS of OPC-stabilized soils was higher 151 

than that of all CSA-stabilized soils. Even UCS of CSA-stabilized soils with optimal con-152 

tent of C$·H2 (the optimal content of C$·H2 for the CSA-stabilized soils was 25 wt.%, with 153 

the maximum UCS being 2966 kPa) was slightly less than that of OPC-stabilized soils 154 

Figure 2. Influence of contents of gypsum on calcium sulfoaluminate cement (CSA)-stabilized soils: (a) unconfined
compressive strength (UCS) of CSA-stabilized soils with different gypsum contents, (b) UCS of ordinary Portland cement
(OPC)-stabilized soils.

As Figure 2 shows, for CSA-stabilized soils, UCS of CSA-stabilized soils at 1, 3, and
28 d firstly increased and then decreased with contents of C$·H2 increasing from 0 to
40 wt.%, and CSA-stabilized soils exhibited the highest UCS when contents of C$·H2
equaled 25 wt.%. It should also be noted that when contents of C$·H2 varied from 0 to
25 wt.%, early strength (1 and 3 d) of CSA-stabilized soils generally exceeded 60% of the
strength at 28 d. However, when contents of C$·H2 were more than 25 wt.%, early strength
of CSA-stabilized soils significantly decreased. In terms of early strength, the UCS of
CSA-stabilized soils with optimal content of C$·H2 (25 wt.%) was more than twice that of
OPC-stabilized soils. However, for strength at 28 d, the UCS of OPC-stabilized soils was
higher than that of all CSA-stabilized soils. Even UCS of CSA-stabilized soils with optimal
content of C$·H2 (the optimal content of C$·H2 for the CSA-stabilized soils was 25 wt.%,
with the maximum UCS being 2966 kPa) was slightly less than that of OPC-stabilized soils
(USC = 3348 kPa). To further investigate the influence of mixing amounts of cement on
stabilized soils, the UCS of OPC and CSA-stabilized soils are compared in Figure 3.
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As shown in Figure 3, for both CSA and OPC-stabilized soils, UCS at 1, 3, and
28 d gradually increased with mixing amounts of cement increasing from 6 to 15 wt.%.
Meanwhile, it can be also observed that, for stabilized soils with any mixing amounts of
OPC, early strength at 1 and 3 d only achieved approximately 30% and 50% strength at
28 d, respectively. On the other hand, for stabilized soils with any mixing amounts of CSA,
early strength at 1 and 3 d was more than the 50% and 80% strength at 28 d, respectively.
It should be also noted that, when the mixing amounts of OPC and CSA were the same,
strength of OPC-stabilized soils at 28 d was greater than that of CSA, which was more
obvious for mixing amounts of 6 and 9 wt.%. The strength development of stabilized soils
mainly resulted from continuous hydration of CSA and OPC which prolonged until 28 d;
in particular, C2S in both CSA and OPC contributed more to long-term strength.

3.2. Hydration Products of CSA-Stabilized Soil

To investigate the hydration products in OPC and CSA-stabilized soils, XRD tests
were conducted. For determining the distribution ranges of peaks for hydration products,
XRD patterns of OPC and CSA-stabilized soils with 0 and 40 wt.% C$·H2 at 28 d were
chosen to exhibit in Figure 4 (for all patterns, mixing amounts for different types of cement
equaled 12 wt.%).

As Figure 4 shows, certain peaks of all three patterns were overlapped and attributed
to minerals in the soft soil, such as quartz (major peak at 26.7◦), muscovite (major peak at
8.9◦), and potash feldspar (major peak at 27.6◦). It should be noted that major minerals in
the soft soils, including quartz, muscovite, and potash feldspar, are primary minerals with
relatively inert activation, which tend to be stable in cement slurries [42,43]. Additionally,
the peaks for minerals in the soft soil remained stable during the hydration process of CSA
and OPC; thus this paper has not considered chemical interaction between the minerals
in the soft soil used in this paper and cement or the hydration products. Meanwhile,
certain peaks in the XRD patterns can be attributed to hydration products of OPC or CSA.
For OPC-stabilized soil, CH can be detected as a major crystalline hydration product on
account of a peak at 18.1◦. The formation of CH mainly resulted from the hydration of
C3S and partial C2S. According to the stoichiometry of typical C-S-H found in hydrated
OPC, hydration of C3S and C2S can be described by Equation (1) and Equation (2) [44].
As for CSA-stabilized soil, AFt and AFm can be detected as major crystalline hydration
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products due to hydration of C4A3$; meanwhile, residual C$·H2 can also be observed. It
can be also noted that the major peaks for AFt, AFm, and C$·H2 were concentrated in the
range of 6–14◦. To further investigate the influence of amounts of C$·H2 and hydration
age on hydration products in CSA-stabilized soils, XRD patterns in the range of 6–14◦

of CSA-stabilized soils with different amounts of C$·H2 at different hydration ages were
compared in Figure 5.

