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Abstract: Mapping and quantifying land degradation status is important for identifying vulnera-
ble areas and to design sustainable landscape management. This study maps and quantifies land
degradation status in the north Gojjam sub-basin of the Upper Blue Nile River (Abbay) using GIS
and remote sensing integrated with multicriteria analysis (MCA). This is accomplished using a
combination of biological, physical, and chemical land degradation indicators to generate a com-
prehensive land degradation assessment. All indicators were standardized and weighted using
analytical hierarchy and pairwise comparison techniques. About 45.3% of the sub-basin was found
to experience high to very high soil loss risk, with an average soil loss of 46 t ha−1yr−1. More than
half of the sub-basin was found to experience moderate to high level of biological degradation (low
vegetation status and low soil organic matter level). In total, 80.2% of the area is characterized as
having a moderate level of physical land degradation. Similarly, the status of chemical degradation
for about 55.8% and 39% of the sub-basin was grouped as low and moderate, respectively. The
combined spatial MCA of biological, chemical, and physical land degradation indicators showed
that about 1.14%, 32%, 35.4%, and 30.5% of the sub-basin exhibited very low, low, moderate, and
high degradation level, respectively. This study has concluded that soil erosion and high level of
biological degradation are the most important indicators of land degradation in the north Gojjam
sub-basin. Hence, the study suggests the need for integrated land management practices to reduce
land degradation, enhance the soil organic matter content, and increase the vegetation cover in
the sub-basin.

Keywords: comprehensive land degradation; soil loss; GIS; MCA; Upper Blue Nile

1. Introduction

Land is a critical natural resource for human survival and the base for all terrestrial
ecosystem services. Healthy land qualities are vital for sustainable development, including
food security and improved livelihoods [1], serving as a key factor in many production
processes and economic growth [2,3]. Unsustainable use of land resources, however, results
in degradation of land quality and quantity [1]. Land degradation here primarily refers
to the loss of life-supporting land resources through a mix of processes that include soil
erosion, soil compaction, destruction of soil structure, loss of soil organic matter, loss of
vegetation cover, desertification, salinization, and acidification [4,5]. Land degradation
reduces the economic value of ecosystem services and goods derived from land resource
bases [6]. It has become a problem of great concern due to its impacts on food production,
water supply, energy supply, and ecosystem services as a whole. According to the United
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Nations Convention to Combat Desertification (UNCCD), about 25% of the total land
area of our planet Earth is severely degraded or undergoing degradation [7]. Africa is the
continent most severely affected by land degradation [8,9]. According to the estimates made
by the UNCCD [10], land degradation affects up to two thirds of productive land area in
Africa. In Ethiopia specifically, land degradation is a chronic and ongoing problem [11–13].
More than 85% of country’s landmass is degraded to some degree [14] due to population
pressure, persistent poverty, rugged topography, climatic condition, use of biomass for fuel,
lack of awareness, and misuse of land management technologies [11,12,14–16].

Deforestation is a continuing process of land degradation and results in local soil
erosion, biodiversity loss, changes to hydrology and climate, and contributes to global
climate change [17]. Forest covered about 40% of Ethiopia’s land area at the beginning of
the 20th century and reduced to 2.36% cover in 2000 [18]; however, recent evidence show
that forest cover has rebounded to 12% [19]. Soil erosion is a highly visible form of land
degradation in Ethiopia that has depleted topsoil for many years, primarily through water
erosion [20–23]. For example, it is estimated that northern Ethiopia has lost 45 t ha−1yr−1

topsoil due to water erosion alone [24]. Estimates from northwestern Ethiopia indicate
topsoil loss rates of 33.7 t ha−1yr−1 [25]. Similarly, on average, about 27.5 t ha−1yr−1 topsoil
resource is being eroded from the entire Upper Blue Nile (Abbay) basin [26]. In addition,
soil acidity has become a serious concern in the Ethiopian highlands in recent decades [27].
The study area, North Gojjam sub-basin, is in the Ethiopian highlands and was historically
well known to be an area of high potential for agricultural production [13], but land
resources of the area have been continuously degraded and the ecosystem productivity has
declined at an alarming rate [28,29].

Mapping and quantifying land degradation status plays an important role in cost-
effective design of land management strategies. It enables researchers and land managers to
identify the most vulnerable areas and to give priority of the locational intervention [30,31].
Evidence of land degradation assessment can be collected using myriad methods, such as
questionnaires, focus group discussions, direct observation, and expert judgment [32]. The
application of remote sensing technologies has provided great opportunities to provide
evidence of degradation over large areas at relatively low cost and time investment [32,33].
The indicators of land quality degradation assessment include physical, biological and
chemical factors, as well as socio-economic changes [34–36].

Previous studies on mapping and quantifying land degradation have focused on
the most visible forms of degradation, such as soil erosion and deforestation [26,30]. In
reality, a range of indicators of land degradation, including soil fertility status, soil acidity,
salinization, and loss of vegetation cover also have to be considered to assess the level of
land degradation [37]. This multifactorial approach is necessary because the design of ap-
propriate land management for sustainable development requires a holistic inventory and
rating of vulnerable areas for degradation [35,38] according to multiple risks and potential
interventions. It is also important to update assessment regularly, as land degradation is a
dynamic process that responds to coupled natural-human factors [39].

It can be challenging to integrate diverse degradation metrics that are obtained through
different measurement techniques and are not always directly comparable to each other.
Spatial multi-criteria analysis (MCA) can be of considerable use in land degradation
analysis. MCA methods are widely used for problems that involve multiple factors and
multiple perspectives. In this study, a new approach for development of a comprehensive
land degradation map is proposed, in which remote sensing, GIS, analytical hierarchy
process (AHP), and MCA techniques are applied to account for many factors responsible
for land degradation. Specifically, the study aims to: (1) estimate average annual soil loss;
(2) map and quantify key biological, physical, and chemical land degradation status; and
(3) develop comprehensive land degradation indicators.

This study provides empirical evidence to policy makers and land users to identify
specific areas vulnerable to land degradation as well as offering a comprehensive assess-
ment of land degradation vulnerability the north Gojjam sub-basin. This information is
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valuable for informing environmental rehabilitation activities and sustainable agriculture.
The rest of the paper is organized as follows: Section 2 gives a brief overview of the
study area and MCA procedures, along with a description of data; results are presented in
Section 3; Section 4 concludes with the main findings of the paper.

2. Materials
2.1. Description of the Study Area

The North Gojjam sub-basin is located between 38.2◦ E to 39.6◦ E longitude and
10.8◦ N to 11.9◦ N latitude. It is one of the major tributaries of the Blue Nile/Abbay river
(Figure 1). Its area covers about 1,431,360 ha, which stretches between Choke and Guna
mountains. The total population of the sub-basin and surrounding villages at the time of
the study was 3,565,892 [40], settled in scattered areas. The altitude of the sub-basin ranges
from 1044 to 4048 masl (Figure 1). The dominant agro-ecological zone is characterized
by tepid to cool moist middle highlands, and cold to very cold moist sub afro-alpine to
afro-alpine highlands [41]. According to the Ethiopian National Metrological Agency, the
average maximum and minimum temperature of the sub-basin varies from 24.6–28.1 ◦C
and 11.0–14.5 ◦C, respectively, and the mean annual temperature is 19.4 ◦C [42]. The rainfall
pattern is closely correlated with the annual migration of the inter-tropical convergence
zone (ITCZ) and most rainfall occurs in the summer, from June to September [41,42].

Figure 1. Location of North Gojjam sub-basin and its topography.

