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Abstract: In the current world scenario, which is experiencing the arrival of new technologies,
Industry 4.0, increased mobility and a pandemic environment, the achievement of sustainability
demands proactive solutions. One of these actions includes the design of sustainable products.
Several authors have studied the scientific discipline of Life Cycle Engineering (LCE), which encom-
passes environmental, social and economic dimensions. However, current LCE models have gaps,
such as the need to incorporate a more holistic view, uncertainty and integrated analysis. In this
context, the aim of this paper is to present a model to evaluate the technology sustainability (TS)
dimension. The methodology of the present work involves a literature review, the development of
a model with qualitative and quantitative data, and application in a case study. A structure was
developed to include market, technical, and technology-scaling perspectives. The computational
model uses hybrid Bayesian networks, based on probabilistic theory, and incorporates uncertainty
using sustainability indicators. The model includes quantitative and qualitative variables derived
from experts’ opinions. The results of applying the model to a real research project on manhole
covers indicate that this analytical tool can support decision-making, allowing a new dimension to
be incorporated into LCE analysis. Finally, the model allows LCE analysis to be applied in a variety
of circumstances, such as strategy development or the selection of more sustainable products, as well
as the evaluation of competing products.

Keywords: product-development processes; decision-making; Life Cycle Engineering (LCE); tech-
nology maturity; sustainability

1. Introduction

Over the past few decades, research and development focused on sustainability
has been gaining greater importance in the global economic scenario, primarily due to
awareness, pressure from society and the impacts of sustainability on the competitiveness of
companies. Initially, the concept of sustainability referred to the environmental dimension,
as described in a United Nations (UN) report [1], but over time, it began to encompass three
additional dimensions: social, economic and technological, according to the taxonomy
proposed by Peças et al. [2]. Additionally, the urgency of the topic can profoundly affect the
environment of companies [3], and create opportunities based on technological changes [4],
which is the focus of this work.
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Different authors have asserted that one of the roles of companies in this transition pro-
cess is related to the development of sustainable products. For example, Fernandes et al. [5]
investigated the impact of applying a sustainability-oriented product-development method
and verified its great potential for practical use. In this context, life-cycle engineering
(LCE) is a scientific and applied discipline that has been incorporated into the theme of
sustainability [2], and can be used in product development [6]. However, there are still
open questions regarding the definition of the dimensions of sustainability [6] and, as
pointed out by Kuhlman and Farrington, the need to solve the practical problem of how to
measure sustainability [7].

The literature includes several methodologies for LCE, such as Life Cycle Assessment
(LCA), which considers the environmental-dimension variables and uses tools such as
those described in ISO 14040/44 [8]. From another perspective, Life Cycle Cost (LCC)
takes into account the cost dimension and considers the cash flow involved in the product
design [9]. Additionally, the Social Life Cycle (SLC) refers to the dimension of social
impacts based on information regarding health and safety, as well as work conventions [10].
Table 1 shows the current structure of LCE, including these methods (LCA, LCC and SLC),
in addition to examples of the tools and indicators associated with them.

Table 1. Current life-cycle engineering (LCE) structure, including dimensions, methods, tools and
examples of variables. Adapted from [2].

Dimension and Methods Reference Tools Examples of Variables

LCA Environmental [11] ISO 14040/44 Energy consumed and
CO2 emissions

LCC Costing [12] Cash flow Unit cost

SLC Social [13]
Health and

safety information;
work conventions

Accidents at work

Analyzing the consolidated taxonomy by Peças et al. [2] reveals that the current LCE
model should involve goals related to the technology as the fourth dimension. Berger-
son et al. [14] corroborated this assertion and highlighted the importance of including
the perspective of technology maturity (TM) in studies related to sustainability, and they
proposed a model that encompasses the risk of its insertion according to the characteristics
of the technology and market dynamics. The study concluded that this kind of proposal
could be a starting point for further analysis, and suggested that future studies include an
analysis of technology scale-up.

It is important to highlight that TM, with a focus on the technology life cycle, has
already been studied by several authors [15]. These studies have sought to understand,
quantify and predict when a given technology will be viable, mature or obsolete. Several
techniques associated with the Technology Life Cycle (TLC) are already widely applied,
but they are unrelated to LCE analyses [16,17]. Authors who have studied the current LCE
model have indicated characteristics that should be addressed in LCE’s decision-making
processes, such as uncertainty analysis [18], the incorporation of a more holistic view in
product-development processes (PDPs) [19] and the use of probabilistic models [20]. Dif-
ferent definitions of the life cycle in the literature must also be highlighted. Östlin et al. [21]
presented two main ones: the first refers to the physical cycle that begins in the raw material
until its final disposition, and the second concerns the economic process, which is the main
focus of this work.

