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Abstract: The construction industry is recognized as a major cause of environmental pollution, and it
is important to quantify and evaluate building energy. As interest in big data has increased over the
past 20 years, research using big data is active. However, the links and contents of much literature
have not been summarized, and systematic literature studies are insufficient. The objective of this
study was a holistic review of building energy efficiency/reduction based on big data. This review
study used a holistic analysis approach method framework. As a result of the analysis, China, the
Republic of Korea, and the USA had the most published papers, and the simulation and optimization
area occupied the highest percentage with 33.33%. Most of the researched literature was papers
after 2015, and it was analyzed because many countries introduced environmental policies after the
2015 UN Conference on Climate Change. This study can be helpful in understanding the current
research progress to understand the latest trends and to set the direction for further research related to
big data.

Keywords: building energy; building energy efficiency; building energy reduction; big data; literature
review; holistic review

1. Introduction

Due to climate change [1], problems such as heat waves, drought, and sea-level rise
are occurring [2]. One of the major causes of climate change is greenhouse gas [3], and
international regulations on greenhouse gas emission are being strengthened [4,5]. In
addition, building energy plays a key role in the energy sector, as building energy accounts
for more than 40% of global energy use and greenhouse gases account for 40–50% of global
energy [6]. Therefore, the construction industry and building energy are recognized as the
main causes of environmental pollution [7], and thus it is important to minimize them [5,8].

For research on building energy reduction and environmental load minimization,
Trabucco and Wood (2016) created an energy-efficient design with high sustainability and
low energy consumption to address the energy problem of tall buildings at each stage of the
building life cycle [9]. Hong et al. (2019) built a real-time monitoring system that can reduce
consumption and dust emissions by automatically managing energy consumption and dust
emissions at construction sites [10]. Park et al. (2016) studied correlation analysis between
the information that can be extracted in the road planning stage and the environmental load
computed through life cycle assessment using the data of national highway construction
cases [11]. Lee et al. (2018) developed and validated an environmental load estimating
model for the new Austrian tunneling method tunnel based on the standard quantity
of major works in the early design phase [7]. These papers applied life cycle cost or
environmental valuation methodology to construct a system to reduce building energy
and minimize environmental load.
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In 2001, big data were defined by Doug Laney, an analyst of Meta Group (presently
Gartner), as “challenges and opportunities brought about by increased data with a 3Vs
model, ie, the increase of Volume, Velocity, and Variety,” in a research report [12]. Over
the past 20 years, data has grown on a massive scale in various fields [13]. The use of big
data to provide support for management decisions became an important topic in current
management research [14]. Big data analysis was widely adopted [15] as new research
methods in several fields such as information system [16], transportation [17], internet and
social media [18], medical industry [19], business [20] and finance [21], weather [22], and
smart cities [23].

Literature review of building energy efficiency/reduction based on big data (BER-B)
is summarized focusing on a few areas such as unsupervised data analytics [24], energy
consumption calculation [6], artificial intelligence (AI), and big data for energy-efficient
buildings [25] or studied weaknesses in big data or data mining. Su et al. (2020) provided
a review of the publications on carbon emissions and environmental management based
on big data and streaming data [26], but it is not about research in the field of architecture,
engineering, and construction (AEC). Since the contents of the overall literature in BER-B
are not summarized yet, and it is difficult to identify the overall flow and trends, it is
necessary to review the future direction of BER-B. The objective of this study was a holistic
review of building energy efficiency/reduction based on big data.

This study was carried out as follows:

(1) Describe research methodologies.
(2) Analyze the overall status of the literature sample.
(3) Analyze scientific metrics such as journal sources, co-authors, article regions, key-

words, and citations.
(4) Conduct qualitative analysis by dividing it into six categories.

2. Research Methodologies

Figure 1 shows the research framework of the holistic review method, and this is
adopted by Li et al. (2020a) and consists of quantitative and qualitative reviews [6,27].
Li et al. (2020a) reviewed the life cycle energy of buildings, but this study is an overall
review of building energy focusing on big data. Subjective interpretation and biased
conclusions can be avoided and can provide an in-depth understanding of research fields
and trends [28]. The approach is used to evaluate published research in BER-B as follows.

Figure 1. Research framework.

2.1. Bibliometric Search

Bibliographic analysis provides additional insights on topics that have not been
fully understood or evaluated before [29]. This analysis is an effective way to gain a
comprehensive understanding of the research field that we are searching for [6]. The period
was set from 2001 to 2021, when the concept of big data began to be defined. There were
no research results until 2004, one publication was published in 2005, 2009, and 2014, and
the years 2015–2021 increased steadily. Thesis was selected based on the following criteria.
By verifying the language and type of literature, only journal reviews or articles published
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in English were retained in the literature samples. Conference proceedings published in
journals such as Energy Procedia and Procedia Computer Science were excluded.

We used the database of the American Society of Civil Engineers Library, Frontiers
Database, MDPI Database, ScienceDirect Database, Scopus Database, and Springerlink
because these contain many authoritative journals related to AEC and are used by many
researchers around the world. Since it is difficult to include all the terms related to the
research topic in one study [29], a keyword was selected by combining the abbreviations of
the research topics for the search of the paper. The keywords are as follows: (“data mining”
OR “big data”) AND (“energy” OR “environmental load” OR “life cycle energy” OR “life
cycle assessment”) AND (“building” OR “construction”).