Meteorological records from stations within the sub-basin and in the surrounding
area indicated that the mean annual rainfall (1986–2017) is 1334.48 mm with a minimum of
810 mm and a maximum of 1815 mm [42]. The dominant soil types are leptosols, vertisols,
luvisols, and alisols [43]. The geology of the sub-basin is mainly dominated by basalt, but
the lowlands are dominated by sandstone [43]. Natural forest cover is very low and found
on riverbanks, hillsides, and in church yards, to some extent. Eucalyptus globules plantation
is dominant among introduced trees, particularly in the highland regions. Unreliable rain-
fed mixed crop and livestock production agriculture is the primary source of livelihood for
the majority of the population in the sub-basin. Various cereal, pulse, and oilseed crops
are widespread, with vegetable and fruit crops produced to some extent. Livestock types
include cattle, sheep, goats, horses, donkeys, mules, and poultry.

2.2. Data Sources

Landsat images were downloaded from the US Geological Survey (USGS) Earth
Explorer [44] for the month of January, in the dry season, to obtain low cloud cover
images. ASTER Global Digital Elevation Model (ASTER-GDEM) data were obtained
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from [45]. Currently, precipitation estimations based on satellite products have developed
an alternative source of sparse rainfall gauge data for different hydrologic practices, mainly
in limited data regions like Africa which suffer from a scarcity of surface monitoring
resources. Among others, Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) is commonly used in research [46]. For the present study, rainfall data
from the years 2009–2017 were obtained from the CHIRPS website [47]. Gridded soil data
with 250 m spatial resolution were downloaded from the African Soil Information Service
(AFSIS) website [48]. A total of 2500 ground truth data points for land use and land cover
(LULC) classification and accuracy assessment were collected from the field based on in-
situ field observation, with geolocation obtained using a handheld Garmin GPS instrument
and from Google Earth using a time slider image [49]. Of these total ground truth points,
738 were used for accuracy assessment of image classification using the error matrix, which
allowed us to evaluate the kappa coefficient, overall accuracy, and the producer’s and user’s
accuracy. To capture additional information, including qualitative perceptions, 18 focus
group discussions (FGDs) were carried out in 9 villages with 127 (78 male and 47 female)
community members selected from upper, middle, and lower parts of the sub-basin, and
interviews were administered for 27 farmers, 9 Development Agents (DAs), and 9 districts’
crop, livestock, and natural resource experts to obtain additional information regarding the
study area.

2.3. Spatial Multi-Criteria Analysis (MCA)

Evaluating comprehensive land degradation is not a trivial task, because it includes a
wide range of factors that can be challenging to combine into a single index. To address
this challenge, MCA can be applied to a combination of geospatial datasets [50]. MCA is
an evaluation technique that is used to identify vulnerable areas for sustainable natural
resource management [51–53] by ranking or scoring the performance of decision options
against multiple criteria [54]. The MCA process includes several steps: describe objectives,
select the criteria to measure the objectives, identify alternatives, renovate the criterion
scales into commensurable units, assign weights to the criteria that reveal their relative
importance, choose and apply a mathematical algorithm for ranking alternatives, choose
an alternative, and combine criteria into a single index [51–56]. Spatial MCA operates as a
raster process on multiple digital input maps of relevance to land quality indicators.

Based on the nature of the alternatives to be evaluated, MCA methods can be classi-
fied in two major types: continuous and discrete [57]. Continuous methods are used to
determine an optimal quantity, which can vary continuously in a decision problem [52].
Discrete methods can be defined as decision support techniques that have a finite number
of alternatives, a set of objectives and criteria by which the alternatives are to be judged,
and a method of ranking alternatives depending on how well they satisfy the objectives
and criteria [58]. Discrete methods can be further subdivided into weighting and ranking
methods. These categories can be additionally subdivided into qualitative, quantitative,
and mixed methods. Qualitative methods use only ordinal performance measures, while
mixed qualitative and quantitative methods use different decision rules based on value and
utility using mathematical functions [58]. The present study applied the discrete method
because the indicators are finite and categorized.

There is a wide range of decision-making techniques in the MCA literature that
are used to model complex problems [59]. The most common include: analytic hierar-
chy process (AHP) [58,60]; technique for order of preference by similarity to ideal solu-
tion (TOPSIS) [61]; preference ranking organization method for enrichment evaluations
(PROMETHEE) [62]; complex proportional assessment method (COPRAS) [63]; additive
ratio assessment (ARAS); visekriterijumska optimizacija I kompromisno resenje (VIKOR)
method [64,65]; multi-attribute utility theory (MAUT) [66]; and others. However, these
methods have been criticized due to an issue called the rank reversal problem (RRP). RR
refers to a change in the ordering among alternatives previously defined, after the addition
or removal of an alternative from the group previously ordered [56]. The characteristic
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objects method (COMET) is completely free of the rank reversal paradox and can be used
in exchange for the AHP method [56], but the most popular method in the field of natural
resource management is the AHP method. The theoretical foundations of AHP were devel-
oped by Saaty [58]. It is a prominent and powerful tool for making decisions in conditions
relating multiple objectives. The present study used the AHP method integrated with
GIS. The integration of GIS and AHP is a powerful approach to identify the suitable areas
for agriculture and vulnerable areas to land degradation [51,57]. The indicators of the
study are not complex and, thus, are not subjected to the rank reversal problem as we
analyzed manually.

Here we implement MCA in combination with an AHP that allows pairwise compari-
son and applies weights to each factor when merging to a single output index [52]. Three
hierarchical levels were applied (Figure 2). In the first hierarchy, individual land degrada-
tion indicator raster maps were prepared based on international standard values which
were developed by organizations and scientists. In the second hierarchical level, primary
indicators are grouped into classes. Vegetation cover [34] and soil organic matter [67,68]
were grouped as biological land degradation indicator alternative. Soil erosion [69], soil
compaction [70], soil drainage [71], and soil depth [72] were grouped as physical land
degradation indicator alternatives. Soil acidity represented a single chemical land degra-
dation indicator [68]. These groupings yielded a biological degradation index, physical
degradation index, and chemical degradation index alternatives. In the final hierarchical
stage, these three grouped indicators are combined into a single inclusive land degradation
index (Figure 2).

Figure 2. Hierarchical structures of land degradation status applied in multi-criteria analysis (MCA).

MCA requires that the indicators be adjusted into similar units and a common value
scale to make the comparison meaningful [52]. Value scaling, or standardization, is a
process of converting different indicators to a common unit and scale. In doing so, it is
possible to generate comparable alternatives according to their perceived relevance [73].
Linear scale transformation is the most commonly used method for criteria standardization
in spatial MCA [74], and it is applied here for ease of interpretation. All criteria were
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standardized and then scaled to a value range from 1 to 5, representing very low to very
high degradation level. There are three common weighting methods in spatial MCA:
ranking, rating, and pairwise comparison [75,76]. Of these, the pairwise comparison
method is most widely used in spatial MCA to estimate the overall weight of individual
criteria [60], and we apply this method here. The criteria were weighted through the
pairwise comparison of individual land degradation indicators which derived from raster
data (maps) following AHP approach. In this case, when two criteria are compared, the
less important criterion gets a reciprocal value of the most important. We use the principal
eigenvalue and the corresponding normalized right eigenvector of the comparison matrix
to provide the relative importance of the criteria being compared. The elements of the
normalized eigenvector were weighted with respect to the criteria or sub-criteria and rated
with respect to the alternatives [60,76]. The consistency of the matrix of order was then
evaluated. If the consistency index failed to reach a threshold level, the comparisons were
re-examined. Finally, the weighted overlay technique was used to combine/aggregate the
criteria maps, and each standardized criterion was multiplied by its weight in the overlay
process. All geospatial procedures are implemented using ArcGIS10.5 [77].

2.3.1. Develop Physical Land Degradation Indicators

A wide range of indicators can be applied to characterize physical soil/land degra-
dation and the vulnerability of ecosystem health. Among others, soil compaction, soil
drainage, and soil depth are commonly applied as indicators of soil ecosystem service
productivity and, in turn, land degradation status [69–72]. We considered soil erosion, soil
compaction, soil drainage, and soil depth as physical land degradation indicators.

