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Abstract: Mapping and quantifying land degradation status is important for identifying vulnerable 

areas and to design sustainable landscape management. This study maps and quantifies land deg-

radation status in the north Gojjam sub-basin of the Upper Blue Nile River (Abbay) using GIS and 

remote sensing integrated with multicriteria analysis (MCA). This is accomplished using a combi-

nation of biological, physical, and chemical land degradation indicators to generate a comprehen-

sive land degradation assessment. All indicators were standardized and weighted using analytical 

hierarchy and pairwise comparison techniques. About 45.3% of the sub-basin was found to experi-

ence high to very high soil loss risk, with an average soil loss of 46 t ha−1yr−1. More than half of the 

sub-basin was found to experience moderate to high level of biological degradation (low vegetation 

status and low soil organic matter level). In total, 80.2% of the area is characterized as having a 

moderate level of physical land degradation. Similarly, the status of chemical degradation for about 

55.8% and 39% of the sub-basin was grouped as low and moderate, respectively. The combined 

spatial MCA of biological, chemical, and physical land degradation indicators showed that about 

1.14%, 32%, 35.4%, and 30.5% of the sub-basin exhibited very low, low, moderate, and high degra-

dation level, respectively. This study has concluded that soil erosion and high level of biological 

degradation are the most important indicators of land degradation in the north Gojjam sub-basin. 

Hence, the study suggests the need for integrated land management practices to reduce land deg-

radation, enhance the soil organic matter content, and increase the vegetation cover in the sub-basin. 
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1. Introduction 

Land is a critical natural resource for human survival and the base for all terrestrial 

ecosystem services. Healthy land qualities are vital for sustainable development, includ-

ing food security and improved livelihoods [1], serving as a key factor in many production 

processes and economic growth [2,3]. Unsustainable use of land resources, however, re-

sults in degradation of land quality and quantity [1]. Land degradation here primarily 

refers to the loss of life-supporting land resources through a mix of processes that include 

soil erosion, soil compaction, destruction of soil structure, loss of soil organic matter, loss 

of vegetation cover, desertification, salinization, and acidification [4,5]. Land degradation 

reduces the economic value of ecosystem services and goods derived from land resource 

bases [6]. It has become a problem of great concern due to its impacts on food production, 

water supply, energy supply, and ecosystem services as a whole. According to the United 
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Nations Convention to Combat Desertification (UNCCD), about 25% of the total land area 

of our planet Earth is severely degraded or undergoing degradation [7]. Africa is the con-

tinent most severely affected by land degradation [8,9]. According to the estimates made 

by the UNCCD [10], land degradation affects up to two thirds of productive land area in 

Africa. In Ethiopia specifically, land degradation is a chronic and ongoing problem [11–

13]. More than 85% of country’s landmass is degraded to some degree [14] due to popu-

lation pressure, persistent poverty, rugged topography, climatic condition, use of biomass 

for fuel, lack of awareness, and misuse of land management technologies [11,12,14–16]. 

Deforestation is a continuing process of land degradation and results in local soil 

erosion, biodiversity loss, changes to hydrology and climate, and contributes to global 

climate change [17]. Forest covered about 40% of Ethiopia’s land area at the beginning of 

the 20th century and reduced to 2.36% cover in 2000 [18]; however, recent evidence show 

that forest cover has rebounded to 12% [19]. Soil erosion is a highly visible form of land 

degradation in Ethiopia that has depleted topsoil for many years, primarily through water 

erosion [20–23]. For example, it is estimated that northern Ethiopia has lost 45 t ha−1yr−1 

topsoil due to water erosion alone [24]. Estimates from northwestern Ethiopia indicate 

topsoil loss rates of 33.7 t ha−1yr−1 [25]. Similarly, on average, about 27.5 t ha−1yr−1 topsoil 

resource is being eroded from the entire Upper Blue Nile (Abbay) basin [26]. In addition, 

soil acidity has become a serious concern in the Ethiopian highlands in recent decades 

[27]. The study area, North Gojjam sub-basin, is in the Ethiopian highlands and was his-

torically well known to be an area of high potential for agricultural production [13], but 

land resources of the area have been continuously degraded and the ecosystem produc-

tivity has declined at an alarming rate [28,29]. 

Mapping and quantifying land degradation status plays an important role in cost-

effective design of land management strategies. It enables researchers and land managers 

to identify the most vulnerable areas and to give priority of the locational intervention 

[30,31]. Evidence of land degradation assessment can be collected using myriad methods, 

such as questionnaires, focus group discussions, direct observation, and expert judgment 

[32]. The application of remote sensing technologies has provided great opportunities to 

provide evidence of degradation over large areas at relatively low cost and time invest-

ment [32,33]. The indicators of land quality degradation assessment include physical, bi-

ological and chemical factors, as well as socio-economic changes [34–36]. 

Previous studies on mapping and quantifying land degradation have focused on the 

most visible forms of degradation, such as soil erosion and deforestation [26,30]. In reality, 

a range of indicators of land degradation, including soil fertility status, soil acidity, salini-

zation, and loss of vegetation cover also have to be considered to assess the level of land 

degradation [37]. This multifactorial approach is necessary because the design of appro-

priate land management for sustainable development requires a holistic inventory and 

rating of vulnerable areas for degradation [35,38] according to multiple risks and potential 

interventions. It is also important to update assessment regularly, as land degradation is 

a dynamic process that responds to coupled natural-human factors [39]. 

It can be challenging to integrate diverse degradation metrics that are obtained 

through different measurement techniques and are not always directly comparable to 

each other. Spatial multi-criteria analysis (MCA) can be of considerable use in land deg-

radation analysis. MCA methods are widely used for problems that involve multiple fac-

tors and multiple perspectives. In this study, a new approach for development of a com-

prehensive land degradation map is proposed, in which remote sensing, GIS, analytical 

hierarchy process (AHP), and MCA techniques are applied to account for many factors 

responsible for land degradation. Specifically, the study aims to: (1) estimate average an-

nual soil loss; (2) map and quantify key biological, physical, and chemical land degrada-

tion status; and (3) develop comprehensive land degradation indicators. 

This study provides empirical evidence to policy makers and land users to identify 

specific areas vulnerable to land degradation as well as offering a comprehensive assess-

ment of land degradation vulnerability the north Gojjam sub-basin. This information is 
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valuable for informing environmental rehabilitation activities and sustainable agriculture. 

The rest of the paper is organized as follows: section two gives a brief overview of the 

study area and MCA procedures, along with a description of data; results are presented 

in section three; section four concludes with the main findings of the paper. 

