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Abstract: In this paper, we investigated the power sharing issues in mesh islanded microgrids that
contain several distributed generators (DGs) and loads connected to different points of common
coupling (PCC). Firstly, an improved decentralized droop control algorithm is proposed to achieve
the active and reactive power sharing of different DGs in reconfigurable mesh islanded microgrids.
Accurate power sharing was obtained even though line parameters or the mesh microgrid configu-
ration were unknown. Secondly a state-space model of the whole mesh microgrid was developed,
considering several generators with their decentralized controllers, line feeders, and dynamic loads.
This model was used to design parameters of droop controllers, to study the asymptotic stability and
the robustness properties of the system. All strategies and analyses were validated by simulation
based on the generic microgrid detailed in the standard IEEE 9bus test feeder.

Keywords: droop control; mesh microgrids; power sharing; synchronization; system stability;
robustness analysis; constant power load; reconfiguration

1. Introduction

Microgrids are able to integrate different distributed generator (DG) systems con-
verting different types of renewable energy and to supply different types of loads. This
gives a certain level of independence, allowing them to be connected or disconnected from
the main grid. One of the challenges is to synchronize and connect all the distributed
generators to an islanded microgrid, while providing the “plug and play” functionality
and respecting the active and reactive power sharing between the different distributed
generation units (DGs) [1,2]. Currently, the most used methods for power sharing and
synchronization in literature are based on the droop control strategy [3–8]. However,
most of the microgrids considered in these research works have only a single point of
common coupling (PCC), which are connected to all DGs through converters and the loads
like in Figure 1. In order to level up the independence of microgrids from the main grid
by increasing the penetration rate of distributed generators in microgrids, the choice of
mesh multi-PCC microgrids seems to be a good solution. However, the intermittency of
renewable energy may cause more instability problems in mesh microgrids due to their
higher level of complexity compared to microgrids with single points of common coupling.
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different frequency components by observing the dynamic behavior of different state var-
iables. The analysis of the system stability was then performed by observing the evolution 
of the system eigenvalues with respect to droop parameters and different load power var-
iations. It will be shown that the system stability may be affected due to unadapted droop 
control parameters and/or CPL levels. 

The established state-model was also used to verify the robustness of the considered 
mesh microgrid, including the new droop-control that ensured active and reactive power 
sharing to the modifications caused by the connection of DGs and large load variations 
(changes in network configuration). 

To summarize, the main points of this paper are, firstly, the development of a new 
droop control strategy for power sharing especially reactive power in mesh islanded mi-
crogrids. Unlike in the solutions mostly used by authors for power sharing in reconfigu-
rable mesh microgrids, this modified droop control strategy is decentralized, which 
means that it does not require any sort of communication between the DGs connected to 
the microgrids. Thanks to the non-linear term added to the classical droop control, the 
power coupling phenomenon created by the line impedances and the change in the mi-
crogrid configuration is removed. The modified droop control strategy was proven effi-
cient for active and reactive power sharing in different microgrid structures. Additionally, 
a fast and efficient synchronization strategy did not affect the power sharing. The second 
major point is the development and validation of a state-space model describing the mesh 
microgrid and its control. This state-space model was used to study the microgrid stability 
especially in the presence of active loads such as CPLs. The state model was also used to 
test the robustness of the modified droop control under different microgrid configurations 
and different states of charge. The validated state-space model made the manipulation of 
the system so much easier and allowed many more studies to be carried out on the meshed 
microgrid. For example, one of many scenarios where the state-space model can be useful 
is when the CPL-injected power in the microgrid increases, and the state model can easily 
predict the right value of the capacitor that should be added to the PCC where the CPL is 
also connected. This means that many future studies can be conducted based on this de-
veloped and validated state-space model. 

 
Figure 1. Microgrid with one point of common coupling (PCC). 

2. Power Sharing and Synchronization Strategies in Mesh Microgrids 

2.1. Power Sharing Using Droop Control Strategies 
The traditional droop strategy imposing the electrical pulsation and the RMS voltage 

of a distributed generator via Equations (1) and (2) is efficient in microgrids with a single 
PCC shown in Figure 1, only if the effect of power line impedance is ignored [4]. 

ω =  ω − m (P − P ), (1)

Figure 1. Microgrid with one point of common coupling (PCC).

In mesh multi-PCC reconfigurable microgrids, with many distributed generation
sources (DGs) and loads randomly connected to different PCCs, classical synchronization
methods and power sharing strategies based on droop control and used in mono-PCC
microgrids are less efficient. Indeed, most droop methods assume that the transmission
lines are purely inductive or resistive in nature which leads to a linear droop characteristic
where active power sharing depends on either frequency or voltage magnitude. However,
in microgrids with reconfigurable structure, the sources as well as the networks may
become redundant. The changes in the network impedance whenever a branch or source
is disconnected in a microgrid means that the active and reactive power cannot be totally
decoupled. These changes affect the power sharing among the sources and reduce the
stability of the microgrid for any disturbance [9,10].

Much research has focused on solutions that concern the active and reactive power
sharing in droop-controlled mesh microgrids [11,12] either by using virtual impedance
correction loop and a convergence acceleration strategy to compensate the offset created by
the power line impedances and improve the reactive power sharing such as in ref [11], or by
adopting a voltage compensation strategy to keep the bus voltage stable at the rated value
and improve the reactive power sharing such as in ref [12]. However, only a few studies
have focused on active and reactive power sharing in reconfigurable mesh microgrids
such as in ref [10], where the authors propose the use of L1 adaptive methods for stable
operation of a microgrid with wide range of R/X ratios.