Soil Loss Estimation Using RUSLE Model

Soil erosion is the main indicator of land degradation [11,12,78]. The agent of soil
erosion may be water and/or wind. Given the humid climate condition of large parts of
Ethiopian highlands, including the study area, water erosion is the dominant form of soil
erosion. Soil loss by water can be estimated using the revised universal soil loss equation
(RUSLE) [79]. The RUSLE is a very powerful tool when integrated with GIS, especially for
developing countries that lack data for more physically based models. Some of the other
reasons for the selection of the model for this study include its simplicity to apply and its
compatibility with remote sensing data and GIS inputs in a computer interface [80]. Most
of the input parameters of the model were adjusted for the Ethiopian highland context in
a previous study [81]. The model estimates soil loss by taking into consideration rainfall,
soil properties, topography, cover management, and conservation practices in a particular
area [82].

A = R.K.LS.C.P (1)

where “A” is the mean annual soil loss (t ha−1yr−1); “R” represents a rainfall erosivity
factor (MJ mm ha−1h−1yr−1); “K” is a soil erodibility factor (tha−1MJ−1mm−1); “LS” is
a dimensionless topographic factor that accounts for, length of the slope (L) and slope
steepness (S). “C” describes land cover factor and “P” is the erosion control support
practice factor.

Rainfall erosivity factor (R-factor) indicates the input, which determines the sheet and
rill erosion processes. R-factor depends mainly on the amount, intensity, and distribution of
rainfall [80]. Soil loss is strongly associated with rainfall amount, intensity, energy, duration,
pattern, and size of a raindrop through the detaching power of a raindrop striking the soil
surface and for the incidence of runoff on the soil surface [82]. However, such data do
not exist for the study area, due to the absence of an automatic rain-gauge, so, R-factor
was generated using long-term mean annual rainfall following the equation developed by
Hurni [81].

R = −8.12 + 562(Pa) (2)
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Where “R” is rainfall erosivity value (MJ mm ha−1h−1yr−1) and “Pa” is mean annual
rainfall (mm). For this purpose, nine years mean annual rainfall data was obtained from
CHIRPS website.

As depicted in Figure 3, rainfall is higher in the lowland parts of the sub-basin,
because in the highland region the rainfall characteristic is shower. Thus, the lower part
of the sub-basin has higher erosivity values than middle and upper parts. The spatial
distribution of the rainfall erosivity factor of north Gojjam sub-basin ranged from 657.34 to
921.73 MJ mm ha−1h−1yr−1 (Figure 3).

Figure 3. Rainfall erosivity (left) and soil erodibility (right) in the north Gojjam sub-basin.

Soil erodibility factor (K-factor) represents the sensitivity of soil particles and surface
materials to detachment and transport through the power of rainfall and runoff [82,83]. It is
associated with soil characteristics such as organic matter, texture, structure, permeability,
and total stability [84]. The availability of organic matter in the soil decreases soil loss be-
cause it makes soil particles attached together [84]. There are different formulas developed
by scholars to determine soil erodibility status [85]. Among others, Equation (3), shown
below, is a formula widely used to calculate soil erodibility in the different environments.
Using this approach, the K-factor of the study area was calculated using soil properties, or
texture class and organic matter content [86].

K =
{

0.2 + 0.3 exp
[
0.0256SAN

(
1.0 − SIT

100

)]}(
SIT

CLY+SIT

)0.3(
1.0 − 0.25C

C+exp(3.72−2.95C)

)(
1.0 − 0.7( 1−SAN

100 )
( 1−SAN

100 ) +exp(−5.51+22.9 ( 1−SAN
100 ))

) (3)

where SAN = sand in %, SIT = silt in %, CLY = clay in %, and C = organic carbon in %.
The result indicated that soil erodibility value in the north Gojjam sub-basin was

ranged from 0.13 t/ha/MJ/mm on upper and lower to 0.30 t/ha/MJ/mm on the middle
part (Figure 3).

Topographic factor (LS-factor) refers the effect of topography on soil erosion. Slope
length (L) and slope gradient (S) factors are joined in a single index, LS-factor, to describe
the topographic factor for soil loss [87]. The slope length refers to the distance from the
point of origin of overland flow to the point where either the slope gradient declines enough
in which sedimentation starts or the runoff water enters a well-defined channel [79,88].
Soil loss increases with increases in slope gradient (S) and slope length (L) resulting from
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respective increases in velocity and volume of surface runoff [30]. We used modified
equations for computing the topographic factor (LS-factor) suggested by Renard et al. [89]:

L = (
λ

22.13
)

m
(4)

m =
F

(1 + F)
(5)

F =
sinβ
0.896

3.0(sinβ) 0.8 + 0.56
(6)

where L is a slope length factor, λ is the multiplication of flow accumulation and cell size,
m is slope length exponent, F is calculated for conditions when the soil is moderately
susceptible to both rill and inter-rill erosion, while β is the slope angle in degree (slope in
degree × 0.01745).

S = 10.8 × sinβ+0.03 δ < 9%S = 16.8 × sinβ− 0.05 δ ≥ 9% (7)

where S is a slope steepness factor, β is the slope angle in degree, and δ is slope gradient
in percent. The LS-factor map was generated from a 30 m pixel resolution ASTER global
digital elevation model (GDEM) [46]. After calculating L and S values the LS value was
computed by multiplying the two together. As depicted in Figure 4, the LS-factor value in
the study sub-basin varied from 2 to 109, but the majority of the sub-basin has LS value of
less than 10 (Figure 4).

Figure 4. Digital elevation model (left) and topographic factor (LS-factor) (right) maps of the north
Gojjam sub-basin.

Cover management factor (C-factor) describes the effect of cropping and manage-
ment practices in agricultural land and ground cover (i.e., grass and tree canopy) on
non-agricultural land on reducing soil loss [26,30]. To compute cover factor values in the
RUSLE model, data are required associated with the role of plant canopy, crop residues,
soil management practice, surface roughness, and moisture content of soil [79,82]. Ac-
quiring each of the parameters is difficult due to the scarcity of data for combination and
calibration. Alternatively, the C-factor can be calibrated from the LULC map. Using this
simpler approach, the C-factor LULC map of the study area was prepared from a Landsat
8 image acquired in January 2017 using supervised classification techniques in ERDAS
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IMAGINE14 [90] (Figure 5). Ground truth data were used for reference for classification
and accuracy assessment validation. The overall classification accuracy was 92% and the
kappa coefficient index was 0.9. After classification was performed, the raster map was
converted to vector format to assign C-factor values for each LULC type based on sugges-
tions in previous literature (Table 1). Finally, the C-factor map changed to the raster layer
using the raster conversion tool in ArcGIS10.5. This method was employed by different
authors in studies of the Ethiopian highlands [26,30,91,92]. The cover management factor
value in the sub-basin varied from 0 on water bodies to 0.6 on bare land (Figure 5). The
smallest value indicates lower susceptibility to soil erosion.

Figure 5. Land use and cover types (left) and the cover factor (right) values in the north Gojjam
sub-basin.

Table 1. Adopted cover management factor (C-factor) values for different land uses/cover types.