2. Materials 

2.1. Description of the Study Area 

The North Gojjam sub-basin is located between 38.2° E to 39.6° E longitude and 

10.8°N to 11.9° N latitude. It is one of the major tributaries of the Blue Nile/Abbay river 

(Figure 1). Its area covers about 1,431,360 ha, which stretches between Choke and Guna 

mountains. The total population of the sub-basin and surrounding villages at the time of 

the study was 3,565,892 [40], settled in scattered areas. The altitude of the sub-basin ranges 

from 1044 to 4048 masl (Figure 1). The dominant agro-ecological zone is characterized by 

tepid to cool moist middle highlands, and cold to very cold moist sub afro-alpine to afro-

alpine highlands [41]. According to the Ethiopian National Metrological Agency, the av-

erage maximum and minimum temperature of the sub-basin varies from 24.6–28.1 °C and 

11.0–14.5 °C, respectively, and the mean annual temperature is 19.4 °C [42]. The rainfall 

pattern is closely correlated with the annual migration of the inter-tropical convergence 

zone (ITCZ) and most rainfall occurs in the summer, from June to September [41,42]. 

 
Figure 1. Location of North Gojjam sub-basin and its topography. 

Meteorological records from stations within the sub-basin and in the surrounding 

area indicated that the mean annual rainfall (1986–2017) is 1334.48 mm with a minimum 

of 810 mm and a maximum of 1815 mm [42]. The dominant soil types are leptosols, ver-

tisols, luvisols, and alisols [43]. The geology of the sub-basin is mainly dominated by bas-

alt, but the lowlands are dominated by sandstone [43]. Natural forest cover is very low 

and found on riverbanks, hillsides, and in church yards, to some extent. Eucalyptus globules 

plantation is dominant among introduced trees, particularly in the highland regions. Un-

reliable rain-fed mixed crop and livestock production agriculture is the primary source of 

livelihood for the majority of the population in the sub-basin. Various cereal, pulse, and 

oilseed crops are widespread, with vegetable and fruit crops produced to some extent. 

Livestock types include cattle, sheep, goats, horses, donkeys, mules, and poultry. 
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2.2. Data Sources 

Landsat images were downloaded from the US Geological Survey (USGS) Earth Ex-

plorer [44] for the month of January, in the dry season, to obtain low cloud cover images. 

ASTER Global Digital Elevation Model (ASTER-GDEM) data were obtained from [45]. 

Currently, precipitation estimations based on satellite products have developed an alter-

native source of sparse rainfall gauge data for different hydrologic practices, mainly in 

limited data regions like Africa which suffer from a scarcity of surface monitoring re-

sources. Among others, Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS) is commonly used in research [46]. For the present study, rainfall data from the 

years 2009–2017 were obtained from the CHIRPS website [47]. Gridded soil data with 250 

m spatial resolution were downloaded from the African Soil Information Service (AFSIS) 

website [48]. A total of 2500 ground truth data points for land use and land cover (LULC) 

classification and accuracy assessment were collected from the field based on in-situ field 

observation, with geolocation obtained using a handheld Garmin GPS instrument and 

from Google Earth using a time slider image [49]. Of these total ground truth points, 738 

were used for accuracy assessment of image classification using the error matrix, which 

allowed us to evaluate the kappa coefficient, overall accuracy, and the producer’s and 

user’s accuracy. To capture additional information, including qualitative perceptions, 18 

focus group discussions (FGDs) were carried out in 9 villages with 127 (78 male and 47 

female) community members selected from upper, middle, and lower parts of the sub-

basin, and interviews were administered for 27 farmers, 9 Development Agents (DAs), 

and 9 districts’ crop, livestock, and natural resource experts to obtain additional infor-

mation regarding the study area. 

2.3. Spatial Multi-Criteria Analysis (MCA) 

Evaluating comprehensive land degradation is not a trivial task, because it includes 

a wide range of factors that can be challenging to combine into a single index. To address 

this challenge, MCA can be applied to a combination of geospatial datasets [50]. MCA is 

an evaluation technique that is used to identify vulnerable areas for sustainable natural 

resource management [51–53] by ranking or scoring the performance of decision options 

against multiple criteria [54]. The MCA process includes several steps: describe objectives, 

select the criteria to measure the objectives, identify alternatives, renovate the criterion 

scales into commensurable units, assign weights to the criteria that reveal their relative 

importance, choose and apply a mathematical algorithm for ranking alternatives, choose 

an alternative, and combine criteria into a single index [51–56]. Spatial MCA operates as 

a raster process on multiple digital input maps of relevance to land quality indicators. 

Based on the nature of the alternatives to be evaluated, MCA methods can be classi-

fied in two major types: continuous and discrete [57]. Continuous methods are used to 

determine an optimal quantity, which can vary continuously in a decision problem [52]. 

Discrete methods can be defined as decision support techniques that have a finite number 

of alternatives, a set of objectives and criteria by which the alternatives are to be judged, 

and a method of ranking alternatives depending on how well they satisfy the objectives 

and criteria [58]. Discrete methods can be further subdivided into weighting and ranking 

methods. These categories can be additionally subdivided into qualitative, quantitative, 

and mixed methods. Qualitative methods use only ordinal performance measures, while 

mixed qualitative and quantitative methods use different decision rules based on value 

and utility using mathematical functions [58]. The present study applied the discrete 

method because the indicators are finite and categorized. 

There is a wide range of decision-making techniques in the MCA literature that are 

used to model complex problems [59]. The most common include: analytic hierarchy pro-

cess (AHP) [58,60]; technique for order of preference by similarity to ideal solution (TOP-

SIS) [61]; preference ranking organization method for enrichment evaluations (PROME-
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THEE) [62]; complex proportional assessment method (COPRAS) [63]; additive ratio as-

sessment (ARAS); visekriterijumska optimizacija I kompromisno resenje (VIKOR) method 

[64,65]; multi-attribute utility theory (MAUT) [66]; and others. However, these methods 

have been criticized due to an issue called the rank reversal problem (RRP). RR refers to a 

change in the ordering among alternatives previously defined, after the addition or re-

moval of an alternative from the group previously ordered [56]. The characteristic objects 

method (COMET) is completely free of the rank reversal paradox and can be used in ex-

change for the AHP method [56], but the most popular method in the field of natural 

resource management is the AHP method. The theoretical foundations of AHP were de-

veloped by Saaty [58]. It is a prominent and powerful tool for making decisions in condi-

tions relating multiple objectives. The present study used the AHP method integrated 

with GIS. The integration of GIS and AHP is a powerful approach to identify the suitable 

areas for agriculture and vulnerable areas to land degradation [51,57]. The indicators of 

the study are not complex and, thus, are not subjected to the rank reversal problem as we 

analyzed manually. 