Another problem is the possible unstable behavior of the microgrid caused by the
interaction between the DGs and loads as well as the changes in the network configuration.
The system stability depends on the type of loads being connected to the microgrid,
especially the ones supplied through tightly regulated power converters. These loads
behave as constant power loads (CPL) and may cause system instability [13–15]. In the
literature, the main studies are based on linearization techniques [16]. The non-linear
models of the considered power systems are linearized around an operating point and then
studied using linear analysis tools. Moreover, linearization tools only predict the stability
of the system for small perturbations [17,18] and cannot guarantee the system stability for
large perturbations.

In this paper, a mesh microgrid constituting several PCCs connected to two DGs
(DG1 with a nominal power of three megawatts and DG2 with a nominal power of two
megawatts) through two transformers (6 kV/20 kV) as well as three loads (LOAD1 with a
nominal power of one megawatt, LOAD2 with a nominal power of 1.2 megawatts, and
LOAD3 with a nominal power of 1.5 megawatts) are considered. The different PCCs are
interconnected with power supply lines, modeled by resistance, inductance and capacitance
(RLC) circuits inspired by an IEEE 9-bus test feeder (Figure 2). All the microgrid data are
presented in Tables 1 and 2.
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Figure 2. IEEE 9 bus test feeder.

Table 1. Parameters of the considered microgrid power lines.

Lines Resistance (Ω) Inductance
(mH)

Capacitance
(µF)

Points of
Connections

Line 1 0.63 7.14 205 Bus 8–Bus 7
Line 2 2.55 11.4 230 Bus 5–Bus 7
Line 3 0.63 7.14 205 Bus 8–Bus 9
Line 4 2 7 180 Bus 9–Bus 6
Line 5 1.7 7.6 153.4 Bus 4–Bus 5
Line 6 1.7 7.6 153.4 Bus 4–Bus 6

Table 2. Sources and load powers.

Sources and
Loads

Active Power
(Mw)

Reactive Power
(Mvar)

Phase to Phase
Voltage (kV)

Point of
Connection

Source 1 3 0.9 6 Bus 7
Source 2 2 0.9 6 Bus 9
Load 1 1.5 0.35 20 Bus 5
Load 2 1.2 0.25 20 Bus 6
Load 3 1 0.25 20 Bus 8

In order to ensure an accurate power sharing and to provide the “plug and play”
function adapted to the considered multi-PCC mesh microgrid, a new droop control
and synchronization strategies is applied, such as the one demonstrated in ref [19]. This
new droop control in islanded mode consists of removing the decoupling between the
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active and reactive power caused by the line impedances and the change in the microgrid
configuration. The first DG connected to the microgrid imposes its voltage and frequency.
For other DGs, an adapted synchronization strategy is proposed and applied before their
interconnection to the microgrid. The simulation results using a model developed in
the Simscape feature of MATLAB/Simulink environment enabled the validation of the
efficiency of this new droop control.

To study the stability of the microgrid, a state model of the entire meshed micro-
grid was developed considering its power lines and loads including a CPL as well as its
generators, with their decentralized controllers integrating modified droop algorithms.
The comparison of the results obtained from the stablished state model and the developed
model in Simscape environment confirm the validity of the proposed microgrid state model.
This validated state model was then used to study the microgrid stability by calculating its
Jacobean matrix and its eigenvalues at each operating point. Based on these results, the root
locus, and eigenvalues sensitivity analysis, depending on the parameters of the established
model, were performed. The latter made it possible to find the origin of different frequency
components by observing the dynamic behavior of different state variables. The analysis
of the system stability was then performed by observing the evolution of the system
eigenvalues with respect to droop parameters and different load power variations. It
will be shown that the system stability may be affected due to unadapted droop control
parameters and/or CPL levels.

The established state-model was also used to verify the robustness of the considered
mesh microgrid, including the new droop-control that ensured active and reactive power
sharing to the modifications caused by the connection of DGs and large load variations
(changes in network configuration).

To summarize, the main points of this paper are, firstly, the development of a new
droop control strategy for power sharing especially reactive power in mesh islanded micro-
grids. Unlike in the solutions mostly used by authors for power sharing in reconfigurable
mesh microgrids, this modified droop control strategy is decentralized, which means that it
does not require any sort of communication between the DGs connected to the microgrids.
Thanks to the non-linear term added to the classical droop control, the power coupling
phenomenon created by the line impedances and the change in the microgrid configura-
tion is removed. The modified droop control strategy was proven efficient for active and
reactive power sharing in different microgrid structures. Additionally, a fast and efficient
synchronization strategy did not affect the power sharing. The second major point is the
development and validation of a state-space model describing the mesh microgrid and
its control. This state-space model was used to study the microgrid stability especially
in the presence of active loads such as CPLs. The state model was also used to test the
robustness of the modified droop control under different microgrid configurations and
different states of charge. The validated state-space model made the manipulation of the
system so much easier and allowed many more studies to be carried out on the meshed
microgrid. For example, one of many scenarios where the state-space model can be useful
is when the CPL-injected power in the microgrid increases, and the state model can easily
predict the right value of the capacitor that should be added to the PCC where the CPL
is also connected. This means that many future studies can be conducted based on this
developed and validated state-space model.

2. Power Sharing and Synchronization Strategies in Mesh Microgrids
2.1. Power Sharing Using Droop Control Strategies

The traditional droop strategy imposing the electrical pulsation and the RMS voltage
of a distributed generator via Equations (1) and (2) is efficient in microgrids with a single
PCC shown in Figure 1, only if the effect of power line impedance is ignored [4].

ωi = ωn − mi(Pi − Pin), (1)

Ei = En − ni(Qi −Qin) (2)
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With : mi =
∆ω

Pin
, ni =

∆E
Qin

,

where Pi and Qi are the measured values of the active and reactive power of the ith DG,
Pin and Qin are their nominal values, ωn and En are the nominal values of the pulsation
and voltage of the ith DG, ∆ω and ∆E are the permissible variations of pulsation and
voltage, and mi and ni are the droop control coefficients. The active and reactive power
sharing method is based on a droop control algorithm that sets the frequency and voltage
amplitude at the associated PCC for each DG according to Equations (1) and (2).