LULC C-Value Sources

Natural Forest 0.01 [30,93]
Plantation Forest 0.01 [30,93]
Shrub and bush 0.20 [30,93]

Grassland 0.05 [82,93]
Agriculture 0.15 [82,93]
Bare land 0.60 [93]

Waterbody 0.00 [26]

Erosion management practice (P-factor) is a measure of the effect of soil management
to reduce the extent of soil loss [87,94]. It involves several types of agricultural land man-
agement practices, such as terracing, contour farming, and strip cropping [80]. Unlike the
previous studies in Ethiopia [26,30,93,95], this study generated P-values from conservation
technology instead of using land use and topography. To determine agricultural land
management practices for this study, intensive field observation, key informant interviews,
and Google Earth Pro [49] observations were employed. Soil bund, stone bunds, hillside
terraces, traditional ditches, cutoff-drains, waterways, check-dams and plantation on bund,
afforestation, and revegetation have been implemented to various extents. From these
technologies, we considered only soil and stone bunds conservation structures because
most other Sustainable land management (SLM) options observed in the sub-basin were
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not well-designed and not widely used. As Figure 6 and Table 2 shows, almost half of
the study areas were well terraced (48%), mainly the upslope parts, while about 30% of
landscape needs structural measures and 17% of the sub-basin shows no need for conser-
vation practices. The estimated p-values ranged from 0.02 on the terraced area to 1 on
non-terraced agricultural land use types. The smaller value shows less vulnerability to soil
loss (Table 2 and Figure 6).

Figure 6. Erosion control measures (left) and management (P-factor) values (right).

Table 2. Erosion control status and management factor (P) values.

Erosion Control Measures Area in Percent P-Factor Sources

Area no need/little conservation
structure 17.79 0.02 [21]

Area that need conservation stricture 33.90 1.00 [21]
Terraced landscape 48.31 0.50 [63]

Finally, the annual soil loss was estimated on a cell-by-cell basis of multiplying the
five RUSLE factors using Equation (1). As Landsat images and ASTER-GDEM [46] used in
this study had 30 m spatial resolution, all the raster maps were resampled to 30 × 30 m cell
size and re-projected to UTM Zone 37◦ N, WGS 1984 datum. The estimated annual soil
loss was classified into six severity categories following soil erosion severity classification
standards suggested by Haregeweyn et al. and Yesuph et al. [26,96].

The validation and consistency of the model output was compared with the quantita-
tive outputs of previous experimental observations and similar empirical studies conducted
in Ethiopia, mainly in the northwestern highlands. In addition, selected field observations
were carried out. In supporting this process, the color printed model output soil erosion
severity map was taken in the field to check the reality on the ground. Figure 7.
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Figure 7. Flow chart showing the methodology of soil loss estimation.

Soil Compaction

Soil compaction is measured using soil bulk density [97]. Soil bulk density reflects soil
compactness and soil health [55]. We obtained a soil bulk density map from Hengl et al. [48]
in raster format and then reclassified based on the value range given in Table 3 to assign a
level of compaction that is used as a physical land degradation indicator.

Table 3. Soil compaction class [70].

Soil Bulk Density Class Compaction Status

<1 g/cm3 Low soil compaction
1–1.25 g/cm3 Medium soil compaction

1.25–1.55 g/cm3 High soil compaction
>1.55 g/cm3 Very high soil compaction

Soil Drainage

Soil drainage refers to the rate at which excess water moves from the soil surface
through the soil profile. Poor drainage causes waterlogging in wet season and crusting
in dry season [98]. Drainage class can be determined from observation of water table,
soil wetness, landscape position, and soil morphology. According to the USDA [71], soil
drainage can can be classified into seven classes based on the rate of water removal from
the soil. To determine soil drainage status, a soil drainage raster map was acquired from
Hengl et al. [48] and reclassified based on the values given in Table 4.
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Table 4. Soil drainage classes status [71].

Drainage Class Level Drainage Status Description

1 Very poor Excessively drained
2 Poor Somewhat excessively drained
3 Imperfect Well drained
4 Moderate Moderately well drained
5 Well Somewhat poorly drained
6 Somewhat excessive Poorly drained
7 Excessive Very poorly drained

Soil Depth

Soil thickness has a relation to soil quality and crop productivity [74]. Soil in which the
rooting depth is limited by the presence of a physical constraint is generally less productive.
Deep soils are favorable for the growth and development of plant roots with a higher
supply of nutrients and minerals [74], implying low degradation level. To estimate soil
depth and use it for the indicator of physical land quality status in our study area, the raster
soil depth map was obtained from Hengl et al. [48] and reclassified into the categories
listed in Table 5.

Table 5. The status of soil depth categories [72].

Soil Depth Class Severity Level Description

<30 cm Very low Shallow soil
30–50 cm Low Moderate shallow soil

50–100 cm Moderate Deep shallow soil
100–150 cm High Very deep shallow soil

>150 cm Very high Shallow soil

2.3.2. Develop Biological Land Degradation Indicators

There are different indicators for assessing biological land degradation. Among others,
vegetation cover, soil organic matter, and the reduction of soil organisms and soil fauna
are common indicators of land degradation [99]. In this study, vegetation cover and soil
organic matter were considered to estimate biological land degradation status.

Vegetation Cover

It is widely used to estimate land degradation status related to proxy indicators of
greenness, vegetation density, vegetation growth, and biomass productivity [68]. We use
the Soil Adjusted Vegetation Index (SAVI), a commonly applied remotely sensed index that
offers an estimate of vegetation cover, and that overcomes limitations known to exist in the
normalized vegetation difference index (NDVI) in areas with significant bare soil [100]. We
implement SAVI following Chabrillat [34]:

SAVI =
(NIR − RED)

(NIR + RED + L)
(1 + L) (8)

where NIR is the reflectance in the near-infrared and RED is the reflectance radiated in the
visible red. L is a coefficient of vegetation density (ranging from 0 for very dense vegetation
cover to 1 for very sparse). We tested several values for L, following recommendations
from Huete [99] (0.25, 0.5, and 0.75). Visual interpretation of images led us to choose 0.5,
which is an intermediate value that has been applied in several previous studies [99,101].
As a result, we used 0.5 as constant to determine vegetation index in this study.

Soil Organic Matter (SOM)

Soil organic matter is another useful biological land quality indicator [34]. Indeed,
soil organic carbon together with soil pH has been recommended as a simple and reliable
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indicator of soil health and quality [34]. The amount of soil organic carbon is usually
measured in the laboratory. However, it is difficult for this study to measure soil organic
matter at the sub-basin level because of time and financial constraint. Consequently, a soil
organic carbon raster map was obtained from Hengl et al. [48] and reclassified (Table 6) to
determine the state of soil organic matter. It is estimated that soil organic matter contains
58% organic carbon. The soil organic carbon raster map was converted to soil organic
matter following the equation used by Combs et al. [102].

Percentage o f organic matter = Percentage o f total organic carbon × 1.72 (9)

Table 6. Classes of soil organic matter status in soil [73].

Category in % Description

<0.2 Very poor soil organic matter content in the soil
0.2–0.6 Poor soil organic matter content in soil
0.6–1.2 Medium soil organic matter contentin soil
1.2–2.0 High soil organic matter contentin the soil

>2.0 Very high soil organic matter contentin the soil

2.4. Chemical Land Degradation Indicators

Soil chemical degradation refers to undesirable changes in soil chemical characteristics,
driven primarily by human intervention [103]. The most important indicators of chemical
land degradation are soil acidity, salinity, and sodicity [103]. In this study we consider only
soil acidity since the study area is humid and the application of chemical fertilizers and
removable of crop residue are common. Soil acidity can be measured using pH value from
solution soil in water [68]. To identify the status of soil acidity in the sub-basin, the soil pH
raster map developed by Hengl et al. [48] was used. Then, the soil acidity digital map was
classified using standardized soil pH classes (Table 7).