The aim of this study is to develop a methodology for measuring technology sus-
tainability (TS) based on studies of technological maturity applied in PDPs. Therefore,
it will include a fourth dimension in the LCE, according to the taxonomy proposed by
Peças et al. [2], establishing a more holistic approach to sustainability that addresses social
(SLC), environmental (LCA) and cost (LCC) factors in the current era. Further, the method-
ology presented here encompasses the technical, life-cycle, market and technology-scale-up
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perspectives. For the measurement of sustainability, quantitative and qualitative variables
were identified, measured and modeled from a hybrid Bayesian network (BN) that was ap-
plied to a product development and innovation project. The study is organized as follows.
First, an overview of the existing methods for evaluating the technology is presented, and
then the materials and methods used in this study are described, highlighting the proposed
model for the assessment of technological sustainability. Afterward, the results of applying
the model to a real case are reported, and finally, the conclusion of the work is presented.

2. Current Methods for TM Assessment

Particularly for sustainability analysis, a technology with a low TM may not be able to
perform an expected critical function [11]. On the other hand, a technology that is already
in decline can result in a lack of components that allow maintenance to be performed [22].
If these technologies are unable to perform a critical function, accidents may occur, and if
components are lacking, equipment may stop working. These two examples highlight the
economic, social, environmental and technological impacts related to TM.

The literature approaches TM from different perspectives, such as the technical con-
text, the readiness of which usually is assessed through the Technology Readiness Level
(TRL) [11]. Its concept establishes that “in each of the stages, the technology presents
different degrees of uncertainty and risk, which must be progressively reduced in order
[for] the system [to] achieve functionalities and performances, aligned to the exposure to
failures levels, agreed [upon by] its stakeholders” [23].

Some authors have criticized this scale for not representing the integration of compo-
nents into a complex system well, and have suggested that this integration can be measured
by applying the concept of the Integration Readiness Level (IRL) [12]. Another scale is the
Manufacturing Readiness Level (MRL), which focuses on the production process and was
developed by the United States Department of Defense [24]. Other authors have proposed
incorporating a broader vision through the concept of System Readiness Level Plus (SRL+),
which encompasses TRL, IRL and MRL, and creating a mathematical model that covers the
components, the system and the production process [25].

The methodologies described above successfully reflect the technical perspective but
fail to include variables related to the market and its competitiveness. Some authors
have suggested integrating other variables, such as intellectual property, consumers and
society [26]. Munir et al. [27] proposed addressing the customer’s view through the
Customer Readiness Level (CRL). Ward et al. [24] reviewed several maturity studies and
proposed the use of three dimensions to study the subject: the TRL, the supply chain and
product application in its life cycle.

In this sense, the perspective of technical maturity is a widely studied topic; however,
the assessment of TM from the market perspective can still evolve by increasing the
theoretical robustness and, at the same time, developing a practical methodology. As
highlighted in the studies of [26,27], these analyses can be expanded and integrated into the
existing technical point of view. These perspectives, in addition to those already mentioned,
could include a broader panorama of market competitiveness, such as business scaling, cost
competitiveness and the risk of substitution by another emerging or evolving technology.
In this way, the TM associated with different sustainability impacts can be better evaluated.

For this broader context of competitiveness and market, Porter’s Five Forces frame-
work, represented in Figure 1, is considered one of the most influential models in business
schools; however, it only represents a conceptual study [28]. In this model, technology is
one of the factors that can change the strengths of the competitive arena and companies’
capabilities, therefore affecting their sustainability [23].
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Figure 1. Five forces that shape competition, the relationships between them and the central point of
rivalry between competitors. Adapted from [29].

In addition, the studies and methodologies described above do not include the stage
of technological obsolescence, which is normally explored in TLC studies. The TLC, also
called the S-curve, which is graphically presented in Figure 2, originated in a study related
to the strategic management of technology [30]. The TLC describes the technology phases;
namely, emerging, growth, maturity and saturation. According to GAO et al. [16], its
graphical construction is based on surveying published patents for a specific technology
and is expanded by data accumulated each year.
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Figure 2. S-curve in the technology life cycle (TLC) concept based on patents accumulated over time,
presenting the phases of technology maturity: emerging, growth, maturity and saturation. Adapted
from [16].