This droop control does not ensure efficient reactive power sharing even in single
PCC micro-grids due to the line impedances. A droop control strategy that has been
proven effective for active and reactive power sharing in mono-PCC microgrids (3) and
(4) was applied to the complex mesh microgrid in Figure 2, and considering one of the
PCC voltages as reference potential of the studied microgrid. The simulation results are
presented in Figures 3 and 4.

δi =
∫
(Ka(δin − δL)−mi(Pi − Pin)).dt, (3)

Ei =
∫
(Ke(Ein − EL)− ni(Qi −Qin)).dt, (4)Sustainability 2021, 13, x FOR PEER REVIEW 6 of 27 
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The proposed angular droop aims to indirectly control the voltage at the PCC and
its phase to be equal to the nominal values (i.e., Ein and δin). The added integrators can
minimize the static error between the feedback signal and the corresponding nominal
values. By choosing identical Ka and Ke for each generator, an accurate active and reactive
power sharing is achieved which no longer depends on the system impedance and is
unaffected by the digital errors and disturbances [9].

In practice, real microgrids can have several PCCs, interconnected by several supply
lines with non-negligible impedances. In order to study such a microgrid, a slightly
modified IEEE 9bus test feeder is considered, composed of two DGs and three loads,
interconnected by RLC lines (Figure 2). It can be noticed that the application of the droop
method, based on Equations (3) and (4), on the multi-PCC microgrid of Figure 2 leads to a
perfect active power sharing when the second DG is connected at 5 s (Figure 3a). However,
the reactive power sharing when the second DG is connected is not achieved (Figure 3b). It
can also be remarked that unacceptable disturbing active and reactive power peaks occur
due to the lack of synchronization (Figure 3a,b at 5 s).

In mesh microgrids, each line, connecting the ith PCC to the jth, has a non-negligible
inductance (λi,j) and resistance (ρi,j), leading to a line voltage drop between these two PCCs
that creates a coupling between the active power (Pi,j) and reactive power (Qi,j) exchanged
between ith and jth PCCs, according to Equation (5):

∆E = ρi,j Ii,jcosϕ + jλi,jωIi,j sin ϕ =
ρi,jPi,j + jλi,jQi,j

Ei
, (5)

where ϕ is the phase shift between the phase voltage Ej and the phase current Ii,j.
To achieve an efficient reactive power sharing in this type of mesh microgrids, the

voltage equation in (2) is modified by adding a decoupling term (see Equation (7)) removing
the coupling phenomenon between active and reactive power [12]. This coefficient, called
Ji, is estimated using a PI controller, forcing the suppression of the error εi defined in
Equation (8). In steady state, when the error εi tends to zero, the reactive power sharing is
well ensured between the DGs. This approach allows the primary control of the voltage
of the ith DG, regardless of the operating point of the loads. It should be noted that Ere f
in Equation (8) is the measured value of one of the PCC voltages of the studied mesh
microgrid acting as the pilot node and considered as its reference potential. The rated
voltage of this pilot node is called En.

ωi = ωn − mi

(
Pf i − Pin

)
, (6)

Ei = En − ni

(
Q f i −Qin

)
− Ji

(
Pf i − Pin

)
, (7)

With : mi =
∆ω

Pin
, ni =

∆E
Qin

and

{
Ji = KI

∫
εidt

εi =
[
−
( Ere f

En
− 1
)
−
(

Qi
Qin
− 1
)] , (8)

In the absence of information on Ere f the coefficient J is set to 0 and we return to the
classical droop.

2.2. Synchronization Strategy in Mesh Islanded Microgrid

Due to the complexity of the mesh microgrids and the intermittency of renewable
energies, DGs frequently connect to and disconnect from the microgrid, so a fast and
efficient synchronization method is required. To achieve the synchronization of the ith
DG to the ith PCC before their interconnection, the voltage amplitude Epcci, the pulsation
ωpcci and the phase θpcci of the ith PCC must be approximately equal to those of the ith
DG (EDGi, ωDGi, θDGi) [2]. To achieve this objective, the errors between the amplitudes,
pulsations, and phases of both sides (the ith DG and the ith PCC) are forced to zero by
adding pure integral controllers to the ith DG droop control, as shown in Equations (9)
and (10) [19]. It should be noted that the binary coefficient Bi in these equations is equal
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to one only during the synchronization interval, and equal to zero otherwise. For the
pulsation and phase synchronization, the pure integrators are added to the pulsation droop
control, Equation (9), and for the voltage synchronization, the pure integrator is added to
the voltage droop control, Equation (10).

ωi = ωn − mi

(
Pf i − Pin

)
−
[

Kai

∫ (
ωDGi −ωpcci

)
+ Kbi

∫ (
θDGi − θpcci

)]
Bi, (9)

Ei = En − ni

(
Q f i −Qin

)
− Ji

(
Pf i − Pin

)
−
[

Kei

∫ (
EDGi − Epcci

)]
Bi, (10)

To prove the efficiency of the proposed synchronization and power sharing strategies,
the mesh microgrid in Figure 2 is modeled using the Simscape toolbox of Matlab/Simulink.
Source 1 and Source 2 of Figure 2 are modeled by two controllable voltage sources shown
in Figure 4, connected to two different PCCs and controlled by Eabcre f i