Table 7. Category of soil acidity level based on pH value [69].

pH Value Description

<4.5 Extremely acid soils include acid sulfate soils
4.5–5.5 Very acid soils suffering often from toxicity

5.5–7.2 Acid to neutral soils: these are the best pH conditions for nutrient
availability and suitable for most crops

7.2–8.5 These pH values are indicative of carbonate-rich soils
>8.5 Indicates alkaline soils often very alkaline soils

3. Results and Discussion
3.1. Physical Land Degradation Indicators

Annual soil loss: RUSLE model results indicate that much of the middle part of the
sub-basin has lost topsoil at a rate of 0 to 75 t ha−1yr−1, and that soil loss rates exceed
75 t ha−1yr−1 in upstream and downstream zones as well as in some erosion hotspot areas
(Figure 8). As indicated in Table 8, about 31.3% and 19.3% of the sub-basin experienced
a very low and low soil loss rate, ranging from 0–5 t ha−1yr−1 and 5–15 t ha−1yr−1,
respectively. The result shows that about 13.6% of the sub-basin experienced soil loss
ranging from 15 to 30 t ha−1yr−1, which is characterized as a moderate erosion rate.
Further, about 17.3% of the sub-basin lost topsoil with rates from 30 to 75 t ha−1yr−1,
indicating high to very high soil loss rate. The remaining 18.5% of the sub-basin was under
severe erosion rate with soil loss exceeding 75 t ha−1yr−1. As shown in Table 8, the area
under high to severe soil loss class covers about 35.9% area of the sub-basin, found in most
upper and lower parts in very steep sloped areas (Figure 8). The average annual soil loss
of the entire north Gojjam sub-basin was estimated at 46 t ha−1yr−1. This implies that the
average soil loss in the study area is greater than two-times of the maximum (18 t ha−1yr−1)
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soil loss tolerance value given by Hurni [80] for the Ethiopian highlands. It implies that a
total of 65.2 million tons of soil has been lost annually from the entire sub-basin. Any soil
loss rate greater than 10 t ha−1yr−1 will not be restored in a period of 5 to 10 decades [104].
Accordingly, nearly half of the north Gojjam sub-basin was beyond the threshold of soil
loss tolerance level (Table 8).

Figure 8. The annual soil loss (a) and soil bulk density (b) of the north Gojjam sub-basin.

Table 8. Annual soil loss class and risk levels in the north Gojjam sub-basin.

Soil Loss
(t/ha/yr.) Area (ha) Percentage Severity

Level
Assigned

Value Risk Level

<5 447,872.54 31.29 Very slight 1 Very low
5–15 276,252.48 19.30 Slight 2 Low

15–30 193,949.28 13.55 Moderate 3 Medium
30–50 141,847.78 9.91 High 4 High
50–75 106,350.05 7.43 Very high 5 Very high
>75 265,087.87 18.52 Sever 5 Very high

Consistency and validation of the model estimation: The estimated average soil loss
rate and the spatial patterns of this study are, in general, accurate, compared to what can
be observed in the field as well as findings from previous experimental studies. Based on
field assessment of rill and inter-rill erosion, Bewket and Sterk [105] found the annual soil
loss ranged from 18 to 79 t ha−1yr−1 in parts of the same and adjacent watershed of this
study sub-basin. Similarly, in five years of monitoring in an experimental micro-watershed
(the Anjeni) located to the northwest adjacent to this study area, soil loss from cultivated
fields under the traditional land-use practices was ranged from 17 to 176 t ha−1yr−1 [106].
Recently, Belayneh et al. [107] confirmed that the mean rate of soil loss in the new- and
old-graded soil bund-treated and non-treated plots was 23.5, 45.6, and 58.1 t ha−1yr−1,
respectively using experimental study from cultivated land in Gumara sub-watershed
located in the present study sub-basin. Hurni [108] in Ethiopian highland estimated average
soil loss from cultivated fields at 42 t ha−1yr−1 accounting from re-deposition of mobilized
sedimentation. In addition, to check the validity, selected field observations were carried
out. In supporting this process, the color-printed model output soil erosion severity map
was taken into the field and checked against the reality on the ground.
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The estimated soil loss rate of this study was also consistent with the empirical
evidence from previous published studies. For example, 24.3 t ha−1yr−1 average soil loss
was reported in the Gelana sub-watershed, north Wollo [95]; about 23.7 t ha−1yr−1 attested
in the Geleda watershed [109]; nearly 24.9 t ha−1yr−1 reported in the Enfraz watershed [93];
the study conducted soil loss from the entire upper Blue Nile basin confirmed about
27.5 t ha−1yr−1 [26]; other results reported a relatively comparable estimation result to
the present study from Jabi Tehinan district (30.6 t ha−1yr−1), west Gojjam zone [88]. The
result of this study was most similar to recent empirical studies. For example, average
soil loss of about 47.4 t ha−1yr−1and 42 t ha−1yr−1 was reported in the Koga watershed,
upper Blue Nile [21,91]; about 49 t ha−1yr−1 mean soil loss was found in the Dembecha
District, west Gojjam [92]. In contrast, some other studies undertaken in various regions of
Ethiopia reported relatively higher average soil loss rate than this study. For instance, it
was much lower than the mean soil loss rate of 243 t ha−1yr−1 reported by Zeleke [110]
for north-western Ethiopian highlands due to rugged topography, low vegetation cover,
and absence of land management technology; about 93 t ha−1yr−1 average soil loss was
reported in the Chemoga watershed [30]; 84 t ha−1yr−1 average soil loss in northwestern
Ethiopia found by Selassie Belay [111]; and 75 t ha−1yr−1 in the entire upper Blue Nile
Basin [112].

The above empirical results indicated that though soil erosion is a common problem
in Ethiopian highlands, the quantitative results are still uncertain and inconsistent. The
variation may be observed from the heterogeneity of soil erosion determinants such as
rainfall, soil property, topography, land management, and land use types, and may also
stem from methodological differences between studies.

Soil compaction: The spatial distribution of soil compaction in the sub-basin ranged
from 0.8 to 1.4 g/cm3 (Figure 8). Table 9 indicates that 80.9% of the sub-basin soil bulk
density was between 1 and 1.25 g/cm3, indicative of medium compaction. The result
shows that the status of soil compaction in a large area of the sub-basin can be considered
as medium, which is attributed to the absence of heavy machine farming activity in the area.
Low soil compaction was found in colder climate zones and areas with and more vegetation
cover, located in a mountain area where higher precipitation rate and low temperature are
found. The result implies that soil compaction was not much of a problem in the north
Gojjam sub-basin.

Table 9. Statistics for physical land degradation indicators in the north Gojjam sub-basin.

Factor Classes Area (Ha) Percentage Assigned Value Degradation
Level

Soil bulk density
(g/cm3)

<1 19,323.36 1.35 2 Low
1–1.25 1,158,399.65 80.93 3 Moderate

1.25–1.55 253,636.99 17.72 4 High

Level of drainage

Poor 2147.04 0.15 1 Very low
Imperfect 110,787.26 7.74 2 Low
Moderate 214,990.27 15.02 3 Moderate

Well 1,064,788.70 74.39 4 High
Somewhat
excessive 38,646.72 2.70 5 Very high

Soil depth class
(cm)

25–30 719,544.67 50.27 5 Very high
30–50 3864.67 0.27 4 High

50–100 1145.09 0.08 3 Moderate
100–150 122,524.42 8.56 2 Low

>150 584,281.15 40.82 1 Very low

Soil drainage: As seen from Table 9, about 74.4% of sub-basin has good drainage
characteristics. The spatial distribution of soil drainage is shown in Figure 9. The result is
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similar to the soil drainage map prepared by the agricultural transformation agency [113]
in the Amhara regional state and local land users’ perception.

Figure 9. Soil bulk depth (a) and soil drainage (b) in the north Gojjam sub-basin.

Soil depth: Spatial distribution of soil depth in the sub-basin ranged from 25–175 cm
(Figure 9). As presented in Table 9, about 40.9% of the sub-basin has very deep soils
(>150 cm), which indicates a very low land degradation level with respect to this indicator,
while about 50.3% of the sub-basin has shallow soil, ranging from 25–30 cm, which indicates
a very high degree of degradation. Most midland parts of the sub-basin are characterized
by high soil depth while the lower part has very shallow soil, reflecting higher erosion
rates and greater soil degradation.