After the initial screening, 312 papers were selected. However, 60 papers were finally
selected as literature samples by excluding articles with inconsistent research subjects. For
example, Mokhov et al. (2014) conducted a case study based on the premise that energy
becomes the dominant factor in the widespread calculation of “big data” companies that
cause large-scale electricity bills. However, the paper presented an approach to processor
design for a power proportional calculation system, not a big data-based study [30]. In
addition, Atitallah et al. (2020) reviewed the literature on the use of the Internet of things
(IoT) and deep learning for smart city development, but not in the fields of energy, life cycle
energy, or environmental loads. Therefore, these papers were excluded from the literature
sample [31].

2.2. Scientometric Analysis

The scientometric approach is the step of measuring research impact and citation
count [6]. Scientometric analysis includes co-occurrence analysis of keywords, journal
sources, and regions and co-citation analysis of scholars and documents [32,33], and this
method aims to investigate the knowledge structure of the research area. In order to
provide conclusive information for starting and conducting BER-B-related research, we
visualize important categories and trends using tables and graphs with a large amount of
bibliographic data.

2.3. Qualitative Analysis

Qualitative analysis is the final step in this three-stage study, which provides an
overview of the content of the BER-B literature. It is classified into seven research method-
ologies, including data mining, statistics, simulation, deep learning, survey, review, and
combinations.

3. Results and Findings
3.1. Overall Status of the Literature Samples about BER-B

Figure 2 shows the overall trend of BER-B study results over the past 20 years. More
than four papers have been published every year since 2016. From 2014 to 2020 (present),
the number of papers published in BER-B has increased. From 2019 to 2020, the num-
ber of published papers grew fastest. In particular, because many countries introduced
carbon dioxide emission reduction and greenhouse gas control policies after the 2015
United Nations Climate Change Conference [26], it is believed to show a steady increase
since 2015.
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Figure 2. Yearly BER-B-related publication.

This trend shows that interest and research on BER-B have increased in the academic
community. In the last six years, scholars have become more active in using big data to
identify and solve environmental problems, and it is expected to increase exponentially in
the future. In addition, considering that there are currently ten papers in 2021, considerably
more papers are expected to be published in one year. In other words, it is expected that the
total number of publications will continue to increase, reflecting the academic recognition
of the importance of BER-B.

3.2. Results of Scientometric Analysis
3.2.1. Analysis of Journal Sources

Analyzing the influence of journals in a particular field allows researchers to easily
obtain useful information and quickly select the most suitable journal for publishing their
work [33]. Table 1 shows a summary of the journal sources published in the studies to
explore the number of influential journals in BER-B. Quantitative measures of journal
impact were summarized into four main measures. Of the four evaluation indicators, total
citations are closely related to the number of papers, which indicates the cumulative degree
of research results [34,35]. The average number of citations excludes the influence of the
number of papers, and the average influence can be observed [6].

Table 1 shows that the total citations of Applied Energy, Frontiers in Mechanical
Engineering, Building Simulation, Energy and Buildings, Sustainable Cities and Society,
and The International Journal of Advanced Manufacturing Technology were 180, 148,
107, 98, 121, and 205, respectively. However, considering the number of papers, it was
determined to be the most influential in BER-B in Applied Energy, Building Simulation,
and Energy and Buildings. In addition, despite the fact that Building Simulation has the
largest number of papers, it has a low average citation. The reason is that there are many
papers published recently.

Artificial Intelligence Review and Energy Informatics were expected to have many articles,
but the number of citations was as low as zero, indicating the least influential of the
journals. The average publication year represents the active year of articles published in
the journal. Renewable and Sustainable Energy Reviews and Energy recently published articles
in the BER-B research area, but Mobile Networks and Applications has long been inactive
in this area. Furthermore, since there are many papers published in 2020 and 2021, the
average publication year is close to 2020.

3.2.2. Analysis of Co-Authorship

Scholars always conduct academic collaboration and exchange through knowledge
transfer [6]. Scientific cooperation not only promotes the development of expertise but also
increases productivity [36–38]. Table 2 shows co-author analysis in BER-B study, and the
minimum number of papers and the minimum number of citations were set to 3 and 10
or more, respectively. As a result, 6 out of a total of 227 authors met the inclusion criteria.
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As a result of analyzing author-cooperative networks of literature in existing research
fields, scholars are divided into two main cooperative groups. For example, it can be seen
that Cheng Fan and Jiayuan Wang belong to the same group and have published articles
several times. In addition, it can be seen that Shenzhen University, Beijing University of
Civil Engineering and Architecture, and Tsinghua University have close cooperation and
knowledge communication, and have published several papers in BER-B.

Table 1. Quantitative analysis of journal sources in research.