C3S + 5.3H→ 1.3CH + C1.7SH4 (1)

C2S + 4.3H→ 0.3CH + C1.7SH4 (2)
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According to the results in Figure 5, it can be seen that for CSA-stabilized soil with
0 wt.% C$·H2, AFm can be observed, and the formation of AFm can be attributed to
hydration of C4A3$ without C$·H2, which can be described by Equation (3). Meanwhile,
a relatively low-intensity peak for AFt can be also detected at 9.2◦ in the sample without
C$·H2. The formation of small quantities of AFt was attributed to the supersaturation of
sulfate ions at a very early stage of hydration; additionally, sulfate ions in soft soils can
also contribute to the formation of AFt. As for CSA-stabilized soil with certain amounts of
C$·H2, it can be observed that the intensity of AFt was significantly higher than that in the
samples without C$·H2; meanwhile, a tiny peak of AFm can be detected in the sample with
15 wt.% C$·H2 at 28 d. Additionally, it also can be noted that the intensity of AFt increased
with the contents of C$·H2 increasing from 0 to 25 wt.%. However, when contents of
C$·H2 increased from 25 to 40 wt.%, the intensity of AFt tended to decrease slightly, and
residual C$·H2 can be detected in the sample with 40 wt.% C$·H2 at 28 d. Based on the
results of previous studies, in the condition of hydrating with C$·H2, C4A3$ prioritizes to
hydrate with C$·H2, and the reaction can be described by Equation (4). After gypsum is
thoroughly consumed, C4A3$ continues to react according to Equation (3), which leads to
the formation of AFm. Trends of intensity for AFt and C$·H2 in samples of hydrating with
C$·H2 illustrates that for the sample with 15 wt.% gypsum, both reactions of Equation (3)
and Equation (4) occurred during 28 d hydrating age. As for the sample with 25 wt.%
C$·H2, C$·H2 was adequate for the reaction of Equation (4). When the content of C$·H2
equaled 40 wt.%, certain amounts of C$·H2 were residual after the reaction of Equation (4).

C4A3$ + 18H→ C4A$H12 + 2AH3 (3)

C4A3$ + 2(C$·H2) + 34H→C6A$3H32 + 2AH3 (4)

3.3. Distinction of Microstructures between OPC- and CSA-Stabilized Soils

Figure 6 shows the SEM images of OPC- and CSA-stabilized soils. As shown in
Figure 6a, hexagonal plate-shaped CH and gelatinous C-S-H can be observed in the mi-
crostructure for OPC-stabilized soils. Hexagonal plate-shaped CH constituted skeleton
structures, and the size approximately ranged from 1 to 3 µm. Meanwhile, clusters of C-S-H
gel adhered to particles of soils, which strengthened the interaction among soil particles.

As for microstructures of CSA-stabilized soils (see Figure 6b–d), AFt with characters of
needle bar granular and nemaline AH3 can be observed. Differing from the microstructure
of OPC-stabilized soils, the needle bar-shaped AFt constituted skeleton structures, and
the sizes of ettringite impacted by contents of C$·H2. Specifically, the sizes of ettringite
fluctuated around 1 µm when the content of C$·H2 equaled 10 wt.% (see Figure 6b). With
a content of C$·H2 increasing to 20 wt.%, sizes of ettringite increased to range from around
2 to 3 µm (see Figure 6c). As shown in Figure 6d, the largest size of ettringite increased
to be more than 4 µm when the content of C$·H2 equaled 25 wt.%. Additionally, for CSA-
stabilized soils with different C$·H2 contents, clusters of AH3 phase could be observed
to adhere to particles of soils and strengthen the interaction, which was similar to that of
C-S-H gel in OPC-stabilized soils.
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4. Conclusions

Strength performance and microstructure of CSA- and OPC-stabilized soft soils were
compared. Based on test results of UCS, XRD, and SEM, the following conclusions can
be obtained:

(1) UCS of CSA-stabilized soils at 1, 3, and 28 d firstly increased and then decreased
with contents of C$·H2 increasing from 0 to 40 wt.%. The optimum C$·H2 content for
CSA-stabilized soils was 25 wt.%, which means the stabilized soils had the highest
UCS. When the mixing amounts of OPC and CSA were the same, CSA-stabilized soils
had significantly higher early strength (1 and 3 d) than OPC and similar strength at
28 d.

(2) For CSA-stabilized soil with 0 wt.% C$·H2, AFm was detected as a major hydration
product. As for CSA-stabilized soil with certain amounts of C$·H2, the intensity of AFt
was significantly higher than that in the sample hydrating without C$·H2; meanwhile,
a tiny peak of AFm could be also detected in the sample with 15 wt.% C$·H2 at 28 d.
Additionally, the intensity of AFt increased with the contents of gypsum increasing
from 0 to 25 wt.%. When contents of C$·H2 increased from 25 to 40 wt.%, the intensity
of AFt tended to decrease slightly, and residual C$·H2 could be detected in the sample
with 40 wt.% C$·H2 at 28 d.

(3) In the microstructure of OPC-stabilized soils, hexagonal plate-shaped CH constituted
skeleton structures, and clusters of C-S-H gel adhered to particles of soils. In the
microstructure of CSA-stabilized soils, AFt constituted skeleton structures, and the
crystalline sizes of ettringite increased with contents of C$·H2 increasing, meanwhile,
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clusters of AH3 phase could be observed to adhere to particles of soils and strengthen
the interaction.
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