3.2. The State of Physical Land Degradation

The weights of the four indicators which contribute for physical land degradation
(soil erosion, soil compaction, soil drainage, and soil depth) have been derived through a
pairwise comparison. The weight has been given based on the influence of every subclass
for land degradation. The calculated pairwise comparison matrix consistency ratio is 0.01,
indicating a consistent comparison. As the overlay analysis result depicted in Figure 10
shows, the majority (72.8%) of the sub-basin physical land degradation level was moderate.
The weights of pairwise comparison matrix result shows that soil drainage, soil depth,
soil erosion, and soil compaction were the most to the least important physical land
degradation indicators in the north Gojjam sub-basin (Table 10). This implies that the wider
area of the sub-basin’s physical land degradation status was moderate (Figure 10). Most
low vegetation cover areas fall under the shallow soil depth due to the presence of high
soil erosion.

Similarly, local farmers in the study area reported physical land degradation problems
in the form of low soil infiltration rate, soil depth reduction, and soil erosion. In both
formal and informal discussions, farmers explained that there is the increasing problem
related to soil compaction on their farm field. They did report that due to soil compaction,
rainwater infiltration into the soil has been decreasing and result in increasing soil erosion
rate. Soil depth has decreased due to erosion from runoff water and continuous cultivation,
particularly on steep slopes and croplands. These discussion points suggest that physical
land degradation may be an increasing problem in the sub-basin. According to Amede [114],
soil erosion by water is the main land degradation agent in the Amhara regional state.
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Figure 10. State of physical land degradation in the north Gojjam sub-basin.

Table 10. Pairwise comparison matrix for physical land degradation indicators.

Criteria Soil Drainage Soil Depth Soil Erosion Soil Compaction Criteria
Weighting

Soil drainage 1 2 3 5 45

Soil depth 0.5 1 2 3 27

Soil Erosion 0.33 0.50 1 3 20

Soil compaction 0.2 0.33 0.33 1 8

3.3. Biological Land Degradation Indicators

Vegetation cover: As Figure 11 shows, the spatial patterns of vegetation indices in the
north Gojjam sub-basin ranged from −0.2 to 0.86. As seen in Table 11, about 20.9% and
60.3% part of the sub-basin has moderate and poor vegetation cover, respectively. These
areas are characterized as moderate and high land degradation status, respectively. As
shown in Table 11 and Figure 11, more than half of the sub-basin was classified as having
high to very high land degradation level according to the vegetation indicator. The severity
was higher in the lowland area than the highland in the sub-basin, where the concentrations
of plantation and grazing land were low.

The status of soil organic matter (SOM): The spatial distribution of soil organic matter
content in the north Gojjam sub-basin ranged from 0.15% to 1.86% (Figure 11). As Table 12
depicts, for a large area (72.6%) of the sub-basin soil organic matter proportion ranged from
0.2 to 0.6%, a low SOM value that is considered to be highly degraded for this indicator.
Low SOM is associated with greater erosion and with low levels of micro-organisms in the
soil. Higher SOM indicates the presence of richer flora and fauna residues at various stages
of decomposition, and soils that are rich in humus content. The low level of SOM found
over most of the north Gojjam sub-basin may be due to continued cultivation and collection
of crop residues for domestic energy, livestock feed, and home building materials in favor
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of use as mulch on the farm fields. Free grazing is also one of the causes of decreasing crop
residue in the study sub-basin.

Figure 11. Soil Adjusted Vegetation Index (left) and soil organic matter (right) of the sub basin.

Table 11. Statistics of mean soil adjusted vegetation index (SAVI).

SAVI Classes Area (ha) Area (%) Cover Status Assigned Values Degradation
Level

<0.1 67,972.77 4.75 Very poor 5 Very high
0.1–0.2 862,529.67 60.26 Poor 4 High
0.2–0.3 298,752.48 20.87 Moderate 3 Moderate
0.3–0.4 172,708.74 12.07 High 2 Low

>0.4 29,396.34 2.05 Very high 1 Very low

Table 12. Levels of soil organic matter of topsoil in the north Gojjam sub-basin.

Category in % Area (Ha) Percentage (%) Level of SOM Severity Level Assign Value

0.15–0.2 19,624.79 1.73 Very low Very high 5
0.2–0.6 348,429.04 72.56 Low High 4
0.6–1.2 1,038,570.57 24.34 Medium Moderate 3

1.2–1.86 24,735.61 1.37 High Low 2

3.4. The Status of Biological Land Degradation

Similar to physical land degradation indicators, the weights of the two indicators
which contribute for biological land degradation (vegetation cover and soil organic matter)
have been derived through a pairwise comparison matrix. The weight has been given
based on the influence of every sub-class for land degradation. As presented in Table 12,
soil organic matter was a more influential indicator than vegetation covers for biological
land degradation in the sub-basin. The calculated pairwise comparison consistency ratio
was zero, which implies that the comparison was perfectly consistent and the comparison
is acceptable. As the weight overlay analysis shows in Figure 12, 60% and 4.7% of the
sub-basin was highly to very highly degraded. About 30.8% and 4.4% of the sub-basin
has been degraded in moderate and low-level risk. This suggests that more than half
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of the north Gojjam sub-basin was highly degraded biologically due to vegetation cover
degradation and soil organic matter depletion.

Figure 12. Biological land degradation status in the north Gojjam sub-basin.

This result is consistent with local land users’ view. In the formal and informal
discussions, farmers reported that both fauna and flora have been declining through
time on their farmland due to over-exploitation of natural resources. According to the
respondents’ view, soil nutrient loss by water is an unsolved form of land degradation and
is an ongoing problem. They conclude that the loss of nutrient and reduction of organic
matter has increased over recent few decades in the sub-basin. Table 13.

Table 13. Pairwise comparison matrix of biophysical land degradation indicators.

Criteria Organic Matter Vegetation Cover Criteria Weighting

Organic matter 1 2 66.7
Vegetation cover 0.5 1 33.3

3.5. The State of Chemical Land Degradation

The spatial variation of chemical land degradation in the form of soil acidity in the
north Gojjam sub-basin varied from 5 to 7.8 pH value (Figure 13 and Table 14). The result
shows that soil acidity level for about an area covered about 4% was less than 5.5 pH value
which is considered as high. High soil pH concentration is found in the Choke mountain
reserved area, where wet climate condition and water availability is higher as well as the
area covered by natural forest and afro-alpine grass. Wet climate and high rainfall leach
soluble nutrients from soil, such as calcium and magnesium which are specifically replaced
by aluminum and increased potential for acidic soils [115]. The decomposition of organic
matter produces hydrogen ions, which are responsible for soil acidity formation [116].
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Figure 13. Soil acidity status in the north Gojjam sub-basin.

Table 14. The status of soil acidity in the north Gojjam sub-basin.

Soil pH Area (Ha) Percentage (%) Level Assigned Value

5–5.5 56,525.14 3.95 High 4
5.5–6.7 558,078.76 38.99 Medium 3
6.7–7.3 799,124.40 55.83 Low 2
7.3–7.8 17,631.70 1.23 Very low 1

About 39% part of the sub-basin experienced soil acidity ranged from 5.5 to 6.7 pH
value, which expressed a high level of degradation. As Figure 14 observed most high-
land and midland parts of the sub-basin, in which continuous agriculture activity and
continuous application of chemical fertilizers takes place, as well as eucalyptus plantation
being common, were vulnerable to soil acidity. This might be from the application of
acid-forming fertilizers and over-cultivation. According to local experts, due to population
growth and persistent demand for food and fuel, the removal of agricultural by-products
(crop residues) and continuous crop harvest and use of acid forming inorganic fertilizers
make an important contribution to soil acidity development in the sub basin. Continuous
application of chemical fertilizers with nitrogen and/or phosphorus nutrients only in the
form of diammonium phosphate (DAP) and urea has adversely affected soil chemical
properties [116]. Land used for eucalyptus fields are the most affected by soil acidity [115].