Journal Number of Articles Total Citations Avg. Citation Avg. Pub. Year

Applied Energy 7 180 25.71 2018.7

Artificial Intelligence Review 1 0 0.00 2020.0

Building 1 1 1.00 2020.0

Building Simulation 14 107 7.64 2018.5

Cluster Computing 1 2 2.00 2020.0

Energies 2 2 1.00 2021.0

Energy 2 2 1.00 2020.0

Energy and Buildings 6 98 16.33 2018.5

Energy Informatics 1 0 0.00 2020.0

Frontiers in Built Environment 3 5 1.67 2019.7

Frontiers in Energy Research 3 7 2.33 2020.7

Frontiers in Mechanical Engineering 2 148 74.00 2020.0

Frontiers in Sustainable Cities 1 1 1.00 2017.5

Future Generation Computer Systems 1 10 10.00 2020.0

Journal of Ambient Intelligence and
Humanized Computing 1 3 3.00 2019.0

Journal of Building Engineering 0.00 2021.0

Journal of Computing in Civil Engineering 1 1 1.00 2019.0

KSCE Journal of Civil Engineering 1 6 6.00 2018.0

Mobile Networks and Applications 2 12 6.00 2011.5

Peer-to-Peer Networking and Applications 1 51 51.00 2018.0

Renewable and Sustainable Energy Reviews 2 3 1.50 2020.0

Soft Computing 1 23 23.00 2016.0

Sustainable Cities and Society 2 121 60.50 2019.0

The International Journal of Advanced
Manufacturing Technology 1 205 205.00 2015.0

Visualization in Engineering 1 3 3.00 2016.0

Wireless Personal Communications 1 16 16.00 2016.0

Note: Avg. pub. year represents the average publication year of articles published in the journal [39].
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Table 2. Quantitative analysis of influential scholars in the academic community.

Scholar Affiliation Number of
Articles

Total
Citations

Avg.
Citation

Avg. Pub.
Year

Tianzhen
Hong

Lawrence Berkeley
National Laboratory 4 10 2.5 2019.0

Cheng Fan Shenzhen University 5 181 36.2 2019.6

Fu Xiao
The Hong Kong

Polytechnic
University

5 181 36.2 2019.6

Jiayuan
Wang Shenzhen University 3 120 40 2018.7

Jingjing An
Beijing University of

Civil Engineering
and Architecture

4 61 15.25 2020.5

Da Yan Tsinghua University 5 64 12.8 2020.4

Regarding Jingjing An and Da Yan’s average publication year, the reason the year
exceeds 2020 is that papers that has already been published in 2021 has been published in
November 2020. In addition, their thesis is composed only of 2020 and 2021, and therefore
they are expected to have continuous research results in the future. It was also found that
Cheng Fan, Fu Xiao, and Da Yan were the scholars with the largest number of papers
in research in the field of BER-B. However, they only have five publications, and thus it
can be seen that no authors do the dominant high research in this field. Moreover, the
average publication year is over 2018. Therefore, it shows that this field is in the early
stages of development. However, the number of citations is relatively high, which means
that interest in research in the field of BER-B is quite high.

3.2.3. Analysis of Article Regions

In order to better understand the global status of BER-B study, the regions of selected
literature samples were evaluated and the contributions of different countries were deter-
mined. The minimum number of articles and the minimum number of citations were set at
2 and 10 or more, respectively, and 6 out of 15 countries met these criteria. Table 3 shows
the results of the countries that are beneficial and influential in the BER-B. According to
the number of papers in Table 3, China, the Republic of Korea, and the USA have the most
published papers, and their contribution to the research community is clear. Compared
to efforts being made to reduce energy such as carbon tax in various European countries,
research on BER-B is rather poor.

Table 3. Quantitative analysis of article regions in research.

Country Number of Articles Total Citations Avg. Citations Avg. Pub. Year

Australia 2 1 0.5 2020.5

China 20 547 27.4 2018.6

India 2 13 6.5 2017.5

Ireland 2 1 0.5 2020.0

Italy 4 7 1.8 2020.0

Norway 2 120 60.0 2019.0

Korea 5 30 6.0 2019.4

Switzerland 2 35 17.5 2018.5

UK 3 151 50.3 2017.3

USA 8 27 3.4 2017.5
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3.2.4. Analysis of Keywords

Keywords represent the core content of a research article and summarize topics in
the field [40]. The minimum number of occurrences was set to 3. Table 4 shows that 7 out
of a total of 204 keywords satisfied the criteria. General keywords such as building and
buildings were removed, and keywords with the same semantic meaning such as building
energy/energy in buildings were integrated. According to the average citation listed in
Table 4, keywords that receive high points mostly include big data, cloud computing, and
IoT. In addition, machine learning, data-driven approach, geographic information system
(GIS), data mining, data-driven, and artificial intelligence were calculated twice, and these
were keywords related to big data. In addition, a number of keywords related to building
energy, energy efficiency, and energy consumption were found. For example, the keywords
of building energy performance, environmental sustainability, building energy modeling,
energy modeling, and energy management were counted as two.

Table 4. Quantitative analysis of keywords in research.