Here we implement MCA in combination with an AHP that allows pairwise compar-

ison and applies weights to each factor when merging to a single output index [52]. Three 

hierarchical levels were applied (Figure 2). In the first hierarchy, individual land degra-

dation indicator raster maps were prepared based on international standard values which 

were developed by organizations and scientists. In the second hierarchical level, primary 

indicators are grouped into classes. Vegetation cover [67] and soil organic matter [68,69] 

were grouped as biological land degradation indicator alternative. Soil erosion [70], soil 

compaction [71], soil drainage [72], and soil depth [73] were grouped as physical land 

degradation indicator alternatives. Soil acidity represented a single chemical land degra-

dation indicator [69]. These groupings yielded a biological degradation index, physical 

degradation index, and chemical degradation index alternatives. In the final hierarchical 

stage, these three grouped indicators are combined into a single inclusive land degrada-

tion index (Figure 2). 

MCA requires that the indicators be adjusted into similar units and a common value 

scale to make the comparison meaningful [52]. Value scaling, or standardization, is a pro-

cess of converting different indicators to a common unit and scale. In doing so, it is possi-

ble to generate comparable alternatives according to their perceived relevance [74]. Linear 

scale transformation is the most commonly used method for criteria standardization in 

spatial MCA [75], and it is applied here for ease of interpretation. All criteria were stand-

ardized and then scaled to a value range from 1 to 5, representing very low to very high 

degradation level. There are three common weighting methods in spatial MCA: ranking, 

rating, and pairwise comparison [76,77]. Of these, the pairwise comparison method is 

most widely used in spatial MCA to estimate the overall weight of individual criteria [60], 

and we apply this method here. The criteria were weighted through the pairwise compar-

ison of individual land degradation indicators which derived from raster data (maps) fol-

lowing AHP approach. In this case, when two criteria are compared, the less important 

criterion gets a reciprocal value of the most important. We use the principal eigenvalue 

and the corresponding normalized right eigenvector of the comparison matrix to provide 

the relative importance of the criteria being compared. The elements of the normalized 

eigenvector were weighted with respect to the criteria or sub-criteria and rated with re-

spect to the alternatives [60,77]. The consistency of the matrix of order was then evaluated. 

If the consistency index failed to reach a threshold level, the comparisons were re-exam-

ined. Finally, the weighted overlay technique was used to combine/aggregate the criteria 

maps, and each standardized criterion was multiplied by its weight in the overlay process. 

All geospatial procedures are implemented using ArcGIS10.5 [78]. 



Sustainability 2021, 13, 2244 6 of 28 
 

 

Figure 2. Hierarchical structures of land degradation status applied in multi-criteria analysis (MCA). 

2.3.1. Develop Physical Land Degradation Indicators 

A wide range of indicators can be applied to characterize physical soil/land degrada-

tion and the vulnerability of ecosystem health. Among others, soil compaction, soil drain-

age, and soil depth are commonly applied as indicators of soil ecosystem service produc-

tivity and, in turn, land degradation status [70–73]. We considered soil erosion, soil com-

paction, soil drainage, and soil depth as physical land degradation indicators. 

Soil Loss Estimation Using RUSLE Model 

Soil erosion is the main indicator of land degradation [11,12,79]. The agent of soil 

erosion may be water and/or wind. Given the humid climate condition of large parts of 

Ethiopian highlands, including the study area, water erosion is the dominant form of soil 

erosion. Soil loss by water can be estimated using the revised universal soil loss equation 

(RUSLE) [80]. The RUSLE is a very powerful tool when integrated with GIS, especially for 

developing countries that lack data for more physically based models. Some of the other 

reasons for the selection of the model for this study include its simplicity to apply and its 

compatibility with remote sensing data and GIS inputs in a computer interface [81]. Most 

of the input parameters of the model were adjusted for the Ethiopian highland context in 

a previous study [82]. The model estimates soil loss by taking into consideration rainfall, 

soil properties, topography, cover management, and conservation practices in a particular 

area [83]. 

A = R. K. LS. C. P (1)

where “A” is the mean annual soil loss (t ha��yr��); “R” represents a rainfall erosivity 

factor (MJ mm ha��h��yr��); “K” is a soil erodibility factor (tha��MJ��mm��); “LS” is a di-

mensionless topographic factor that accounts for, length of the slope (L) and slope steep-

ness (S). “C” describes land cover factor and “P” is the erosion control support practice 

factor. 
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Rainfall erosivity factor (R-factor) indicates the input, which determines the sheet 

and rill erosion processes. R-factor depends mainly on the amount, intensity, and distri-

bution of rainfall [81]. Soil loss is strongly associated with rainfall amount, intensity, en-

ergy, duration, pattern, and size of a raindrop through the detaching power of a raindrop 

striking the soil surface and for the incidence of runoff on the soil surface [83]. However, 

such data do not exist for the study area, due to the absence of an automatic rain-gauge, 

so, R-factor was generated using long-term mean annual rainfall following the equation 

developed by Hurni [82]. 

R = −8.12 + 562(Pa) (2)

Where “R” is rainfall erosivity value (MJ mm ha−1h−1yr−1) and “Pa” is mean annual rainfall 

(mm). For this purpose, nine years mean annual rainfall data was obtained from CHIRPS 

website. 

As depicted in Figure 3, rainfall is higher in the lowland parts of the sub-basin, be-

cause in the highland region the rainfall characteristic is shower. Thus, the lower part of 

the sub-basin has higher erosivity values than middle and upper parts. The spatial distri-

bution of the rainfall erosivity factor of north Gojjam sub-basin ranged from 657.34 to 

921.73 MJ mm ha−1h−1yr−1 (Figure 3). 

 

Figure 3. Rainfall erosivity (left) and soil erodibility (right) in the north Gojjam sub-basin. 

Soil erodibility factor (K-factor) represents the sensitivity of soil particles and surface 

materials to detachment and transport through the power of rainfall and runoff [83,84]. It 

is associated with soil characteristics such as organic matter, texture, structure, permea-

bility, and total stability [85]. The availability of organic matter in the soil decreases soil 

loss because it makes soil particles attached together [85]. There are different formulas 

developed by scholars to determine soil erodibility status [86]. Among others, Equation 

(3), shown below, is a formula widely used to calculate soil erodibility in the different 

environments. Using this approach, the K-factor of the study area was calculated using 

soil properties, or texture class and organic matter content [87]. 
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SIT
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−
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���
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�
�����

���
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�����

���
�)

� 

(3)

where SAN = sand in %, SIT = silt in %, CLY = clay in %, and C = organic carbon in %. 

The result indicated that soil erodibility value in the north Gojjam sub-basin was 

ranged from 0.13 t/ha/MJ/mm on upper and lower to 0.30 t/ha/MJ/mm on the middle part 

(Figure 3). 