The majority of the area (55.8%) the pH of soils in the sub-basin varied from 6.7 to
7.3, a range that is considered neutral, whereas the pH value for the remaining 1.23% of
the basin ranged from 7.3 to 7.8, which is characterized as alkaline soil. Low soil acidity
level located in low land areas, in most dry areas. The result implies that almost half of the
study area was vulnerable to chemical land degradation. However, no area in the sub-basin
was affected by strong soil acidity. FGDs and key informant participants reported that
the application of lime on the cropland has been increasing in the last 10 years, due to the
increasing problem of soil acidity, mainly in the heavily cultivated middle and upper part
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of the sub-basin. Nevertheless, most farmers do not use lime to reclaim acid soil due to the
scarcity of lime supply.

Figure 14. Comprehensive land degradation map of the north Gojjam sub-basin.

3.6. The Status of Comprehensive Land Degradation in the North Gojjam Sub-Basin

The comprehensive land degradation map of this study was produced by combining
biological, physical, and chemical land degradation indicators. All the parameter raster
maps were resampled to 30 × 30 m cell size and re-projected to UTM Zone 37◦ N, WGS
1984 datum. As seen from the pairwise comparison matrix result in Table 15, biological,
physical, and chemical degradation indicators were the most to the least important factors
for contributing comprehensive land degradation in the north Gojjam sub-basin. The
weighted comparison consistency ratio was 0.09, and thus, the comparison was acceptable
as the value is less than 0.10.

Table 15. Pairwise comparison matrix of land degradation status in the north Gojjam sub-basin.

Criteria Biophysical
Degradation Physical Degradation Chemical Degradation Criteria Weighting

Biophysical
degradation 1 3 7 69

Physical degradation 0.33 1 2 21
Chemical degradation 0.14 0.5 1 10

The result shows that about 32% of the sub-basin area exhibits low-level degradation
while about 35.4% is moderately and 30.5% is highly degraded (Figure 14). The result
shows that the spatial distribution of land degradation in the sub-basin was uneven. As
depicted in Figure 14, the most highly degraded areas are located in the lower part of the
sub-basin. This is a result of a number of factors: steep slopes, poor land management
and continued cultivation, rugged topography, population pressure, and erratic rainfall.
The moderately degraded areas were located in the middle elevation portion of the sub-
basins, where the area is characterized by plain topography and low vulnerability to soil
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erosion. These factors are confirmed by local land users. Local communities explained
that a combination of soil erosion, low vegetation cover, low soil organic matter, and soil
acidity contributed to land degradation in the north Gojjam sub-basin. Moreover, they
reported that climate condition, poor agricultural activity, poor grazing, and poor quality
of soils had contributed to soil erosion in particular and land degradation in general in
the sub-basin. Overall, the combined degradation analysis shows that more than 60% of
the sub-basin was moderately to highly degraded. This implies that land degradation is a
serious environmental and economic problem in the north Gojjam sub-basin.

4. Conclusions and Policy Implications

Assessment of land degradation is prerequisite to develop evidence-based and efficient
land management planning. To meet this need, this study mapped and quantified the status
of comprehensive land degradation in a typical highland of Ethiopia, the north Gojjam
sub-basin of the upper Blue Nile basin. To map and quantify different land degradation
indicators into a single indicator, we followed the standardized classification technique in
ArcGIS10.5 and the hierarchical spatial MCA approach. The rate of soil loss was estimated
using the RUSLE model taking into account the basic factors of soil erosion, including
topography, soil characteristics, rainfall, land cover, and local land management measures.

The RUSLE model yields an estimate that on average 46 t ha−1yr−1 or a total of
65.2 million tons of topsoil has been lost from the sub-basin annually. About 45.3% of
the sub-basin was evaluated to be at high and very high soil loss risk. Most parts of the
sub-basin suffered from high to very high biological land degradation. The majority of
the sub-basin is moderately affected by soil acidity and physical deterioration of land
quality, but biological land degradation was considered to be a more important factor in
land degradation than chemical or physical indicators. The result of the combined land
degradation indicators confirmed that more than 60% of the sub-basin was moderately to
highly degraded.

The diverse aspects of land degradation in the sub-basin point to the need to integrate
structural, biological, and agronomic land management measures to maintain sustainable
environmental management and economic development. Particularly, lime application
and organic fertilizer (compost, manure, and mulching) application are very important
to reverse soil acidity and to improve soil fertility status. The adoption of agroforestry
and economically viable multi-purpose perennial crops should be promoted to reverse soil
degradation and reduce soil erosion in the sub-basin. This requires the collaboration of
all the stakeholders to rehabilitate formerly degraded areas and to minimize the current
degradation rate as well as to improve ecosystem health and maintain sustainable devel-
opment in the area. Further, the study confirmed that the use of GIS and remote sensing
technologies combined with the spatial MCA technique is a useful tool in mapping and
characterizing land degradation using a combination of spatial data indicators. This study
considers rill and inter-rill erosion by water. Thus, future researchers should consider
gully and river bank erosion. Soil quality can be measured using several soil essential
elements such as hydrogen ion concentration, electrical conductivity, total nitrogen, avail-
able phosphorus, potassium, calcium, magnesium, sodium, and others. Future researchers
should consider these gaps in the north Gojjam sub-basin. In general, land resources bases
are dynamic and diverse across a region depending on the dominant socioeconomic and
biophysical factors of that location. This emphasizes the need for regular engagement with
farmers to address emerging opportunities and challenges.

Author Contributions: All authors have made substantial contributions equally to the design of the
research work and the acquisition, analysis, or interpretation of data. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by NILE-NEXUS: Opportunities for a sustainable food–energy-
water future in the Blue Nile Mountains of Ethiopia. Belmont Forum. Addis Ababa University and
John Hopkins University have also supported this research.



Sustainability 2021, 13, 2244 23 of 27

Institutional Review Board Statement: Informed consent was obtained from all subjects involved
in the study.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References and Note
1. Nkonya, E.; von Braun, J.; Mirzabaev, A.; Le, Q.B.; Kwon, H.Y.; Kirui, O. Economics of Land Degradation Initiative: Methods and

Approach for Global and National Assessments; ZEF—Discussion Papers on Development Policy No. 183; Center for Development
Research: Bonn, Germany, 2013; p. 41.

2. Sadik-Zada, E.R. Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus
Economies. Eur. J. Dev. Res. 2020, 32. [CrossRef]

3. Sadik-zada, E.R. Natural resources, technological progress, and economic modernization. Rev. Dev. Econ. 2020, 7, 1–24. [CrossRef]
4. Le, Q.B.; Nkonya, E.; Mirzabaev, A. Biomass Productivity-Based Mapping of Global Land Degradation Hotspots. In Economics of

Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.;
Springer: Cham, Switzerland, 2016. [CrossRef]

5. El-gammal, M.I.; Ali, R.R.; Samra, R.M.A. Science Direct GIS-based land degradation risk assessment of Damietta governorate,
Egypt. Egypt J. Basic Appl. Sci 2015, 2, 183–189. [CrossRef]

6. Economy of Land Degradation (ELD) Initiative. The Rewards of Investing in Sustainable Land Management. Interim Report for
the Economics of Land Degradation Initiative: A Global Strategy for Sustainable Land Management. 2013. Available online:
www.eld-initiative.org (accessed on 18 November 2018).

7. UNCCD. Climate change and land degradation: Bridging knowledge and stakeholders Outcomes. In Proceedings of the UNCCD
3rd Scientific Conference, Cancun, Mexico, 9–12 March 2015.