According to Yang et al. [31], patent analysis is a robust approach that has been widely
used to identify competing technologies or create strategies in a specific technological
field. Fye et al. [32] assessed more than 300 technology forecasts and concluded that
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quantitative methods produce more accurate predictions, especially when combined with
expert opinions. Other authors have sought to create more quantitative approaches by
identifying the inflection points of the referenced curve and then defining the current stage
of the technology [33,34].

Particularly in TLC studies, several gaps can be identified. When it comes to mathe-
matical modeling, one of the gaps is in the precise identification of the transition points
between the curve phases, as previous studies have identified these points only through
empirical methods, such as the approach taken by Andrade et al. [23]. In this sense,
Wilder et al. [33] showed evolution, but they only identified the central point of inflection.
Thus, since the S-curve is an example of a growth curve [35], one of the possible solutions
may emerge from the use of advanced damping and forecasting techniques based on
growth curves [36].

Table 2 summarizes the above-described methodologies related to TM, including
their respective descriptions, advantages and improvement points. From this table, a TS
evaluation and measurement model is proposed in the following section, which includes
technical variables, market competitiveness, life cycle and scheduling.

Table 2. Table of methodologies for technology maturity (TM) assessment.

Model Reference Description Improvement Points

TRL [11]
Evaluates technical readiness and
is standardized and recognized by
the industry.

Reduce subjectivity and expand the
scope of the analysis by going beyond
the technical aspect.

IRL [12] Evaluates the integration of
components in a system.

Broaden the scope of the analysis by
going beyond the technical aspect.

SRL [13] Combines component readiness
and integration.

Broaden the scope of the analysis by
going beyond the technical aspect.

MRL [24] Evaluates manufacturing. Include market dimension analysis.

SRL+ [25]
Evaluates the technical aspects in
a more global view. Covers the
concepts of TRL, IRL and MRL.

Include market dimension and
technology life cycle analyses.

CRL and SRL [27] Includes customer and societal
views of the product.

Assess market competitiveness and
technical aspects.

Ward et al., 2018 [24] Integrates technical analysis,
supply chain and life cycle.

Include analysis of manufacturing
and market competitiveness.

Darmani and Jullien, 2017 [26]
Evaluates the most external
aspects of the market, intellectual
property, consumers and society.

Assess the technical aspects and
obsolescence of technology.

TLC [30]
Evaluates the risk and stage in its
life cycle. Enables the analysis
and anticipation of trends.

Analyze the technical and
manufacturing perspectives applied
to the LCE study.

3. The Proposed Approach

For the construction of the TS evaluation model (the fourth dimension of LCE), this
study employed BNs, which are probabilistic models based on directed acyclic graphs [37].
Models that use BNs can make bidirectional inferences, capture the dependency between
variables and manage uncertainties [38]. The BN´s theoretical basis is that if the proba-
bility of the initial node (variable) and the conditional probability among all nodes are
determined, it is possible to quantify the distribution status of all nodes in the network [39].
A BN can be regarded as a compact representation of conjunction or joint probability
distributions of a set of random variables (X1, X2, . . . , Xn), as illustrated in Equation (1):

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi | Pa(Xi) (1)
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Due to the characteristics of the variables studied, which include qualitative and
quantitative data, as well as discrete and continuous variables, a hybrid BN was used that
makes it possible to combine these characteristics in the same model [40]. For that purpose,
the software GeNIe Academic Version 3.0.5703.0 was used [41], which has been applied by
the scientific community to different fields of knowledge, such as maintenance [42] and
environmental contexts [43].

Figure 3 presents the initial stage of model development and shows the conceptual
description of the model to measure TS from the variables described below. TS represents
the final variable or node to be measured in the model, as recommended by the theory of
BNs. Its measurement is based on the concept of the probability that a given product under
study is sustainable from a technological perspective.
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Therefore, a framework was established that encompasses the external perspective
of the market and its competitiveness, expressed by Porter’s Five Forces [29], and the
TLC. The company’s internal perspective is represented by the technology’s scaling-up
capacity, which can comprise financial and/or technological factors [44]. To compose the
external perspective, the variables in Porter’s Five Forces model were selected, together
with an additional variable that was also reported in the author’s work [29]. To complete
the external perspective, a continuous variable was considered that represents the stage
of the technology under evaluation in terms of its life cycle or TLC. On the other hand,
from the company’s internal perspective, the variables of technology readiness (TRL) and
manufacturing readiness (MRL) were employed. The latter combines the ability to structure
a business that brings together access to financial resources and labor variables [44].