Keywords Occurrences Avg. Citation Avg. Pub. Year

Building energy 3 4.3 2019.3

Big data 8 18.0 2018.1

Cloud computing 3 41.7 2019.0

Energy efficiency 4 6.8 2019.3

Energy consumption 4 1.3 2019.8

IoT 3 53.0 2016.7

Occupant behavior 4 0.8 2020.3

The keywords of urban planning, urban building energy modeling, smart sustainable
cities, and simulation were calculated twice. This means that smart city, urban, and urban
building can be good research fields in BER-B. In addition, the keywords of the heating,
ventilating, and air-conditioning (HVAC) system and building operational performance
were counted as two, and therefore many studies were trying to solve systemic problems
to save energy. However, in keywords, “occupant behavior” is used more frequently than
other keywords. This shows that interest in research related to occupant behavior in the
BER-B field is increasing. In other words, it does not just solve the technical problem but
tries to save energy by analyzing the behavior pattern of the occupant.

3.2.5. Analysis of Article Citations

For the most cited and influential papers, the minimum number of citations was set at
50. Table 5 shows that seven out of 60 papers met the criteria. Fan, Cheng. had the largest
number of articles in Table 2, and the total number of citations for his articles in Table 5
was 161 times. Fan, Cheng. uses big data in BER-B to perform modeling [15] and building
energy predictions [41] and review articles in the field [24]. In addition, Fan et al. (2021)
is a paper to be published in 2021 (currently November 2020) [15], but it already shows a
significant number of citations, and it will continue to increase in the future.
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Table 5. Quantitative analysis of highly influential articles in BER-B research.

Article Title Citation

Bibri (2018) [42]
The IoT for smart sustainable cities of the future:

An analytical framework for sensor-based big data
applications for environmental sustainability

120

Fan et al. (2018) [24]
Unsupervised data analytics in mining big

building operational data for energy efficiency
enhancement: A review

51

Fan et al. (2019) [43]
Assessment of deep recurrent neural

network-based strategies for short-term building
energy predictions

50

Fan et al. (2021) [15]
Advanced data analytics for enhancing building

performances: From data-driven to big
data-driven approaches

60

Li et al. (2015) [44] Big Data in product lifecycle management 205

Liu et al. (2018) [45]
Big program code dissemination scheme for

emergency software-define wireless
sensor networks

51

Ma and Cheng (2016)
[46]

Estimation of the building energy use intensity in
the urban scale by integrating GIS and big

data technology
78

Van Dronkelaar et al.
(2016) [47]

A Review of the Energy Performance Gap and Its
Underlying Causes in Non-Domestic Buildings 148

3.3. Qualitative Analysis

Big data technologies include several disciplines including statistics, data mining, ma-
chine learning, neural networks, optimization methods, and visualization approaches [48].
There are many specific technologies in this field and some overlap [14]. Collected papers
were classified according to the research methodology used to write the papers. Table 6
shows that they were classified into seven research methodologies including four analysis
techniques such as data mining, statistics, simulation, and deep learning, review articles,
and combinations in BER-B.

3.3.1. Research Methodology Based on Data Mining

Many studies were conducted to save energy by improving the building system using
collected data in the building energy field. Catrini et al. (2020) took data from a large
Do It Yourself store in northern Italy as a case study to investigate the profitability of a
third-generation system for commercial buildings. Compared with the existing energy
conversion system, energy consumption and CO2 emissions have been reduced [49]. Chiosa
et al. (2021) proposed an innovative anomaly detection and diagnosis methodology that
automatically detects abnormal energy consumption at the level of the entire building
and diagnoses the lower level for abnormal patterns. The paper performed a post-mining
analysis based on association rule mining and found the major lower level that mainly
affects the anomalies detected in the entire building [50]. Conner et al. (2005) studied data
collected from several applications deployed throughout the building that monitor room
occupancy and environmental statistics and provide access to room reservation status.
Using the proposed protocol, it was confirmed that a small number of wall-powered nodes
can significantly increase the lifespan of the battery-powered network [51].
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Table 6. Publications by methodologies.

Research Methodology Example Papers Number of Papers Percentage of
Papers (%)

Data mining

Catrini et al. (2020) [49], Chiosa et al. (2021) [50],
Conner et al. (2005) [51], Kang and Choi (2018)

[52], Li et al. (2020b) [53], Liu et al. (2018) [45], Ma
et al. (2021) [54], Reshma et al. (2019) [55],

Shahrokni et al. (2014) [56], Silva et al. (2020) [23],
Sohn and Dunn (2019) [57], Suciu et al. (2016) [58],
Guo et al. (2020) [59], Tang et al. (2021) [60], Van

Dronkelaar et al. (2016) [47]

15 25.00

Statistics

Ahn and Sohn (2019) [61], Buffat et al. (2017) [62],
Filippi and Sirombo (2019) [63], Kamel et al. (2020)

[64], Liu et al. (2015) [65], Manfren et al. (2020)
[66], Pan and Zhang (2020) [67], Piscitelli et al.