, which was gen-
erated using the modified droop strategy described by Equations (9) and (10), a power
calculation bloc, a power filter, park transform and inverse park transform, as explained
in the equivalent synoptic diagram describing a droop-controlled DGi in Figure 5. The
main microgrid parameters are listed in Table 1. The powers of sources and loads are listed
in Table 2.
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Based on this Simscape model, the efficiency of the proposed synchronization and
power sharing strategies assumed in Equations (9) and (10) is evaluated. Figure 6a and
6b show the evolution of the active and reactive powers delivered by DG1 and DG2. In
the beginning, the first DG (DG1) imposes the frequency of the microgrid as well as the
voltages of each PCC; up to t = 5 s, DG1 supplies the loads connected to the microgrid. The
second generator (DG2) is synchronized during the interval 1–5, and then it is connected to
the microgrid at t = 5 s. The power-sharing of the active and reactive powers are ensured
in steady state without being affected by the synchronization procedure. In addition,
compared to the previous results shown in Figure 3a,b, the power peaks appearing after
the connection of DG2 to the microgrid are considerably attenuated. It should be noted
that these performances are maintained with a higher number of DGs connected to the
microgrid, even though the results are not presented in this paper.
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Figure 6. Evolution of the DG active (a) and reactive (b) powers (first DG supplies the microgrid up to 5 s, the second DG is
connected to the microgrid at 5 s).

In order to highlight the effect of the loss of the information on Ere f , a simulation
test was made using the developed model in Simscape environment, and the results are
shown in Figure 5. It consists of connecting both DGs to the microgrid at 0 s using the
control strategy defined in Equations (6) and (7). The information on Ere f is lost at 4 s
and becomes available again at 8 s, and in this scenario Figure 7a,b show the evolution of
the active and reactive powers, respectively. The active power sharing is not affected by
the loss of information on Eref because it only depends on the frequency, being the same
in all the microgrid PCCs. However, the reactive power sharing is totally lost when the
information on Eref is absent, but it is easily regained when the information on Eref becomes
available again.
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Even though the considered microgrid including its loads and DGs are well controlled,
the synthesis of the droop control parameters is not based on a methodical approach; they
are tuned by trial-and-error method using Simscape.

This method cannot guarantee the system stability when the parameters of the load
change or additional dynamical constant power loads (CPL) are connected to the microgrid.
For example, when a CPL is added to the microgrid it is not evident to foresee the system
stability with the variation of its absorbed active power. Figure 8 shows that, as previously,
the first DG1 imposes the frequency of the microgrid as well as each PCC voltage of up to
t = 5 s and supplies the R–L loads connected to the microgrid. The second generator (DG2)
is synchronized and connected to the microgrid at t = 5 s. A dynamic CPL is connected
parallel to load 1 (see Figure 2) at t = 7 s, absorbing an active power of 120 kW and zero
reactive power. The active power absorbed by this CPL is increased to 500 kW at t = 8 s.
It can be remarked that the connection of the CPL absorbing 120 kW does not impact the
stability, but when its absorbed power increases to 500 kW the system becomes unstable.
Hence, for each modification, the trial-and-error method should be applied again in order
to find the eventual new values of the microgrid control parameters which may ensure
its stability. In order to overcome this constraint, one solution consists of establishing the
state-model that represents the microgrid including its control and studying the microgrid
stability by calculating its Jacobean matrix and its eigenvalues at each operating point, as is
detailed in the next section.
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3. System Modeling for Its Stability Analysis

Due to the interaction between the DGs and the loads, the stability of the microgrids is
strongly influenced. Therefore, to study the stability and robustness of the droop-controlled
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microgrid, a complete mathematical dynamic model of the whole system is established in
this section.

3.1. State-Space Model of a Distributed Generator (DG)

The equations describing the behavior of the ith DG are presented on the equiva-
lent synoptic diagram of Figure 9. It is composed of four cascaded blocs for which the
relationship between their outputs and inputs are presented in the following.

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 27 
 

 
Figure 8. Evolution of the DG active power under different state of charge (first DG supplies the 
microgrid up to 5 s, the second DG is connected to the microgrid at 5 s). 

3. System Modeling for its Stability Analysis  
Due to the interaction between the DGs and the loads, the stability of the microgrids 

is strongly influenced. Therefore, to study the stability and robustness of the droop-con-
trolled microgrid, a complete mathematical dynamic model of the whole system is estab-
lished in this section.  

3.1. State-Space Model of a Distributed Generator (DG) 
The equations describing the behavior of the ith DG are presented on the equivalent 

synoptic diagram of Figure 9. It is composed of four cascaded blocs for which the relation-
ship between their outputs and inputs are presented in the following. 

 
Figure 9. Equivalent synoptic diagram describing a droop-controlled DGi. 

In the first bloc (Figure 9), the ith DG measured voltages (퐸 , 퐸 ) and currents (푖 , 
푖 ) are used to calculate the instantaneous active and reactive powers using classical equa-
tions (11) and (12). 

Figure 9. Equivalent synoptic diagram describing a droop-controlled DGi.

In the first bloc (Figure 9), the ith DG measured voltages (Eid , Eiq ) and currents
(idi, iqi) are used to calculate the instantaneous active and reactive powers using classical
Equations (11) and (12).

Pi = Eid . iid + Eiq . iiq (11)

Qi = Eiq .iid − Eid . iiq (12)

In the second bloc, the instantaneous active and reactive powers (Pi and Qi) are filtered
using a first-order low-pass filter to obtain the average (filtered) values Pf i and Q f i using
Equations (13) and (14). It should be emphasized that the cut-off frequency ω f of the filter
is related to the dynamics of the droop control-loop.

d
dt

Pf i = ω f

(
Pi − Pf i

)
= ω f

(
Pi − Pf i

)
(13)

d
dt

Q f i = ω f

(
Qi −Q f i

)
= ω f

(
Qi −Q f i

)
(14)

The third bloc applies the modified droop control in Equations (6)–(8), using Pf i and
Q f i to achieve the active and reactive power sharing.