Topographic factor (LS-factor) refers the effect of topography on soil erosion. Slope 

length (L) and slope gradient (S) factors are joined in a single index, LS-factor, to describe 

the topographic factor for soil loss [88]. The slope length refers to the distance from the 

point of origin of overland flow to the point where either the slope gradient declines 

enough in which sedimentation starts or the runoff water enters a well-defined channel 

[80,89]. Soil loss increases with increases in slope gradient (S) and slope length (L) result-

ing from respective increases in velocity and volume of surface runoff [30]. We used mod-

ified equations for computing the topographic factor (LS-factor) suggested by Renard et 

al. [90]: 

L = (
λ

22.13
)� (4)

� = F
(1 + F)�  (5)

F =  

sin β
0.896

�

3.0(sin β) �.� + 0.56
 (6)

where L is a slope length factor, λ is the multiplication of flow accumulation and cell 

size, m is slope length exponent, F is calculated for conditions when the soil is moderately 

susceptible to both rill and inter-rill erosion, while β is the slope angle in degree (slope in 

degree × 0.01745). 

S = 10.8 × sin β +0.03     δ < 9% 

S = 16.8 × sin β − 0.05  δ ≥ 9% 
(7) 

where S is a slope steepness factor, β is the slope angle in degree, and δ is slope gradient 

in percent. The LS-factor map was generated from a 30 m pixel resolution ASTER global 

digital elevation model (GDEM) [46]. After calculating L and S values the LS value was 

computed by multiplying the two together. As depicted in Figure 4, the LS-factor value in 

the study sub-basin varied from 2 to 109, but the majority of the sub-basin has LS value of 

less than 10 (Figure 4). 
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Figure 4. Digital elevation model (left) and topographic factor (LS-factor) (right) maps of the north 

Gojjam sub-basin. 

Cover management factor (C-factor) describes the effect of cropping and manage-

ment practices in agricultural land and ground cover (i.e., grass and tree canopy) on non-

agricultural land on reducing soil loss [26,30]. To compute cover factor values in the 

RUSLE model, data are required associated with the role of plant canopy, crop residues, 

soil management practice, surface roughness, and moisture content of soil [80,83]. Acquir-

ing each of the parameters is difficult due to the scarcity of data for combination and cal-

ibration. Alternatively, the C-factor can be calibrated from the LULC map. Using this sim-

pler approach, the C-factor LULC map of the study area was prepared from a Landsat 8 

image acquired in January 2017 using supervised classification techniques in ERDAS IM-

AGINE14 [91] (Figure 5). Ground truth data were used for reference for classification and 

accuracy assessment validation. The overall classification accuracy was 92% and the 

kappa coefficient index was 0.9. After classification was performed, the raster map was 

converted to vector format to assign C-factor values for each LULC type based on sugges-

tions in previous literature (Table 1). Finally, the C-factor map changed to the raster layer 

using the raster conversion tool in ArcGIS10.5. This method was employed by different 

authors in studies of the Ethiopian highlands [26,30,92,93]. The cover management factor 

value in the sub-basin varied from 0 on water bodies to 0.6 on bare land (Figure 5). The 

smallest value indicates lower susceptibility to soil erosion. 
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Figure 5. Land use and cover types (left) and the cover factor (right) values in the north Gojjam 

sub-basin. 

Table 1. Adopted cover management factor (C-factor) values for different land uses/cover types. 

LULC C-Value Sources 

Natural Forest 0.01 [30,94] 

Plantation Forest 0.01 [30,94] 

Shrub and bush 0.20 [30,94] 

Grassland 0.05 [82,94] 

Agriculture 0.15 [82,94] 

Bare land 0.60 [94] 

Waterbody 0.00 [26] 

Erosion management practice (P-factor) is a measure of the effect of soil management 

to reduce the extent of soil loss [88,95]. It involves several types of agricultural land man-

agement practices, such as terracing, contour farming, and strip cropping [81]. Unlike the 

previous studies in Ethiopia [26,30,94,96], this study generated P-values from conserva-

tion technology instead of using land use and topography. To determine agricultural land 

management practices for this study, intensive field observation, key informant inter-

views, and Google Earth Pro [49] observations were employed. Soil bund, stone bunds, 

hillside terraces, traditional ditches, cutoff-drains, waterways, check-dams and plantation 

on bund, afforestation, and revegetation have been implemented to various extents. From 

these technologies, we considered only soil and stone bunds conservation structures be-

cause most other Sustainable land management (SLM) options observed in the sub-basin 

were not well-designed and not widely used. As Figure 6 and Table 2 shows, almost half 

of the study areas were well terraced (48%), mainly the upslope parts, while about 30% of 

landscape needs structural measures and 17% of the sub-basin shows no need for conser-

vation practices. The estimated p-values ranged from 0.02 on the terraced area to 1 on non-

terraced agricultural land use types. The smaller value shows less vulnerability to soil loss 

(Table 2 and Figure 6). 
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Figure 6. Erosion control measures (left) and management (P-factor) values (right). 

Table 2. Erosion control status and management factor (P) values. 

Erosion Control Measures Area in Percent P-Factor Sources 

Area no need/little conservation structure 17.79 0.02 [21] 

Area that need conservation stricture 33.90 1.00 [21] 

Terraced landscape 48.31 0.50 [63] 

Finally, the annual soil loss was estimated on a cell-by-cell basis of multiplying the 

five RUSLE factors using Equation (1). As Landsat images and ASTER-GDEM [46] used 

in this study had 30 m spatial resolution, all the raster maps were resampled to 30 × 30 m 

cell size and re-projected to UTM Zone 37° N, WGS 1984 datum. The estimated annual 

soil loss was classified into six severity categories following soil erosion severity classifi-

cation standards suggested by Haregeweyn et al. and Yesuph et al. [26,97]. 

The validation and consistency of the model output was compared with the quanti-

tative outputs of previous experimental observations and similar empirical studies con-

ducted in Ethiopia, mainly in the northwestern highlands. In addition, selected field ob-

servations were carried out. In supporting this process, the color printed model output 

soil erosion severity map was taken in the field to check the reality on the ground. Figure 

7. 
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Figure 7. Flow chart showing the methodology of soil loss estimation. 

Soil Compaction 

Soil compaction is measured using soil bulk density [98]. Soil bulk density reflects 

soil compactness and soil health [55]. We obtained a soil bulk density map from Hengl et 

al. [48] in raster format and then reclassified based on the value range given in Table 3 to 

assign a level of compaction that is used as a physical land degradation indicator. 

Table 3. Soil compaction class [71]. 

Soil Bulk Density Class Compaction Status 

<1 g/cm3 Low soil compaction 

1–1.25 g/cm3 Medium soil compaction 

1.25–1.55 g/cm3 High soil compaction 

>1.55 g/cm3 Very high soil compaction 

Soil Drainage 

Soil drainage refers to the rate at which excess water moves from the soil surface 

through the soil profile. Poor drainage causes waterlogging in wet season and crusting in 

dry season [99]. Drainage class can be determined from observation of water table, soil 

wetness, landscape position, and soil morphology. According to the USDA [72], soil drain-

age can can be classified into seven classes based on the rate of water removal from the 

soil. To determine soil drainage status, a soil drainage raster map was acquired from 

Hengl et al. [48] and reclassified based on the values given in Table 4. 
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Table 4. Soil drainage classes status [72]. 