(2021) [68], Qian et al. (2020) [69]

9 15.00

Simulation

Alsaleemet et al. (2020) [70], Bambara et al. (2021)
[71], Dawood et al. (2017) [72], Fan et al. (2019a)

[41], Han et al. (2019) [73], Hong et al. (2020) [74],
Jin et al. (2020) [75], Ma and Cheng (2016) [46],

Mosteiro-Romero et al. (2020) [76], Nematchoua
et al. (2020) [77], Chen et al. (2021) [78], Li et al.
(2021) [79], Su et al. (2009) [80], Van Dronkelaar

et al. (2019) [81], Ye et al. (2016) [82], Ali et al.
(2020a) [83], Belafi et al. (2017) [84], Moreno et al.

(2016) [85]

20 33.33

Deep learning Fan et al. (2019b) [43], Niu et al. (2018) [86], Zhao
et al. (2021) [87] 3 6.38

Survey and investigation
Arora and Bala (2020) [88], Bibri and Krogstie

(2020) [89], Li et al. (2015)
[44], Salim et al. (2020) [90]

4 8.33

Review
Bibri (2018) [42], Fan et al. (2018) [24], Fan et al.
(2021) [15], Li et al. (2020c) [91], Mehmood et al.

(2019) [25], Yan et al. (2020) [92]
6 12.77

Combination Ali et al. (2020b) [93], Jeong et al. (2020) [94], Risch
et al. (2020) [95], Yigit (2021) [96] 3 6.38

Kang and Choi (2018) proposed a building information modeling(BIM)-based data
mining method to support data integration and function expansion in consideration of
functional variability and scalability. Scenarios related to building energy management
were developed, and work efficiency was verified through analysis of the generated
results [52]. Li et al. (2020b) developed a new operational approach to improve the energy
efficiency of HVAC systems in office spaces. This approach can contribute to a large
amount of energy savings when operating an HVAC system [53]. Liu et al. (2018) proposed
an adjustable duty cycle-based fast dissemination method for minimum-transmission
broadcast in the smart wireless software-defined network. By using the remaining energy
of the node, the duty cycle of the node is increased to reduce the transmission time and
delay while maintaining the network life [45]. Ma et al. (2021) reduced the transmission
time while maintaining the network life by increasing the duty cycle of the node using the
remaining energy of the node. Compared to conventional methods, this method was able
to provide a more comprehensive analysis of energy-saving potential in a shorter time [54].

Reshma et al. (2019) suggested that the wireless sensor network (WSN) is an energy-
aware routing protocol to solve the limited node energy problem. The proposed protocol
found energy efficiency in routing vast amounts of data and extending network connectiv-
ity [55]. Shahrokni et al. (2014) quantified resource efficiency and greenhouse gas reduction
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by studying empirical meter data obtained from district heating use in Stockholm. The
study provided a benchmark of excellence in the energy performance monitoring stage [56].
Silva et al. (2020) proposed a big data analysis-embedded smart city architecture, which
uses a smart gateway system to integrate the web and smart control system. The system
was evaluated based on a certified data set from a variety of reliable data sources [23].
Sohn and Dunn (2019) presented an exploratory analysis of an existing large-scale building
energy data set, focusing on two data sets: the commercial building energy consumption
survey in the United States and the building performance database [57]. Suciu et al. (2016)
studied how to process big data collected from distributed cloud systems based on general
systems and remote telemetry units for remote monitoring of renewable energy targets [58].
In these studies, the efficiency of the improved system was verified. Van Dronkelaar et al.
(2016) reviewed the discrepancy between predicted and measured energy use based on
62 buildings and presented an outlook to global studies [47].

Meanwhile, Guo et al. (2020) compared data on energy use intensity, energy structure,
and carbon emissions in different countries [59]. The paper discussed including support for
relevant policies, potential work, and limitations on building energy data to address new
trends in related research. Tang et al. (2021) showed that a case study of field measurements
at a Hong Kong campus building was conducted to investigate the impact of technical
guided occupant behavior on the energy use of a central air conditioning system [60]. The
paper developed a new concept, skill-driven occupant behavior, to coordinate between
occupants and technology/control strategies for the building’s energy system. Unlike most
studies, these studies showed a new direction in the field of BER-B. Therefore, it is possible
to derive the direction of further research or new research in the BER-B field by referring to
these studies.

3.3.2. Research Methodology Based on Statistics

Statistics, the most basic technique for data analysis, exists in almost all fields of
study [14]. Kamel et al. (2020) studied feature selection for hot water, heating, cooling,
and ventilation loads in residential buildings under the mixed-humid climate zone. Filter
method, wrapper recursive feature elimination, wrapper backward elimination, linear
regression, Lasso regression, and Extreme Gradient Boosting regression are adopted for
heating and cooling days [64]. Filippi and Sirombo (2019) showed the results of two-year
residential monitoring of a case project of 152 apartments for large social housing built
near Milan, Italy. Data on thermal energy consumption for heating and cooling, domestic
hot and cold water use, and control units were evaluated [63]. Liu et al. (2015) studied the
correlation between energy consumption and architectural surfaces from the perspective
of passive design. Taking Beijing as a case project, a typical high-rise office building floor
plan was reviewed in terms of annual dynamic load and energy consumption [65].