The fourth bloc models the delay imposed by the voltage source inverter (VSI), con-
trolling the ith DG output voltages by means of a second-order filter. This filter has a faster
dynamic compared to the external droop control loop ωc � ω f . The relationship between
the output voltage of the ith DG and its voltage reference is expressed by the transfer
function defined in Equation (15):

Eidq

E∗ idq

=
ωc

2

s2 + 2ξωc.s + ωc2 , (15)

3.2. Microgrid Structure and Modeling

Figure 10 shows a microgrid inspired from the IEEE 9bus test feeder that differs
slightly from the microgrid of Figure 2 and contains an additional CPL. In fact, this type
of load is increasingly present in microgrids and imposes more severe constraints to the
system stability. The considered microgrid is composed of two DGs powering three classical
inductive loads, modeled by serial R–L circuits, and a CPL load. They are interconnected
by RLC power lines to represent a mesh multi-PCC microgrid. The line connecting the
PCCi and PCCj have a resistance rij, an inductance lij, and a capacitance of cij. Their values
are determined knowing the distance between the considered PCCs. The capacitance cij is
connected to the PCCj.
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In order to study the considered microgrid having two DGs, the state equations are
given using a common reference frame for expressing the different variables. The used d–q
reference frame is defined in a way that its d-axis is oriented toward the first DG voltage
vector (E1 Figure 11). Then, the d-axis is shifted by δ1 with respect to the α-axis, where δ1
is the argument of the DG1 voltage vector (E1 = E1ejδ1 = E1α + jE1β

). The rotating d–q

reference frame turns with an electrical speed of ω1 = dδ1
dt with respect to the fixed reference

frame α− β. When the different DGs are synchronized and connected to the microgrid,
their pulsations vary simultaneously. Then, the pulsations of the DG1 and DG2 voltages
(ω1 = dδ1

dt and ω2 = dδ2
dt ) are the same (i.e., ω1 = ω2 = ωcom)). Knowing that the phase

voltages of DG1 and DG2 (connected to PCC1 and PCC2) have the RMS values of E1 and
E2, the α− β components of E1 and E2 are obtained using the Concordia transformation
Tt

32 in (16) and (17):

(
E1α

E1β

)
= Tt

32

 E1a

E1b
E1c

 =

( √
3.E1. cos δ1√
3.E1. sin δ1

)
and

(
E2α

E2β

)
= Tt

32

 E2a

E2b
E2c

 =

( √
3.E2. cos δ2√
3.E2. sin δ2

)
(16)

where : Tt
32 =

√
2
3
·
[

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

]
, (17)
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Then, Equations (18) and (19) give the relationship between the d–q components of
the voltage vectors at PCC1 and PCC2 and their α− β components.

DG1 :


(

E1d
E1q

)
= P(−δ1).

(
E1α

E1β

)
=

(
cos δ1 sin δ1
− sin δ1 cos δ1

)
.
( √

3.E1. cos δ1√
3.E1. sin δ1

)
(

E1d
E1q

)
=

( √
3.E1
0

) , (18)

DG2 :


(

E2d
E2q

)
= P(−δ1).

(
E2α

E2β

)
=

(
cos δ1 sin δ1
− sin δ1 cos δ1

)
.
( √

3.E2. cos δ2√
3.E2. sin δ2

)
(

E2d
E2q

)
=

( √
3.E2. cos(δ)√
3.E2. sin(δ)

)
with : δ = δ2 − δ1

, (19)

Equation (20) presents a network model of N power lines of a mesh microgrid, inter-
connecting its PCCi and PCCj, where i and j ∈ [1, 2, . . . , N] and i 6= j (Figure 10).

d
dt iijd = 1

lij
∆Eijd −

rij
lij

iijd + ωcomiijq
d
dt iijq =

1
lij

∆Eijq −
rij
lij

iijq + ωcomiijd

where : ∆Eijd =
(
Eid − Ejd

)
∆Eijq =

(
Eiq − Ejq

) , (20)

Eid and Eiq are the d–q components of PCCi voltage. The loads considered in this
work were serial passive R–L loads and an active CPL (Figure 10). With the sum of the
current connected to PCCi being zero (Kirchhoff current law), Equation (21) relates to all
PCCs except the ones connected to the DGs for which the voltages are imposed by their
droop controllers.

d
dt Eid = 1

Ci

(
−iLoadid − iCPLid + ∑j ijid

)
+ ωcom . Eiq

d
dt Eiq =

1
Ci

(
−iLoadiq − iCPLiq + ∑j ijiq

)
−ωcom . Eid

, (21)

It should be noted that ∑j iji in Equation (17) is the sum of the currents of the power
lines connected to PCCi. iCPLid and iCPLiq are the d–q components of the current absorbed
by the active CPLi. The non-linear Equation (22) allows the determination of these compo-
nents knowing the active and reactive powers PCPLi and QCPLi absorbed by CPLi.

(
PCPLi
QCPLi

)
=

(
Eid Eiq
Eiq −Eid

)
.
(

iCPLid
iCPLiq

)
(

iCPLid
iCPLiq

)
= 1

Eid
2+Eiq

2 .

(
Eid Eiq
Eiq −Eid

)
.
(

PCPLi
QCPLi

) , (22)

The d–q components of the R–L load current connected to PCCi (iLoadid and iLoadiq ) can
be determined using Equation (23):{ d

dt iLoadid = 1
LLoadi

(
Eid − RLoadi . iLoadid

)
+ ωcom . iLoadiq

d
dt iLoadiq =

1
LLoadi

(
Eiq − RLoadi . iLoadiq

)
−ωcom . iLoadid

, (23)

where RLoadi and LLoadi represent the resistance and inductance of the RL load.
The overall model of the microgrid presented in Figure 10 including its control, defined

by the previous equations, has 40 state variables which constitute the elements of the state
vector x, described in the following (24):

[x]T = [i13d i13q i23d i23q i25d i25q i14d i14q i56d i56q i46d i46q E1d E1q E2d E2q E3d E3q E4d E4q E5d E5q