Drainage Class Level Drainage Status Description 

1 Very poor Excessively drained 

2 Poor Somewhat excessively drained 

3 Imperfect Well drained 

4 Moderate Moderately well drained 

5 Well Somewhat poorly drained 

6 Somewhat excessive Poorly drained 

7 Excessive Very poorly drained 

Soil Depth 

Soil thickness has a relation to soil quality and crop productivity [75]. Soil in which 

the rooting depth is limited by the presence of a physical constraint is generally less pro-

ductive. Deep soils are favorable for the growth and development of plant roots with a 

higher supply of nutrients and minerals [75], implying low degradation level. To estimate 

soil depth and use it for the indicator of physical land quality status in our study area, the 

raster soil depth map was obtained from Hengl et al. [48] and reclassified into the catego-

ries listed in Table 5. 

Table 5. The status of soil depth categories [73]. 

Soil Depth Class Severity Level Description 

<30 cm Very low Shallow soil 

30–50 cm Low Moderate shallow soil 

50–100 cm Moderate Deep shallow soil 

100–150 cm High Very deep shallow soil 

>150 cm Very high Shallow soil 

2.3.2. Develop Biological Land Degradation Indicators 

There are different indicators for assessing biological land degradation. Among oth-

ers, vegetation cover, soil organic matter, and the reduction of soil organisms and soil 

fauna are common indicators of land degradation [100]. In this study, vegetation cover 

and soil organic matter were considered to estimate biological land degradation status. 

Vegetation Cover 

It is widely used to estimate land degradation status related to proxy indicators of 

greenness, vegetation density, vegetation growth, and biomass productivity [67]. We use 

the Soil Adjusted Vegetation Index (SAVI), a commonly applied remotely sensed index 

that offers an estimate of vegetation cover, and that overcomes limitations known to exist 

in the normalized vegetation difference index (NDVI) in areas with significant bare soil 

[101]. We implement SAVI following Chabrillat [67]: 

SAVI =  
(NIR − RED)

(NIR + RED + L)
(1 + L) (8)

where NIR is the reflectance in the near-infrared and RED is the reflectance radiated in 

the visible red. L is a coefficient of vegetation density (ranging from 0 for very dense veg-

etation cover to 1 for very sparse). We tested several values for L, following recommen-

dations from Huete [100] (0.25, 0.5, and 0.75). Visual interpretation of images led us to 

choose 0.5, which is an intermediate value that has been applied in several previous stud-

ies [100,102]. As a result, we used 0.5 as constant to determine vegetation index in this 

study. 
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Soil Organic Matter (SOM) 

Soil organic matter is another useful biological land quality indicator [67]. Indeed, 

soil organic carbon together with soil pH has been recommended as a simple and reliable 

indicator of soil health and quality [67]. The amount of soil organic carbon is usually meas-

ured in the laboratory. However, it is difficult for this study to measure soil organic matter 

at the sub-basin level because of time and financial constraint. Consequently, a soil organic 

carbon raster map was obtained from Hengl et al. [48] and reclassified (Table 6) to deter-

mine the state of soil organic matter. It is estimated that soil organic matter contains 58% 

organic carbon. The soil organic carbon raster map was converted to soil organic matter 

following the equation used by Combs et al. [103]. 

���������� �� ������� ������ =  ���������� �� ����� ������� ������ ×  1.72 
(9)

Table 6. Classes of soil organic matter status in soil [74]. 

Category in % Description 

<0.2 Very poor soil organic matter content in the soil 

0.2–0.6 Poor soil organic matter content in soil 

0.6–1.2 Medium soil organic matter contentin soil 

1.2–2.0 High soil organic matter contentin the soil 

>2.0 Very high soil organic matter contentin the soil 

2.4. Chemical Land Degradation Indicators 

Soil chemical degradation refers to undesirable changes in soil chemical characteris-

tics, driven primarily by human intervention [104]. The most important indicators of 

chemical land degradation are soil acidity, salinity, and sodicity [104]. In this study we 

consider only soil acidity since the study area is humid and the application of chemical 

fertilizers and removable of crop residue are common. Soil acidity can be measured using 

pH value from solution soil in water [69]. To identify the status of soil acidity in the sub-

basin, the soil pH raster map developed by Hengl et al. [48] was used. Then, the soil acid-

ity digital map was classified using standardized soil pH classes (Table 7). 

Table 7. Category of soil acidity level based on pH value [70]. 

pH Value Description 

<4.5 Extremely acid soils include acid sulfate soils 

4.5–5.5 Very acid soils suffering often from toxicity 

5.5–7.2 
Acid to neutral soils: these are the best pH conditions for nutrient availability 

and suitable for most crops 

7.2–8.5 These pH values are indicative of carbonate-rich soils 

>8.5 Indicates alkaline soils often very alkaline soils 

3. Results and Discussion 

3.1. Physical Land Degradation Indicators 

Annual soil loss: RUSLE model results indicate that much of the middle part of the 

sub-basin has lost topsoil at a rate of 0 to 75 t ha−1yr−1, and that soil loss rates exceed 75 t 

ha−1yr−1 in upstream and downstream zones as well as in some erosion hotspot areas (Fig-

ure 8). As indicated in Table 8, about 31.3% and 19.3% of the sub-basin experienced a very 

low and low soil loss rate, ranging from 0–5 t ha−1yr−1 and 5–15 t ha−1yr−1, respectively. The 

result shows that about 13.6% of the sub-basin experienced soil loss ranging from 15 to 30 

t ha−1yr−1, which is characterized as a moderate erosion rate. Further, about 17.3% of the 

sub-basin lost topsoil with rates from 30 to 75 t ha−1yr−1, indicating high to very high soil 

loss rate. The remaining 18.5% of the sub-basin was under severe erosion rate with soil 
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loss exceeding 75 t ha−1yr−1. As shown in Table 8, the area under high to severe soil loss 

class covers about 35.9% area of the sub-basin, found in most upper and lower parts in 

very steep sloped areas (Figure 8). The average annual soil loss of the entire north Gojjam 

sub-basin was estimated at 46 t ha−1yr−1. This implies that the average soil loss in the study 

area is greater than two-times of the maximum (18 t ha−1yr−1) soil loss tolerance value given 

by Hurni [81] for the Ethiopian highlands. It implies that a total of 65.2 million tons of soil 

has been lost annually from the entire sub-basin. Any soil loss rate greater than 10 t ha−1yr−1 

will not be restored in a period of 5 to 10 decades [105]. Accordingly, nearly half of the 

north Gojjam sub-basin was beyond the threshold of soil loss tolerance level (Table 8). 