Manfren et al. (2020) analyzed the topic of linking the energy performance of the de-
sign and operation phases through a regression-based approach of buildings, emphasizing
the hierarchical nature of building energy modeling data [66]. Pan and Zhang (2020) is
a case study, validated on a multidimensional data set of building energy performance
provided by the city government of Seattle. The study was conducted to estimate the build-
ing’s weather-normalized site energy use intensity and characterize possible nonlinear
relationships with 12 other possible sources [67]. Piscitelli et al. (2021) developed and tested
a tool to detect and diagnose abnormal daily electrical energy patterns associated with
substations on university campuses. The study developed an error-free predictive model
using an artificial neural network (ANN) with the following regression tree to find an
unusual trend in electrical energy consumption [68]. Qian et al. (2020) proposed a virtual
sensor modeling method to determine the actual energy efficiency and power consumption
of the variable refrigerant flow system in residential buildings. Statistical and clustering
analysis was performed to determine energy efficiency and power consumption to discover
the distribution and typical operating load patterns of the variable refrigerant flow system
in Chinese residential buildings [69].
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There are studies conducted by collecting GIS-based big data as follows. Ahn and
Sohn (2019) provided an investigation into the effectiveness of three urban form variables
(vertical density, horizontal compactness, and variation of building heights), using the Seat-
tle city government’s building energy consumption data and GIS data obtained from the
Washington Geospatial Data Archive. Using a regression model, the study confirmed that
the correlation between the spatial delay model of building energy use and its surrounding
level is spatially dependent on the energy consumption of the building [61]. Buffat et al.
(2017) collected Swiss residential building data and modeled the building heat demand of
large regions with a high temporal resolution using a large-scale GIS-based method. It was
validated against a database containing the measured energy demand of 1845 buildings in
the city of St. Gallen and 120 buildings in the town of Alpine in Zernez, Switzerland [62].
Using the research results of these papers, strategies for better energy saving in buildings
and urban buildings can be developed. It is also expected to provide useful information to
urban designers and planners.

3.3.3. Research Methodology Based on Simulation

Simulation can be divided into general simulation and optimization, and it occupied
the highest percentage of research methodologies. First, the following studies were based
on general simulation. Alsaleemet et al. (2020) presented a method to access and exploit
wearable device data to build a personal thermal comfort model. The paper evaluated
various supervised machine-learning algorithms to produce accurate personal thermal
comfort models for each building occupant that exhibit superior performance compared
to a general model for all occupants [71]. Dawood et al. (2017) studied the potential to
improve functionality, the accuracy of energy use calculations, and visualization of carbon
emissions using remotely sensed data in commercial and open-source combinations. The
study used light detection and ranging data for a mixed-use urban area in the northeastern
part of the UK and presented a method to improve the quality of the input data for
carbon modeling [72]. Fan et al. (2019a) described and evaluated a data-driven building
energy performance model to increase the practical value of advanced machine learning
technologies in the building sector [41]. Han et al. (2019) proposed a virtual machine
rearrangement method to increase energy efficiency by increasing the density of virtual
machines using the Knapsack algorithm. Through the proposed method, the Knapsack
algorithm was improved to achieve efficient virtual machine relocation in a short period of
time [73].

Hong et al. (2020) described a new methodology for generating synthetic smart meter
data for a building’s electricity use using detailed building energy modeling, which aims to
capture the variability and probability of real energy use in buildings. Their methodology
was able to generate customized data sets to represent specific scenarios with a known
truth and a controllable amount of synthetic noise [74]. Jin et al. (2021) proposed a novel
data-driven predictive control method based on a temporal sequential-based artificial
neural network. As a result of the simulation, it was confirmed that the proposed method
achieved higher accuracy (97.4%), and fewer false errors (from 79.5 of the existing time
delay method to 0.6 times per day) were achieved by the model [75].

Ma and Cheng (2016) proposed a GIS-integrated data mining methodology frame-
work for estimating the energy use intensity of urban-scale buildings, including feature
selection, preprocessing, and algorithm optimization. A case study estimating the energy
use intensity of 3640 multi-family residential buildings in New York City has been tested
and validated [46]. Mosteiro-Romero et al. (2020) presented a computational approach for
the quantitative analysis of building energy demand at the district scale, including interde-
pendent factors such as relative humidity and wind speed, local air temperature, diversity
in building geometry, and materials. This method, which couples the microclimate model
program ENVI-met and the district-scale energy simulation tool City Energy Analyst, was
applied to a case study in Zurich, Switzerland [76]. Nematchoua et al. (2020) analyzed
and compared the energy consumption and carbon emissions of six building categories
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commonly found in Saharan Africa cities that are designed to be deployed in 13 cities
unevenly distributed in six climate regions of Madagascar [77].

Among simulation studies, there are studies that have not been conducted solely by
data collection. Bambara et al. (2021) compared the energy performance (consumption
and generation) of an existing house with that of two energy-efficient homes equipped
with building-integrated photovoltaics (BIPV) that are built on the same land lot in Mon-
treal, Canada. An energy model was created for each of the houses, and annual energy
simulations were performed to quantify their energy performance [71]. Chen et al. (2021)
conducted a study using data generated by calibration and program. The identification
method was tested by adopting data generated by EnergyPlus calibrated in real buildings.
In order to understand the control strategy of HVAC in a given building using a data min-
ing algorithm, data on the building automation system (BAS) and data on building energy
were analyzed [78]. Li et al. (2021) developed a data-based building energy prediction
model using a transfer learning method that uses data from other buildings as limited data.
To test the proposed method, data from 400 non-residential buildings from the open-source
Building Genome Project were used, and the energy prediction accuracy was verified [79].