E6d E6q iLoad3d
iLoad3q iLoad4d

iLoad4q iLoad5d
iLoad5q Pf 1 Q f 1 Pf 2 Q f 2 δ

.
E1d

.
E1q

.
E2d

.
E2q Ji],

(24)
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Considering the non-linear Equations (7), (11), (12), (19) and (21), the overall microgrid
model is non-linear and can be finally put into the following form:

.
x = f (x) with f : Rn → Rn, n = 40, (25)

3.3. Validation of the State Model

The results concerning the evolution of the microgrid active and reactive powers,
obtained under the same conditions using the Simscape model and the established state
model, were used to validate the established state model. The same simulation scenario
was considered for obtaining the simulation results using both models. Both DGs were
connected to the microgrid at 0 s. The simulation results of both considered models are
presented in Figure 12a,b, illustrating the evolution of the active and reactive powers of
DG1 and DG2. Both models led to similar results; therefore, the established state model is
considered validated. Thus, it can be used for studying the microgrid stability, integrating
its control. To further confirm the validity of the developed model, Figure 12c shows a
zoomed-in view of the transitory state after the connection of both DGs at 0 s.
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4. Mesh Microgrid Stability and Robustness of its Control
4.1. Jacobian Matrix Eigenvalues

In order to study the stability of the microgrid, defined by the continuous nonlinear
differential system (24), and to analyze its dynamic behavior, which is affected by several
control parameters, an eigenvalue sensibility analysis was performed by means of the cal-
culation of the eigenvalues of the Jacobian matrix

(
∂ f
∂x

)
x0

at the operating point f (x0) = 0.

The system, i.e., the microgrid, will be asymptotically stable around the operating point x0
if the real parts of all eigenvalues are strictly negative.

The system parameters are given in Tables 3–5. The classical loads were modelled by
serial R–L loads. The values of R and L were chosen depending on the operating point of
these loads. The CPL was defined by constant values of its absorbed active and reactive
powers, which may vary depending on its chosen operating point. The parameters of the
DGs corresponded to their rated powers (available powers) and the parameters imposing
the dynamic behavior of their control (ω f , ωc, ξ, permissible variations of pulsation ∆ω

and voltage ∆E).

Table 3. Parameters of the considered microgrid power lines.

Lines Resistance (Ω) Inductance (mH) Capacitance
(µF)

Points of
Connection

Line 13 0.63 7.14 205 PCC1–PCC3
line 23 0.63 7.14 205 PCC2–PCC3
line 14 2.55 11.4 230 PCC1–PCC4
line 25 2 7 180 PCC5–PCC2
line 56 1.7 7.6 153.4 PCC5–PCC6
line 46 1.7 7.6 153.4 PCC4–PCC6
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Table 4. Parameters of the considered microgrid power loads.

Serial RL Loads Resistance (Ω) Inductance (H)

Load 1 376.47 0.2496
Load 2 319.467 0.1765
Load 3 252.8977 0.1564

Load CPL Pc = 100 KW Qc = 0 VAR

Table 5. Parameters of the considered DGs.

DGs
Rated
Active

Power (MW)

Rated
Reactive

Power
(Mvar)

Rated Phase
to Phase

Voltage (kV)

Cut-Off
Frequency

Power
Calculation
Filter (rad/s)

Cut-Off
Frequency

Second
Order Filter

(rad/s)

Damping
Factor

Permissible
Variations

of Pulsation
(for Droop

Control)

Permissible
Variations
of Voltage
(for Droop

Control)

DG1 P1n = 3 Q1n = 0.9 20 ω f 1 = 20 ωc1 = 1000 ξ = 0.7 ∆ω = 0.5 ∆E = 6
DG2 P2n = 2 Q2n = 0.9 20 ω f 2 = 20 ωc2 = 1000 ξ = 0.7 ∆ω = 0.5 ∆E = 6

The eigenvalues of the system at the considered operating point, corresponding to
the parameters of the loads and DGs given in Tables 4 and 5, are shown in Table 6. It can
be observed that four of the Jacobian matrix eigenvalues are the negative real numbers,
and that the other 36 eigenvalues are two by two the complex conjugate numbers, having
negative real parts.

Table 6. Eigenvalues under nominal operating condition.

λ Value

λ1,2 −287± 37, 510i
λ3,4 −287± 36, 756i
λ5,6 −53± 26, 120i
λ7,8 −54± 26, 562i
λ9,10 −484± 26, 915i
λ11,12 −484± 27, 669i
λ13,14 −360± 15, 598i
λ15,16 −360± 14, 843i
λ17,18 −1766± 377i
λ19,20 −1488± 377i
λ21,22 −1564± 377i
λ23,24 −86± 377i
λ25,26 −254± 377i

λ27,28 −701± 714i
λ29,30 −700± 714i
λ31,32 −700± 714i
λ33,34 −9± 26i
λ35 −4.4089
λ36 −17.0790
λ37 −19.9387
λ38 −20.0041

λ39,40 −700± 714i

All of the Jacobian matrix eigenvalues have negative real parts, therefore the microgrid
including its DG’s control and loads can be considered as a stable system around the
considered operating point. The study of the considered mesh microgrid stability around
other operating points can also be conducted based on the established state model.

In order to perform the sensitivity analysis and find the origin of different frequency
components, depending on the parameters of the established model, the parameters of
the different constituents of the microgrid, including its control parameters were modified
separately. In the following sections, the evolution of eigenvalue trajectories with variation
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of the parameters of each microgrid constituent is discussed to verify their impact on the
system stability.