Three types of variables are present in the BN model: (i) Boolean variables, which have
a binary response that represents two possible states, i.e., true and false; (ii) continuous
variables; and (iii) labeled variables, which can have a number of discrete states. Each
variable is described using a standardized template, as shown in Table 3. Each table includes
the name of the variable, a node probability table (NPT) and the variable’s description,
using the study by Hosseini and Barker as a reference [45].
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Table 3. Standardized table for the description of a model variable, adapted from [45].

Variable

NPT: Node probability tables that can be represented by estimated tables
or formulas.

Description: Reference text to detail the variable, its meaning and reference,
if necessary.

The directed acyclic graph represented in Figure 4 details the model built in GeNIe
software [41] and demonstrates the relationships between the TS variable and its a priori
variables: supply-chain risk, market competition and the upscaling of technology. The
supply-chain-risk variable is influenced by the bargaining of suppliers, the barriers to entry
and the bargaining of buyers. The market-competition variable is influenced by substitute
products and rivalry among competitors. It is worth mentioning that the supply-chain-risk
and market-competition variables consolidate Porter’s Five Forces.
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The technology-scale-up variable is influenced by integrated readiness and structuring
capability. To exemplify the last layer of variables, the “bargaining of supplier” variable is
influenced a priori by the access and the number of supplier variables. The other variables
of the last layer follow the same logic of a priori influence; however, they are not detailed to
avoid overextending the scope. Thus, the proposed model reflects the concept of a hybrid
BN, as it can be regarded as a compact representation of a set of random variables and their
respective probabilities.

Table 4 details the probabilistic criteria and the respective descriptions of each TS
variable node, together with the variables that directly influence it: supply-chain risks,
market competition and upscaling of the technology.

Table 4. Details of the TS dimension variables.

Technology
Sustainability

Upscaling Yes No

Supply chain risks Yes No Yes No

Market competition Yes No Yes No Yes No Yes No

Yes 25% 60% 65% 95% 1% 10% 20% 40%
No 75% 40% 35% 5% 99% 90% 80% 60%

Description: Boolean variable that represents the TS and is affected a priori by the variable of upscaling
of technology, and by the variables that consolidate Porter’s Five Forces (supply-chain risks and

market competition).

Supply Chain Risks

Bargaining of supplier Yes No

Barriers to entry Yes No Yes No

Bargaining of buyers Yes No Yes No Yes No Yes No

Yes 95% 80% 85% 60% 60% 40% 30% 5%
No 5% 20% 15% 40% 40% 60% 70% 95%

Description: Boolean variable that represents the part related to the supply chain of Porter’s Five Forces
and is affected a priori by the variables of bargaining of suppliers, barriers to entry, and bargaining

of buyers.

Market Competition

Substitute products Yes No

Rivalry among
competitors Yes No Yes No

Yes 95% 30% 70% 5%
No 5% 70% 30% 95%

Description: Boolean variable that is affected by the variables of substitute products and rivalry among
competitors also referring to Porter’s Five Forces.

Upscaling of
the Technology

Integrated readiness 1–3 4–6 7–8 9

Structuring capability Yes No Yes No Yes No Yes No
Yes 10% 1% 40% 21% 70% 41% 95% 55%
No 90% 99% 60% 79% 30% 59% 5% 45%

Description: Boolean variable affected by the variables of integrated readiness and structuring capability.

Table 5 presents the a priori variables of the upscaling of technology: structuring
capability, access to financing, access to labor, integrated readiness, MRL and TRL.

Table 6 describes the following variables: bargaining of suppliers, barriers to entry,
bargaining of buyers, substitute products and rivalry among competitors. The values of the
variables according to Hosseini and Baker’s methodology were estimated for illustrative
purposes [45]. It is worth mentioning that the following variables should be estimated
by specialists: access of suppliers, few suppliers, capital requirement, government policy,
few buyers, access of buyers, easy-to-imitate product, technologies being developed and
competitive advantage of competition [46,47].
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Table 5. Variables that affect the upscaling of technology.