Su et al. (2009) studied a set of 3600 alternative weather files generated using different
parameter weights for Beijing, China. The study evaluated the influence of different
parameter weights when generating weather data in the form of a typical year according
to a typical weather year methodology [80]. Van Dronkelaar et al. (2019) quantified the
impact of underlying causes of this gap by developing building simulation models of four
buildings and then calibrating them toward their measured energy use at a high level
of data granularity [81]. Ye et al. (2016) confirmed that long-term data can be predicted
with short-term data because they do not change over time through simulation. The
paper investigated and verified the appropriateness of using empirical models to predict
long-term emissions with short-term data, typically less than one month [82].

In addition, the optimization studies through modeling are as follows. Ali et al.
(2020b) developed and simulated a methodology for optimizing the urban-scale energy
retrofit determination of residential buildings in Ireland using a data-driven approach. The
importance of data-based renovation modeling was confirmed by reducing the number
of functions in the building inventory database from 203 to 56 with a building grade
prediction accuracy of 86% [83]. Belafi et al. (2017) introduced a method of implementing
occupant behavior modeling into Hungarian office building projects and a way to support
the building audit and renovation analysis process. As a result of optimization simulations,
it was found that the building could save 23% of its annual energy use [84]. Moreno
et al. (2016) presented a new approach to energy conservation in buildings through the
application of soft computing techniques and identification of relevant parameters to
generate predictive models of energy consumption in buildings. These models can be used
to define strategies for optimizing the building’s daily energy consumption [85].

In general, big data-based research is conducted by collecting actual data. However,
in the investigated simulation studies, not only the studies were conducted using data
collection, but also many studies were conducted using data generated by the program.
These studies predicted or optimized the energy using the developed model, and evaluated
the model. Collecting data comes with many difficulties without the active cooperation of
the building owners. Therefore, research methodology using a program that can generate
data is expected to continue to be highly useful in the BER-B field.

3.3.4. Research Methodology Based on Deep Learning

Deep learning is an algorithm based on learning representations of data in machine
learning [14]. Fan et al. (2019b) studied the usefulness of advanced recurrent neural
network-based strategies for energy prediction. At a high level, three inference approaches
were used to generate short-term predictions, including the recursive approach, the direct
approach, and the multi-input and multi-output approach [43]. Niu et al. (2018) estimated
consumption using five commonly used data-based algorithms: autoregressive with ex-
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ternal inputs, subspace state space, state space, discretized variable Bayesian network,
and continuous variable Bayesian network [86]. Zhao et al. (2021) proposed the hybrid-
model-based deep reinforcement learning method for the HVAC control problem. Using
this method, the protection mechanism and adjusting reward methods are used to further
reduce the learning cost [87]. These papers conducted using deep learning were conducted
for the purpose of energy prediction, and the derived results can be applied to real building
models. In addition, it is expected to provide useful data for building experts by providing
more insight into the model for building energy prediction.

3.3.5. Research Methodology Based on Survey and Investigation

Arora and Bala (2020) conducted a survey to address the major challenges of big
data applications hosted in cloud data centers by reviewing existing energy-efficient tech-
nologies. As a result of reviewing various energy efficiency technologies for big data
applications, it was confirmed that hybrid energy efficiency technologies are the best way
to reduce overall energy consumption [88]. Bibri and Krogstie (2020) investigated and
compared Stockholm and Barcelona in terms of smart sustainable cities based on environ-
mental data by adopting a case study as a qualitative research methodology. As a result,
it has been confirmed that smart grid, smart building, smart meter, smart environmental
monitoring, and smart city ambassador are major data-based smart solutions applied to
improve and develop environmental sustainability in eco-city and smart city [89].

Li et al. (2015) introduced the concepts, features, and applications of big data and
analyzed various data related to the three main stages (beginning of life, mid-life, and
end of life) of product life cycle management. In product life cycle management, the
paper summarized existing big data applications, and investigated and analyzed potential
applications of big data technology [44]. Salim et al. (2020) presented various sources
of resident-centered city data useful for data-driven modeling and classified a range of
applications and recent data-driven modeling techniques for urban behavior and energy
modeling along with traditional stochastic and simulation-based approaches [90]. In
these surveys and investigations in the field of BER-B, extensive data were collected,
various problems related to energy efficiency technologies, smart city and building, and
resident-oriented cities were raised, and the direction of future research was explained.
Therefore, it is expected that these studies will be able to narrow the knowledge gap by
providing insights on related topics and confirming detailed information about the research
environment and its impact on energy use.