4.2. Eigenvalue Trajectory and Sensibility Analysis for Different Values of Power Line Parameters

To vary the parameters of the 6 power lines of the microgrid, the values of the lengths
of all of these power lines are modified by 10 steps of 10% (for each line, from its initial
length to two times this length), the Jacobean matrix eigenvalues are determined, and their
evolution shown on Figure 13. The variation of the parameters of the power lines only
impacts the eigenvalues λ1 to λ12, which are two by two complex conjugate numbers; the
other eigenvalues λ13 to λ40 do not vary significantly with the evolution of the power line
parameters. The real parts of the impacted eigenvalues (λ1 to λ12) become closer to zero
but remain sufficiently negative to not impact system stability when the line parameters
are increased within the considered interval. However, if the lengths of the power lines
become excessively long, the real parts of the impacted eigenvalues may become positives
and cause system instability.
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4.3. Eigenvalue Trajectory and Sensibility Analysis for Different Values of DG Parameters

The same approach as in Section 4.2. is used to study the impact of other parameters
that may contribute to the instability of the system. For the considered DGs, the parameters
which may impact the system stability are the cut-off frequency ω f for power calculation
(Equations (13) and (14)), the value of the filter’s cut-off frequency ωc of the second
order filter (Equation (15)), as well as the frequency drop ∆ω and the voltage drop ∆E in
Equations (6)–(8).

First, the cut-off frequency ω f is modified in 10 steps (from its initial value to
10 times this value), the Jacobean matrix eigenvalues are determined, and their evolu-
tions are illustrated in Figure 14. The variation of ω f impacts the real negative eigenvalues
λ35, λ36, λ37 and λ38 as well as the eigenvalues λ33, λ34 which are two complex conjugate
numbers. The other eigenvalues do not vary significantly with the evolution of ω f . It can
be seen that when ω f increases, the eigenvalues λ33, λ34, λ36, λ37 and λ38 are shifted to the
left while λ35 moves very slightly toward zero, but its value does not change considerably
and stays largely negative (from −4 to −3.6). The system always remains stable when ω f
increases, but the system dynamics become increasingly faster.
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To examine the impact of ωc in Equation (13), representing the delay imposed by
the voltage source inverter (VSI) controlling the DG, on the system stability, its value is
largely decreased (from its initial value 1000 rad/s to 50 rad/s). The eigenvalues most
sensitive to the variation of ωc are λ27 to λ32 as well as λ39 and λ40, which are two by two
of the complex conjugate numbers. As shown in Figure 15, the real parts of the impacted
eigenvalues move to the right when ωc decreases and tend to be positive when ωc becomes
inferior to 50 rad/s, which causes the system instability.
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Figure 15. Evolution of eigenvalues corresponding to the change in ωc (50 < ωc < 1000 (rad/s)
with ωc decreasing).

To validate these results, the Simscape simulations were made to verify that any value
of ωc inferior to 50 rad/s can cause system instability. The results of the first simulation,
made using the Simscape model with ωc = 50 rad/s, are illustrated on Figure 16a, and
those of the second simulation with ωc = 45 rad/s are shown on Figure 16b. These results
confirm the system stability for ωc > 50 rad/s, as predicted by the stability analysis based
on the established state model.
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To evaluate the impact of droop control parameters on the system stability, the fre-
quency drop ∆ω is increased in 10 steps (from its initial value to 10 times this value). The
eigenvalues mostly impacted by this variation are λ23 to λ26 as well as λ33 and λ34 which
are two by two complex conjugate numbers. As shown in Figure 17 when ∆ω increases the
eigenvalues λ23 to λ26 move toward the left, while λ33 and λ34 move toward the right side
of the real axis and become positive for ∆ω ≥ 5 rad/s. By following the same approach
as Simscape, simulations were made to verify that any value of ∆ω superior or equal to
5 rad/s can cause the system instability. The results of the first simulation, made using
the Simscape model with ∆ω = 4.5 rad/s, are illustrated In Figure 18a, and those of the
second simulation with ∆ω = 5 rad/s are shown In Figure 18b. These results confirm the
system instability for ∆ω ≥ 5 rad/s, as predicted by the stability analysis based on the
established state model.
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The voltage drop ∆E is the last parameter of the DGs for which its impact on the
system stability is studied. This has been done by varying ∆E from its initial value to
10 times this value. The eigenvalues mostly impacted by this variation are λ23 and λ24,
which are the complex conjugate numbers with a negative real part as well as λ36 which is
a real negative number. When the voltage drop increases, Figure 19 shows that λ36 moves
to the left while λ23 and λ24 move slightly to the right but remain negative. Thus, contrary
to ∆ω, the voltage drop ∆E has a negligible impact on the system stability.
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4.4. Eigenvalue Trajectory and Sensibility Analysis for Different Values of Load Parameters