 

Figure 8. The annual soil loss (a) and soil bulk density (b) of the north Gojjam sub-basin. 

Consistency and validation of the model estimation: The estimated average soil loss 

rate and the spatial patterns of this study are, in general, accurate, compared to what can 

be observed in the field as well as findings from previous experimental studies. Based on 

field assessment of rill and inter-rill erosion, Bewket and Sterk [106] found the annual soil 

loss ranged from 18 to 79 t ha−1yr−1 in parts of the same and adjacent watershed of this 

study sub-basin. Similarly, in five years of monitoring in an experimental micro-water-

shed (the Anjeni) located to the northwest adjacent to this study area, soil loss from culti-

vated fields under the traditional land-use practices was ranged from 17 to 176 t ha−1yr−1 

[107]. Recently, Belayneh et al. [108] confirmed that the mean rate of soil loss in the new- 

and old-graded soil bund-treated and non-treated plots was 23.5, 45.6, and 58.1 t ha−1yr−1, 

respectively using experimental study from cultivated land in Gumara sub-watershed lo-

cated in the present study sub-basin. Hurni [109] in Ethiopian highland estimated average 

soil loss from cultivated fields at 42 t ha−1yr−1 accounting from re-deposition of mobilized 

sedimentation. In addition, to check the validity, selected field observations were carried 

out. In supporting this process, the color-printed model output soil erosion severity map 

was taken into the field and checked against the reality on the ground. 

The estimated soil loss rate of this study was also consistent with the empirical evi-

dence from previous published studies. For example, 24.3 t ha−1yr−1 average soil loss was 

reported in the Gelana sub-watershed, north Wollo [96]; about 23.7 t ha−1yr−1 attested in 

the Geleda watershed [110]; nearly 24.9 t ha−1yr−1 reported in the Enfraz watershed [94]; 

the study conducted soil loss from the entire upper Blue Nile basin confirmed about 27.5 
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t ha−1yr−1 [26]; other results reported a relatively comparable estimation result to the pre-

sent study from Jabi Tehinan district (30.6 t ha−1yr−1), west Gojjam zone [89]. The result of 

this study was most similar to recent empirical studies. For example, average soil loss of 

about 47.4 t ha−1yr−1and 42 t ha−1yr−1 was reported in the Koga watershed, upper Blue Nile 

[21,92]; about 49 t ha−1yr−1 mean soil loss was found in the Dembecha District, west Gojjam 

[93]. In contrast, some other studies undertaken in various regions of Ethiopia reported 

relatively higher average soil loss rate than this study. For instance, it was much lower 

than the mean soil loss rate of 243 t ha−1yr−1 reported by Zeleke [111] for north-western 

Ethiopian highlands due to rugged topography, low vegetation cover, and absence of land 

management technology; about 93 t ha−1yr−1 average soil loss was reported in the Chemoga 

watershed [30]; 84 t ha−1yr−1 average soil loss in northwestern Ethiopia found by Selassie 

Belay [112]; and 75 t ha−1yr−1 in the entire upper Blue Nile Basin [113]. 

The above empirical results indicated that though soil erosion is a common problem 

in Ethiopian highlands, the quantitative results are still uncertain and inconsistent. The 

variation may be observed from the heterogeneity of soil erosion determinants such as 

rainfall, soil property, topography, land management, and land use types, and may also 

stem from methodological differences between studies. 

Table 8. Annual soil loss class and risk levels in the north Gojjam sub-basin. 

Soil Loss (t/ha/yr.) Area (ha) Percentage Severity Level Assigned Value Risk Level 

<5 447872.54 31.29 Very slight 1 Very low 

5–15 276252.48 19.30 Slight 2 Low 

15–30 193949.28 13.55 Moderate 3 Medium 

30–50 141847.78 9.91 High 4 High 

50–75 106350.05 7.43 Very high 5 Very high 

>75 265087.87 18.52 Sever 5 Very high 

Soil compaction: The spatial distribution of soil compaction in the sub-basin ranged 

from 0.8 to 1.4 g/cm3 (Figure 8). Table 9 indicates that 80.9% of the sub-basin soil bulk 

density was between 1 and 1.25 g/cm3, indicative of medium compaction. The result 

shows that the status of soil compaction in a large area of the sub-basin can be considered 

as medium, which is attributed to the absence of heavy machine farming activity in the 

area. Low soil compaction was found in colder climate zones and areas with and more 

vegetation cover, located in a mountain area where higher precipitation rate and low tem-

perature are found. The result implies that soil compaction was not much of a problem in 

the north Gojjam sub-basin. 

Soil drainage: As seen from Table 9, about 74.4% of sub-basin has good drainage 

characteristics. The spatial distribution of soil drainage is shown in Figure 9. The result is 

similar to the soil drainage map prepared by the agricultural transformation agency [114] 

in the Amhara regional state and local land users’ perception. 

Soil depth: Spatial distribution of soil depth in the sub-basin ranged from 25–175 cm 

(Figure 9). As presented in Table 9, about 40.9% of the sub-basin has very deep soils (>150 

cm), which indicates a very low land degradation level with respect to this indicator, while 

about 50.3% of the sub-basin has shallow soil, ranging from 25–30 cm, which indicates a 

very high degree of degradation. Most midland parts of the sub-basin are characterized 

by high soil depth while the lower part has very shallow soil, reflecting higher erosion 

rates and greater soil degradation. 
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Table 9. Statistics for physical land degradation indicators in the north Gojjam sub-basin. 

Factor Classes Area (Ha) Percentage Assigned Value Degradation Level 

Soil bulk density 

(g/cm3) 

<1 19,323.36 1.35 2 Low 

1–1.25 1,158,399.65 80.93 3 Moderate 

1.25–1.55 253,636.99 17.72 4 High 

Level of drainage 

Poor 2147.04 0.15 1 Very low 

Imperfect 110,787.26 7.74 2 Low 

Moderate 214,990.27 15.02 3 Moderate 

Well 1,064,788.70 74.39 4 High 

Somewhat 

excessive 
38,646.72 2.70 5 Very high 

Soil depth class (cm) 

25–30 719,544.67 50.27 5 Very high 

30–50 3864.67 0.27 4 High 

50–100 1145.09 0.08 3 Moderate 

100–150 122,524.42 8.56 2 Low 

 >150 584,281.15 40.82 1 Very low 

 

Figure 9. Soil bulk depth (a) and soil drainage (b) in the north Gojjam sub-basin. 