3.3.6. Research Methodology Based on Review

Bibri (2018) reviewed relevant literature for the purpose of identifying and discussing
state-of-the-art sensor-based big data applications supported by IoT for environmental
sustainability and related data processing platforms and computing [42]. Fan et al. (2018)
provided a review of unsupervised data analysis studies in mining building operation data
and improving building operation performance [24]. Fan et al. (2021) reviewed articles
on data-driven methods for real-world applications for building energy modeling and
improving building performance, especially those based on large data sets [15].

Li et al. (2020c) provided a review on the studies on energy consumption calculation
of urban buildings and divided the reviewed studies into three categories: database, model,
and platform [91]. Mehmood et al. (2019) provided a review of studies on applying
AI and big data to energy-efficient buildings, focusing on the use of machine learning
and large databases for improved search, optimization speed, and accuracy [25]. Yan
et al. (2020) reviewed the AI-based applications in building energy efficiency with a focus
on facilitating the implementation of zero energy building, considering the influence of
occupant behaviors [92].
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3.3.7. Research Methodology Based on Combination

Ali et al. (2020a) predicted the energy performance of over 2 million buildings using
data from approximately 650,000 Irish Energy Performance Certificate buildings. The
study provided 88% prediction accuracy using a deep learning algorithm and proposed
an integrated methodology using building energy modeling [93]. Jeong et al. (2021)
applied a data-driven approach to setting a CO2 emission benchmark using data mining
techniques. Data for a total of 1212 multi-family housing complexes were established,
and the developed CO2 emission benchmark was verified using statistical methods such
as Mann–Whitney test and Kruskal–Wallis test [94]. Risch et al. (2021) modeled and
calibrated three office buildings in Germany based on one-year hourly measurement data.
The corrected model was evaluated as a coefficient of variation of root mean squared error
and R2, this study was simulated using the corrected values, and statistical analysis was
conducted [95]. Yigit (2021) developed a surrogate model-based integrated optimization
system to obtain energy-optimal thermal designs for residential buildings in the most
urbanized cities in Turkey under different levels of budget constraints. This system is an
integrated system consisting of a genetic algorithm optimization technique and gradient-
boosting machine-based surrogate model [96].

4. Discussion

Since the concept of big data emerged recently, there were many papers recently
published in the field of BER-B. The papers used for this review were adopted since 2001
when the concept of big data began to be defined. However, there were no research results
until 2004, and a total of three publications were published between 2005 and 2014; the
number of articles increased steadily from 2015 to 2021. In addition, there were five papers
in 2021 (currently November 2020), and one year later, the number of papers in 2021 is
expected to increase considerably.

In addition, among the seven research methodologies, 15 articles were published
in the field of simulation and optimization, showing the highest points. These method-
ologies included testing the identification method by adopting the data generated by
EnergyPlus [78], developing a predictive model using data obtained from other buildings
as limited data [79], evaluating 3600 alternate weather data generated using parameter
weights [80], predicting long-term data with short-term data of less than one month [82],
development of an optimized model for urban-scale energy in residential buildings [83],
optimizing energy consumption through occupant behavior modeling [84], and optimizing
the daily energy consumption of buildings [85]. These papers did not consist solely of
data collection but created data using programs or implemented an optimal model using
existing data.

In the researched papers, data were collected on conference rooms [51], HVAC systems
used in office spaces [48], and occupant behavior in terms of energy systems in build-
ings [60] and hot water, heating, cooling, and ventilation loads in residential buildings [64].
These studies are studies conducted using partial data in buildings, in other words, build-
ing energy management systems, building management, and facility management-related
fields that have not yet accumulated big data. It is a field that has the potential to contribute
to minimizing construction energy through data mining in the future, and therefore more
research on this topic is necessary.

5. Conclusions

This study adopted a three-step holistic method to review articles published in BER-B
over the past 20 years, after big data was first defined. According to the literature survey,
60 published papers were selected as literature samples to understand the trends of the
papers, and the following conclusions are as follows.

First, most of the literature surveyed in this study was from 2015 onward, and this
is believed to be due to the introduction of greenhouse gas control and carbon diox-
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ide emission reduction policies in many countries after the 2015 UN Conference on
Climate Change.

Second, China, the Republic of Korea, and the USA have the most published papers,
and as a result of an author-cooperative network analysis, Shenzhen University, Beijing
University of Civil Engineering and Architecture, and Tsinghua University have close
cooperation and knowledge communication. It can be seen that the thesis in BER-B has
been published several times.

Third, in BER-B, the area of simulation was 33.33%, accounting for the highest percent-
age of the seven research methodologies. In addition, simulation studies are not conducted
solely by data collection, but a number of studies have been found using data generated by
calibration and programs.

Fourth, there are many cases where the average publication year exceeds 2020 because
there are papers already published in 2021 and in November 2020. Papers to be published
in 2021 already show a significant number of citations and are expected to increase steadily
in the future, and their citations will increase further.

This study helps to understand the recent trends by grasping the current research
progress in the BER-B field. This can be helpful in setting the direction for further re-
search related to big data. In addition, research on the selection of construction methods
through the collection of big data for various construction methods has not been conducted
yet. Therefore, research on environmental load and energy efficiency analysis for new
technologies and new methods as well as existing methods is needed.
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