In order to explain the effect of load variation on system stability, a study of the
variation of dominant eigenvalue trajectories under different load conditions is established.
Starting with the CPL type, Figure 20a,b show the trajectory of the eigenvalues under
the effect of the change in active Pc and reactive Qc powers absorbed by the CPL. As the
active power or the reactive power absorbed by the CPL increases up to 120 kW (with fixed
Qc = 0) and 72 kVAr (with fixed Pc = 100 kW), respectively, the eigenvalues λ5 to λ8 are
the most sensitive to the change of Pc or Qc of the CPL. The other eigenvalues do not vary
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with the evolution of Pc or Qc. When the active power (Pc) absorbed by the CPL increases
from 100 kW up to 120 kW (with fixed Qc = 0), the eigenvalues λ7 and λ8 move to the
left far away from zero while λ5 and λ6 move toward the right but remain sufficiently
negative. In the same manner, when the reactive power (Qc) absorbed by the CPL increases
from zero up to 72 kVAr (with fixed Pc = 100 kW), the eigenvalues λ7 and λ8 move to
the left while λ5 and λ6 move toward the right. For the considered intervals of the active
power and reactive power, the real part of λ5 and λ6 remains sufficiently negative and
the system stability is not affected. However, when the active power Pc or the reactive
power Qc become greater than certain limits, the real parts of the eigenvalues λ5 and λ6
become positive which causes system instability. For example, when Qc is fixed to zero,
the limit value of active power Pc absorbed by the CPL is 124.5 kW, beyond this value,
the real part of the eigenvalues λ5 and λ6 becomes positive (Figure 21a for Pc = 124kW
and Pc = 126kW) and the system cannot be considered asymptotically stable around the
considered operating point. In the same manner, when Pc is fixed to 100 kW, the limit
value of reactive power Qc absorbed by the CPL is 74.3 kVAr; beyond this value, the real
part of the eigenvalues λ5 and λ6 becomes positive (Figure 21b for Qc = 73 kVAr and
Qc = 74 kVAr).
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To confirm the results concerning the stability limits imposed by the CPL, the Simscape
simulations were made for two values of the CPL active power, one less than the active
power limit (Pc = 124 kW) and another one higher than this limit (Pc = 125kW) and
the results are shown in Figure 22a,b. These results are in perfect accordance with the
conclusions drawn from the established state model relating to the impact of the CPL on
the stability of the considered system.
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In order to maintain the microgrid stability for higher values of active power absorbed
by the CPL, one solution consists of adding a capacitor to the PCC to which the CPL is
connected. Then, the established state model can be used to dimension the necessary
capacitor value for the required CPL active power. For the considered microgrid, the CPL
is connected to PCC3, and based on the above analysis, the system stability is affected
when the CPL active power becomes higher than 124 kW. The latter active power limit can
be augmented; for example, to Pc = 620 kW by imposing an adapted value to the capacitor
connected to PCC3. This value can be determined using the established state model.

When Qc = 0, the limit value of active power Pc absorbed by the CPL becomes 620 kW
when the capacitor c3 is modified from 0.4 µF to 2 µF. Figure 23 shows that the real part of
the eigenvalues λ5 and λ6 is negative for Pc = 620 kW and positive for Pc = 625 kW. Then
the microgrid stability is ensured up to Pc = 620 kW. This result is in perfect accordance
with the Simscape simulation results shown in Figure 24a,b. Hence, the stability analysis
based on the established state model can be used as a powerful tool to adjust mesh
microgrids to guarantee their stability when their loads or even their architectures change.

Concerning the serial R–L loads in the microgrid, the impact of their variations on the
system stability is studied by analyzing the evolution of the eigenvalues mostly impacted
by the change under constant power factor of each RL-load connected to a given PCC.
In fact, the power factor of classical loads is usually higher than 0.92 and its variation
can be neglected. For the three serial RL-loads of the considered microgrid shown in
Figures 10 and 25–27 show the evolution of the eigenvalues mostly impacted by varying
(from initial value to 50% of this value) the impedances of RL-load3, RL-load4 and RL-load5
under constant power factor, respectively. The most impacted eigenvalues in this case are
λ1 to λ12, which correspond to line current equations and λ13 to λ20 as well as λ25 and λ26,
which correspond to the PCC voltage equations. It can be noticed that when the value
of each RL-load decreases under constant power factor, the eigenvalues mostly impacted
move to the right but remain sufficiently negative and do not impact the system stability as
long as the load variation is within the indicated power range.
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4.5. Mesh Microgrid Control Robustness

Based on the established and validated state-model, including the modified droop-
control that ensures active and reactive power sharing, the considered mesh microgrid
control robustness with respect to the modifications caused by the connection of DGs and
large load variations is studied. In this simulation, at 0 s, the first DG sets the frequency of
the microgrid and the voltages of the PCCs while only the first RL load is connected. Then,
the second DG is interconnected to the microgrid at 5 s after being synchronized from 1 s
to 5 s. At 8 s, the second RL load is also connected, applying a high positive load step to
the microgrid. Finally, at 11 s, the CPL load absorbing an active power of 100 kW is also
connected to the microgrid to verify its effect on the active and reactive power sharing.

Due to the modified droop control strategy given by Equations (9) and (10), the active
and reactive power sharing is ensured (Figure 28a,b). The convergence of the reactive
power of the two DGs under different load conditions is convincingly verified in Figure 28b.
In addition, and as foreseen by the stability analysis based on the state-model, the microgrid
stability is ensured in different microgrid structure configuration when the CPL active
power load does not exceed 124 kW.
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5. Discussion

An improved droop control strategy for synchronization and power sharing was
applied on a mesh multi-PCC islanded microgrid. With only the information on the
measured RMS voltage value at a pilot node, this strategy has proven its efficiency for fast
synchronization as well as active and reactive power sharing between all microgrid DGs.
This makes the mesh multi-PCC microgrid eligible to the “plug and play” feature.

In order to study the microgrid stability and its droop control robustness, a state
model of the complete system has been proposed and validated based on simulation results
achieved using both the Simscape model and proposed state-model. Then, the stability
analysis of the considered non-linear system at each operating point was performed using
the Jacobean matrix of the state model. In practice, the dynamic behavior of different state
variables and the origin of different frequency components were found by studying the
evolution of the system eigenvalues with respect to the parameters of the power lines, DGs
and different loads. It was found that the most influent system parameters on its stability
were the DGs control parameters and the CPL active power level.

In addition, it has been shown through an example that the established state model,
which allows the study of system stability, can be used as a powerful tool to adjust certain
mesh microgrid parameters to guarantee its stability when the absorbed active power level
of its CPLs becomes too high. Finally, the validated microgrid state-model, including the
modified droop-control that ensures active and reactive power sharing, also achieved mesh
microgrid control robustness with respect to the modifications caused by the connection of
DGs and large load variations, which means that the new droop control is always effective
under different network configurations.

The developed modified droop control strategy can be adapted and used for power
sharing in grid-connected mesh microgrids, and the synchronization strategy can also be
adapted for a seamless transfer from an islanded microgrid to a grid-connected microgrid.
As mentioned in the Introduction, the developed and validated state-space model can be
the base for many future studies in mesh microgrids.
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