3.2. The State of Physical Land Degradation 

The weights of the four indicators which contribute for physical land degradation 

(soil erosion, soil compaction, soil drainage, and soil depth) have been derived through a 

pairwise comparison. The weight has been given based on the influence of every subclass 

for land degradation. The calculated pairwise comparison matrix consistency ratio is 0.01, 

indicating a consistent comparison. As the overlay analysis result depicted in Figure 10 

shows, the majority (72.8%) of the sub-basin physical land degradation level was moder-

ate. The weights of pairwise comparison matrix result shows that soil drainage, soil depth, 

soil erosion, and soil compaction were the most to the least important physical land deg-

radation indicators in the north Gojjam sub-basin (Table 10). This implies that the wider 

area of the sub-basin's physical land degradation status was moderate (Figure 10). Most 

low vegetation cover areas fall under the shallow soil depth due to the presence of high 

soil erosion. 
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Table 10. Pairwise comparison matrix for physical land degradation indicators. 

Criteria Soil Drainage Soil Depth Soil Erosion Soil Compaction Criteria Weighting 

Soil drainage 1 2 3 5 45 

Soil depth 0.5 1 2 3 27 

Soil Erosion 0.33 0.50 1 3 20 

Soil compaction 0.2 0.33 0.33 1 8 

Similarly, local farmers in the study area reported physical land degradation prob-

lems in the form of low soil infiltration rate, soil depth reduction, and soil erosion. In both 

formal and informal discussions, farmers explained that there is the increasing problem 

related to soil compaction on their farm field. They did report that due to soil compaction, 

rainwater infiltration into the soil has been decreasing and result in increasing soil erosion 

rate. Soil depth has decreased due to erosion from runoff water and continuous cultiva-

tion, particularly on steep slopes and croplands. These discussion points suggest that 

physical land degradation may be an increasing problem in the sub-basin. According to 

Amede [115], soil erosion by water is the main land degradation agent in the Amhara 

regional state. 

 

Figure 10. State of physical land degradation in the north Gojjam sub-basin. 

3.3. Biological Land Degradation Indicators 

Vegetation cover: As Figure 11 shows, the spatial patterns of vegetation indices in 

the north Gojjam sub-basin ranged from −0.2 to 0.86. As seen in Table 11, about 20.9% and 

60.3% part of the sub-basin has moderate and poor vegetation cover, respectively. These 

areas are characterized as moderate and high land degradation status, respectively. As 

shown in Table 11 and Figure 11, more than half of the sub-basin was classified as having 

high to very high land degradation level according to the vegetation indicator. The sever-

ity was higher in the lowland area than the highland in the sub-basin, where the concen-

trations of plantation and grazing land were low. 
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Table 11. Statistics of mean soil adjusted vegetation index (SAVI). 

SAVI Classes Area (ha) Area (%) Cover Status Assigned Values Degradation Level 

<0.1 67,972.77 4.75 Very poor 5 Very high 

0.1–0.2 862,529.67 60.26 Poor 4 High 

0.2–0.3 298,752.48 20.87 Moderate 3 Moderate 

0.3–0.4 172,708.74 12.07 High 2 Low 

>0.4 29,396.34 2.05 Very high 1 Very low 

The status of soil organic matter (SOM): The spatial distribution of soil organic matter 

content in the north Gojjam sub-basin ranged from 0.15% to 1.86% (Figure 11). As Table 

12 depicts, for a large area (72.6%) of the sub-basin soil organic matter proportion ranged 

from 0.2 to 0.6%, a low SOM value that is considered to be highly degraded for this indi-

cator. Low SOM is associated with greater erosion and with low levels of micro-organisms 

in the soil. Higher SOM indicates the presence of richer flora and fauna residues at various 

stages of decomposition, and soils that are rich in humus content. The low level of SOM 

found over most of the north Gojjam sub-basin may be due to continued cultivation and 

collection of crop residues for domestic energy, livestock feed, and home building mate-

rials in favor of use as mulch on the farm fields. Free grazing is also one of the causes of 

decreasing crop residue in the study sub-basin. 

Table 12. Levels of soil organic matter of topsoil in the north Gojjam sub-basin. 

Category in % Area (Ha) Percentage (%) Level of SOM Severity Level Assign Value 

0.15–0.2 19,624.79 1.73 Very low Very high 5 

0.2–0.6 348,429.04 72.56 Low High 4 

0.6–1.2 1,038,570.57 24.34 Medium Moderate 3 

1.2–1.86 24,735.61 1.37 High Low 2 

 

Figure 11. Soil Adjusted Vegetation Index (left) and soil organic matter (right) of the sub basin. 

3.4. The Status of Biological Land Degradation 

Similar to physical land degradation indicators, the weights of the two indicators 

which contribute for biological land degradation (vegetation cover and soil organic mat-

ter) have been derived through a pairwise comparison matrix. The weight has been given 
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based on the influence of every sub-class for land degradation. As presented in Table 12, 

soil organic matter was a more influential indicator than vegetation covers for biological 

land degradation in the sub-basin. The calculated pairwise comparison consistency ratio 

was zero, which implies that the comparison was perfectly consistent and the comparison 

is acceptable. As the weight overlay analysis shows in Figure 12, 60% and 4.7% of the sub-

basin was highly to very highly degraded. About 30.8% and 4.4% of the sub-basin has 

been degraded in moderate and low-level risk. This suggests that more than half of the 

north Gojjam sub-basin was highly degraded biologically due to vegetation cover degra-

dation and soil organic matter depletion. 

 

Figure 12. Biological land degradation status in the north Gojjam sub-basin. 

This result is consistent with local land users’ view. In the formal and informal dis-

cussions, farmers reported that both fauna and flora have been declining through time on 

their farmland due to over-exploitation of natural resources. According to the respond-

ents’ view, soil nutrient loss by water is an unsolved form of land degradation and is an 

ongoing problem. They conclude that the loss of nutrient and reduction of organic matter 

has increased over recent few decades in the sub-basin. Table 13. 

Table 13. Pairwise comparison matrix of biophysical land degradation indicators. 

Criteria Organic Matter Vegetation Cover Criteria Weighting 

Organic matter 1 2 66.7 

Vegetation cover 0.5 1 33.3 

3.5. The State of Chemical Land Degradation 

The spatial variation of chemical land degradation in the form of soil acidity in the 

north Gojjam sub-basin varied from 5 to 7.8 pH value (Figure 13 and Table 14). The result 

shows that soil acidity level for about an area covered about 4% was less than 5.5 pH value 

which is considered as high. High soil pH concentration is found in the Choke mountain 

reserved area, where wet climate condition and water availability is higher as well as the 

area covered by natural forest and afro-alpine grass. Wet climate and high rainfall leach 
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soluble nutrients from soil, such as calcium and magnesium which are specifically re-

placed by aluminum and increased potential for acidic soils [116]. The decomposition of 

organic matter produces hydrogen ions, which are responsible for soil acidity formation 

[117]. 