Structuring Capability

Access to financing Yes No

Access to labor Yes No Yes No
Yes 90% 60% 40% 10%
No 10% 40% 60% 90%

Description: Boolean variable affected by the variables of access to financing and access to labor.

Access to Financing

NPT: Yes, No.

Description: Boolean variable to be estimated during the application of the model, using the expert
opinion [46,47].

Access to Labor

NPT: Yes, No.

Description: Boolean variable to be estimated during the application of the model, using the expert
opinion [46,47].

Integrated Readiness

NPT: Readiness_Level = Truncate (((MRL + 1) * (TRL + 1)) ˆ (1/2)).

Description: Function-type variable that is affected a priori by the MRL and TRL variables. The
Truncate () function was used to ensure that the number was an integer.

MRL

NPT: Distributed and estimated among the categories of the variable, i.e., from MRL 1 to MRL 9 [25].

Description: Discrete variable to be estimated during the application of the model, using the expert
opinion [46,47].

TRL

NPT: Distributed and estimated among the categories of the variable, i.e., from TRL 1 to TRL 9 [11].

Description: Discrete variable to be estimated during the application of the model, using the expert
opinion [46,47].

In this work, the questions listed in Table 7 were used to evaluate the variables enumer-
ated in Table 6. These questions also include the following variables: structuring capability,
access to financing, access to labor, MRL and TRL. For Questions 1–11, the following
response options were established: no; likely not; likely yes; yes. After the variables were
transformed into Boolean variables, Equations (2) (No) and (3) (Yes) were applied:

Probability (No) = No + 80% ∗ Likey not + 20% ∗ Likely yes (2)

Probability (Yes) = 1− Probability (No) (3)

For Questions 12 and 13, the traditional TRL and MRL scale was used, which starts at
1 and ends at 9, as can also be seen in Table 7.

For the discrete S-curve variable, which is segmented into emerging, growth, maturity
and saturation stages, mathematical modeling was used to fill the gaps presented in the
literature: identification of transition points between the steps in the curve [33,48], and
use of advanced smoothing and forecasting techniques such as those used for growth
curves [33]. Therefore, each technology’s patents accumulated each year were selected and
applied to the S-curve model [16].

The data-collection step was carried out by accessing a global patent database, specifi-
cally, the Global Patent Data Collection [49]. The list of patents per year was collected using
keywords from the different technologies that were evaluated. These keywords represented
the various ways in which the technologies of interest can be identified in documents. It is
important to note that patent databases in most countries have an access-restriction period
of 18 months that precedes the full publication of a patent [50].
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Table 6. Variables of Porter’s Five Forces.

Bargaining of suppliers

Access of suppliers Yes No

Few suppliers Yes No Yes No
Yes 10% 60% 70% 90%
No 90% 40% 30% 10%

Description: Boolean variable affected by the variables of access of suppliers and few suppliers.

Barriers of entry

Government policy Yes No

Capital requirements Yes No Yes No
Yes 90% 60% 70% 20%
No 10% 40% 30% 80%

Description: Boolean variable affected by the variables of government policy and
capital requirements.

Bargaining of Buyers

Access to buyers Yes No

Few buyers Yes No Yes No
Yes 60% 5% 95% 85%
No 40% 95% 5% 15%

Description: Boolean variable affected by the variables of access to buyers and few buyers.

Substitute Product

Easy-to-imitate product Yes No

Technologies being developed Yes No Yes No
Yes 95% 60% 50% 5%
No 5% 40% 50% 95%

Description: Boolean variable affected by the variables of easy-to-imitate product and
technologies being developed.

Rivalry among Competitors

Market saturation Yes No

Competitive advantage of competition Yes No Yes No
Yes 95% 70% 80% 10%
No 5% 30% 20% 90%

Description: Boolean variable affected by the variables of market saturation and competitive
advantage of competition.

Market Saturation

S Curve Emerging Growth Maturity Saturation
Yes 10% 30% 60% 90%
No 90% 70% 40% 10%

Description: Discrete variable affected by the S-curve variable.

Table 7. List of questions used to obtain the expert opinion.

Question. Options

1. Structuring capability—Does the sector or company have access to
financing (own or third party)?

no

likely not

likely yes

yes

2. Structuring capability—Does the sector or company have access to labor?
3. Do the competitors have a competitive advantage?
4. Are there technologies that are being developed and can replace the
product under evaluation?
5. Is it easy to imitate or reproduce the product under evaluation?
6. Does the company have access to customers?
7. Does the market have few customers?
8. Do regulations or standards hinder market access?
9. Does it take a lot of capital to enter the market?
10. Does the market have few suppliers?
11. Is it easy to access the suppliers?