8. Nellemann, C. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises: A UNEP Rapid Response
Assessment. UNEP/Earth Print. 2009. Available online: https://www.grida.no/publications/154 (accessed on 18 November 2018).

9. Obalum, S.E.; Buri, M.M.; Nwite, J.C.; Watanabe, Y.; Igwe, C.A.; Wakatsuki, T. Soil Degradation-Induced Decline in Productivity
of Sub-Saharan African Soils: The Prospects of Looking Downwards the Lowlands with the Sawah Ecotechnology. Appl. Environ.
Soil Sci. 2012, 2012. [CrossRef]

10. United Nations Convention to Combat Desertification (UNCCD). Refinement of the Set of Impact Indicators on Strategic
Objectives 1, 2 and 3 Recommendations of the ad hoc Advisory Group of Technical Experts. ICCD/COP (11) /CST/2. Available
online: https://www.unccd.int/sites/default/files/sessions/documents/ICCD_COP11_CST_2/cst2eng.pdf (accessed on 27
November 2018).

11. Berry, L.; Olson, J.; Campbell, D. (Eds.) Assessing the Extent, Cost and Impact of Land Degradation at the National Level: Findings and
Lessons Learned from Seven Pilot Case Studies; Commissioned by Global Mechanism with Support from World Bank; World Bank:
Washington, DC, USA, 2003.

12. Hurni, H.; Bantider, A.; Debele, B.; Ludi, E. Land degradation and sustainable land management in the Highlands of Ethiopia.
Glob. Chang. Sustain. Dev. 2010. [CrossRef]

13. Zeleke, A.G.; Hurni, H. Implications of Land Use and Land Cover Dynamics for Mountain Resource Degradation in the
Northwestern Ethiopian Highlands. Mt. Res. Dev. 2001, 21, 184–191. [CrossRef]

14. Gebreselassie, S.; Kiuri, O.K.; Mirzabaev, A. Economics of Land Degradation and Improvement in Ethiopia-Aglobal Assessement
for Sustenable Development. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development;
Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016. [CrossRef]

15. FAO. Ethiopian Highlands Reclamation Study; Final Report; FAO: Rome, Italy, 1986.
16. Oo, O.; Sl, G.; Do, G. Analyzing the Rate of Land Use and Land Cover Change and Determining the Causes of Forest Cover

Change in Gog District, Gambella Regional. J. Remote Sens. GIS 2017, 6. [CrossRef]
17. Reusing, M.; Schneider, T.; Ammer, U. Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution

MOMS-02/D2- stereo-data in a GIS. Int. J. Remote Sens. 2010, 21, 1885–1896. [CrossRef]
18. Gebru, T.D. Deforestation in Ethiopia: Causes, Impacts and Remedy. Int. J. Energy Dev. Res. 2016, 4, 204–209.
19. Gashaw, T.; Bantider, A.; Mahari, A. Evaluations of Land Use/Land Cover Changes and Land Degradation in Dera District, Full

Length Research Paper: GIS and Remote Sensing Based Analysis. Int. J. Sci. Res. Environ. Sci. 2014. [CrossRef]
20. Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Tsegaye Meshesha, D.; Schütt, B.; Adgo, E.; Tegegne, F. Soil

erosion and conservation in Ethiopia: A review. Prog Phys. Geogr. 2015, 39, 750–774. [CrossRef]
21. Molla, T.; Sisheber, B. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga

watershed in the highlands of Ethiopia. Solid Earth 2017, 8, 13–25. [CrossRef]
22. Meseret, D.; Gangadhara, M.H. Integration of Geospatial Technologies with RUSLE for Analysis of Land Use/Cover Change

Impact on Soil erosion: Case study in Rib watershed, north—western highland Ethiopia. Environ. Earth Sci. 2017, 76, 1–14.
[CrossRef]

23. Esa, E.; Assen, M.; Legass, A. Implications of land use/cover dynamics on soil erosion potential of agricultural watershed,
northwestern highlands of Ethiopia. Environ. Syst Res. 2018. [CrossRef]

http://doi.org/10.1057/s41287-019-00221-7
http://doi.org/10.1111/rode.12716
http://doi.org/10.1007/978-3-319-19168-3_4
http://doi.org/10.1016/j.ejbas.2015.01.001
www.eld-initiative.org
https://www.grida.no/publications/154
http://doi.org/10.1155/2012/673926
https://www.unccd.int/sites/default/files/sessions/documents/ICCD_COP11_CST_2/cst2eng.pdf
http://doi.org/10.13140/2.1.3976.5449
http://doi.org/10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2
http://doi.org/10.1007/978-3-319-19168-3_14
http://doi.org/10.4172/2469-4134.1000219
http://doi.org/10.1080/014311600209797
http://doi.org/10.12983/ijsres-2014-p0199-0208
http://doi.org/10.1177/0309133315598725
http://doi.org/10.5194/se-8-13-2017
http://doi.org/10.1007/s12665-017-7109-4
http://doi.org/10.1186/s40068-018-0122-0


Sustainability 2021, 13, 2244 24 of 27

24. Tamene, L.; Adimassu, Z.; Aynekulu, E.; Yaekob, T. International Soil and Water Conservation Research Estimating landscape
susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 221–230.
[CrossRef]

25. Olika, G.; Iticha, B. Assessment of Soil Erosion Using RUSLE and GIS Techniques: A Case of Fincha’a Watershed, Western
Ethiopia. Am.-Euras. J. Agric. Environ. Sci. 2019, 19, 31–36. [CrossRef]

26. Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive
assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total
Environ. 2017, 574, 95–108. [CrossRef]

27. Agegnehu, G.; Yirga, C. Soil Acidity Management; Ethiopian Institute of Agriculture Research: Addis Ababa, Ethiopia, 2019; ISBN
9789994466597.

28. Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of the livelihood
vulnerability index to a tropical highland region. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 39–65. [CrossRef]

29. Ewunetu, A.; Simane, B.; Teferi, E.; Zaitchik, B.F. Land Cover Change in the Blue Nile River Headwaters: Farmers’ Perceptions,
Pressures, and Satellite-Based Mapping. Land 2021, 10, 68. [CrossRef]

30. Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the
Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [CrossRef]

31. Moore, I.D.; Wilson, J.P. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation.
J. Soil Water Conserv. 1992, 47, 423–428.

32. Lu, D.; Batistella, M.; Moran, P.M.E. Mapping and monitoring land degradation risks in the western brazilian amazon using
multitemporal landsat TM/ETM+ images. Land Degrad Dev. 2006, 18, 609–622. [CrossRef]

33. Rahman, R.; Shi, Z.H.; Chongfa, C. Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical
approaches with biophysical parameters towards management strategies. Ecol. Model. 2009, 220, 1724–1734. [CrossRef]

34. Chabrillat, S. Land degradation indicators: Spectral indices. Ann. Arid Zone 2006, 45, 331.
35. FAO. Methodological Framework for Land Degradation Assessment in Dry Lands (LADA) (Simplified Version): Report on a Consultancy as

Visiting Scientist by Rural Ponce- Hernandez with Parviz Koohafkan; FAO-UN, Land and Water Development Division: Rome, Italy, 2004.
36. Abdelrahman, M.A.E.; Natarajan, A.; Hegde, R.; Prakash, S.S. Assessment of land degradation using comprehensive geostatistical

approach and remote sensing data in GIS-model builder. Egypt J. Remote Sens. Space Sci. 2018. [CrossRef]
37. Rabia, A.H. GIS spatial modeling for land degradation assessment in Tigray, Ethiopia. In Proceedings of the 8th International Soil

Science Congress on Land Degradation and Challenges in Sustainable Soil Management, Çeşme-Izmir, Turkey, 15–17 May 2012;
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