About 39% part of the sub-basin experienced soil acidity ranged from 5.5 to 6.7 pH 

value, which expressed a high level of degradation. As Figure 14 observed most highland 

and midland parts of the sub-basin, in which continuous agriculture activity and contin-

uous application of chemical fertilizers takes place, as well as eucalyptus plantation being 

common, were vulnerable to soil acidity. This might be from the application of acid-form-

ing fertilizers and over-cultivation. According to local experts, due to population growth 

and persistent demand for food and fuel, the removal of agricultural by-products (crop 

residues) and continuous crop harvest and use of acid forming inorganic fertilizers make 

an important contribution to soil acidity development in the sub basin. Continuous appli-

cation of chemical fertilizers with nitrogen and/or phosphorus nutrients only in the form 

of diammonium phosphate (DAP) and urea has adversely affected soil chemical proper-

ties [116]. Land used for eucalyptus fields are the most affected by soil acidity [116]. 

The majority of the area (55.8%) the pH of soils in the sub-basin varied from 6.7 to 

7.3, a range that is considered neutral, whereas the pH value for the remaining 1.23% of 

the basin ranged from 7.3 to 7.8, which is characterized as alkaline soil. Low soil acidity 

level located in low land areas, in most dry areas. The result implies that almost half of 

the study area was vulnerable to chemical land degradation. However, no area in the sub-

basin was affected by strong soil acidity. FGDs and key informant participants reported 

that the application of lime on the cropland has been increasing in the last 10 years, due 

to the increasing problem of soil acidity, mainly in the heavily cultivated middle and up-

per part of the sub-basin. Nevertheless, most farmers do not use lime to reclaim acid soil 

due to the scarcity of lime supply. 

 

Figure 13. Soil acidity status in the north Gojjam sub-basin. 
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Table 14. The status of soil acidity in the north Gojjam sub-basin. 

Soil pH Area (Ha) Percentage (%) Level Assigned Value 

5–5.5 56,525.14 3.95 High 4 

5.5–6.7 558,078.76 38.99 Medium 3 

6.7–7.3 799,124.40 55.83 Low 2 

7.3–7.8 17,631.70 1.23 Very low 1 

3.6. The Status of Comprehensive Land Degradation in the North Gojjam Sub-Basin 

The comprehensive land degradation map of this study was produced by combining 

biological, physical, and chemical land degradation indicators. All the parameter raster 

maps were resampled to 30 × 30 m cell size and re-projected to UTM Zone 37° N, WGS 

1984 datum. As seen from the pairwise comparison matrix result in Table 15, biological, 

physical, and chemical degradation indicators were the most to the least important factors 

for contributing comprehensive land degradation in the north Gojjam sub-basin. The 

weighted comparison consistency ratio was 0.09, and thus, the comparison was acceptable 

as the value is less than 0.10. 

The result shows that about 32% of the sub-basin area exhibits low-level degradation 

while about 35.4% is moderately and 30.5% is highly degraded (Figure 14). The result 

shows that the spatial distribution of land degradation in the sub-basin was uneven. As 

depicted in Figure 14, the most highly degraded areas are located in the lower part of the 

sub-basin. This is a result of a number of factors: steep slopes, poor land management and 

continued cultivation, rugged topography, population pressure, and erratic rainfall. The 

moderately degraded areas were located in the middle elevation portion of the sub-basins, 

where the area is characterized by plain topography and low vulnerability to soil erosion. 

These factors are confirmed by local land users. Local communities explained that a com-

bination of soil erosion, low vegetation cover, low soil organic matter, and soil acidity 

contributed to land degradation in the north Gojjam sub-basin. Moreover, they reported 

that climate condition, poor agricultural activity, poor grazing, and poor quality of soils 

had contributed to soil erosion in particular and land degradation in general in the sub-

basin. Overall, the combined degradation analysis shows that more than 60% of the sub-

basin was moderately to highly degraded. This implies that land degradation is a serious 

environmental and economic problem in the north Gojjam sub-basin. 

Table 15. Pairwise comparison matrix of land degradation status in the north Gojjam sub-basin. 

Criteria Biophysical Degradation Physical Degradation Chemical Degradation Criteria Weighting 

Biophysical degradation 1 3 7 69 

Physical degradation 0.33 1 2 21 

Chemical degradation 0.14 0.5 1 10 
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Figure 14. Comprehensive land degradation map of the north Gojjam sub-basin. 

4. Conclusions and Policy Implications 

Assessment of land degradation is prerequisite to develop evidence-based and effi-

cient land management planning. To meet this need, this study mapped and quantified 

the status of comprehensive land degradation in a typical highland of Ethiopia, the north 

Gojjam sub-basin of the upper Blue Nile basin. To map and quantify different land deg-

radation indicators into a single indicator, we followed the standardized classification 

technique in ArcGIS10.5 and the hierarchical spatial MCA approach. The rate of soil loss 

was estimated using the RUSLE model taking into account the basic factors of soil erosion, 

including topography, soil characteristics, rainfall, land cover, and local land management 

measures. 

The RUSLE model yields an estimate that on average 46 t ha−1yr−1 or a total of 65.2 

million tons of topsoil has been lost from the sub-basin annually. About 45.3% of the sub-

basin was evaluated to be at high and very high soil loss risk. Most parts of the sub-basin 

suffered from high to very high biological land degradation. The majority of the sub-basin 

is moderately affected by soil acidity and physical deterioration of land quality, but bio-

logical land degradation was considered to be a more important factor in land degrada-

tion than chemical or physical indicators. The result of the combined land degradation 

indicators confirmed that more than 60% of the sub-basin was moderately to highly de-

graded. 

The diverse aspects of land degradation in the sub-basin point to the need to integrate 

structural, biological, and agronomic land management measures to maintain sustainable 

environmental management and economic development. Particularly, lime application 

and organic fertilizer (compost, manure, and mulching) application are very important to 

reverse soil acidity and to improve soil fertility status. The adoption of agroforestry and 

economically viable multi-purpose perennial crops should be promoted to reverse soil 

degradation and reduce soil erosion in the sub-basin. This requires the collaboration of all 

the stakeholders to rehabilitate formerly degraded areas and to minimize the current deg-

radation rate as well as to improve ecosystem health and maintain sustainable develop-

ment in the area. Further, the study confirmed that the use of GIS and remote sensing 

technologies combined with the spatial MCA technique is a useful tool in mapping and 
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characterizing land degradation using a combination of spatial data indicators. This study 

considers rill and inter-rill erosion by water. Thus, future researchers should consider 

gully and river bank erosion. Soil quality can be measured using several soil essential 

elements such as hydrogen ion concentration, electrical conductivity, total nitrogen, avail-

able phosphorus, potassium, calcium, magnesium, sodium, and others. Future research-

ers should consider these gaps in the north Gojjam sub-basin. In general, land resources 

bases are dynamic and diverse across a region depending on the dominant socioeconomic 

and biophysical factors of that location. This emphasizes the need for regular engagement 

with farmers to address emerging opportunities and challenges. 
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