11. What is the TRL of the product being evaluated?
1 to 912. What is the MRL of the product being evaluated?
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Regarding the analysis and evaluation of the TLC, the following steps were con-
ducted [51–53]: data collection, model development and comparison between models.
For this purpose, a statistical analysis algorithm was developed in the R Studio environ-
ment [54] to import the database, create graphs and perform the analysis. Table 8 shows the
methods used in this study in the growthcurves 0.8.1 package [55], which includes models
of nonlinear growth curves with varying values of written parameters as an analytical
solution to the differential equation. According to Kaufmann [56], growth curves are
empirical techniques used to predict the evolution of quantities over time, and have been
applied in the most diverse scientific areas. The choice of growth curves also stems from
the fact that the S-curve concept originates from the logistic growth curve [16,35].

Table 8. Growth-curve models used in the study.

Typo Model Description

Growth Curves

Logistic
Classic three-parameter growth-curve
model [57] used to study and predict

future changes [58].

Gompertz

Originally used to estimate human
mortality, and has three parameters. It

can be written in different ways,
including four possible parameters

(CONSERVATION, 2006).

Richards
A generalization of the logistical curve

whose inflection point is no longer
symmetrical. It has four parameters [59].

Exponential Classic two-parameter growth curve [59].

R Studio was chosen because it is an open and free platform, with a large number
of packages that include the most diverse statistical tools, from the simplest to the most
complex ones that use machine learning [52]. In the growthcurves 0.8.1 package, which
was the reference for this study, the main functions used were fit_growthmodel() for the
smoothing and prediction of each type of growth curve, and rsquared() and residuals()
for calculating statistical indicators. Finally, coef() and summary() were used to obtain the
formula parameters for each function that was necessary in the next step.

To identify the inflection points of the curve, the derivatives were used by applying
mathematical methods. The second derivative is used to define the central inflection or the
change in the concavity of the curve. When the value of the second derivative is equal to
zero, an inflection in concavity appears at that point [60]:

• Let f be a function derived up to the second order in the interval I, and suppose that
x0 ∈ I, f ′′ (x0) 6= 0. In this case, if f ′′ (x0) > 0, then the graph of f has a positive
concavity in xo, and if f ′′ (x0) < 0, then it has a negative concavity in x0; and

• Let f be a function derived up to the second order in the interval I, and suppose that
x0 ∈ I is the abscissa of an inflection point in the graph of f. Therefore, f ′′ (x0) = 0.

For the other inflection points, the third derivative was used, which is also applied in
physics and is known as jerk. This concept represents the rate of change of the slope. When
it is zero, the second derivative is constant and the rate of change of the slope is fixed [61].
In this way, three inflection points were obtained, dividing the S-curve into four phases,
as expected.

The comparison between models was carried out according to the following steps [16]:
selection of the model for the best smoothing of growth curves; verification that the
models are statistically robust by using measures of accuracy and quality of information
based on the principle of parsimony. For this purpose, the following parameters were
used: root mean square error (RMSE), the Akaike information criterion (AIC) and the
determination coefficient [33,62]. The AIC is an important criterion, as it considers the
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number of parameters of the models according to the concept of parsimony [63]. According
to the methodology above, the following steps were implemented: (i) development of the
best formula using the parameters found in R Studio; (ii) determination of the inflection
points of the curves with the use of second- and third-order derivatives, as explained above;
(iii) definition of the four phases of the S-curve; (iv) discretization of the S-curve variable;
and (v) definition of the market-saturation variable described in Table 6.

4. Case Study: Polymeric Concrete

The last step of the methodology is the application of the proposed model. In this case,
it was applied to a research and innovation project that had its data available to carry out
the predicted simulations and comparisons. In this way, it was possible to simulate the
decision-making process to select the most appropriate one among several options within
the context of sustainable product development.

For this purpose, the Polymeric Concrete project was selected, which aimed to present
an informational study and develop a polymeric-concrete formulation. Figure 5 presents
the reference model produced with cast iron (CI) as the raw material and the proposed
model using polymeric concrete (PC) instead. In this step, a comparison was made between
the current model used in the market with CI and the one proposed with PC.
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Finally, once the model was developed in GeNIe software, it was necessary to follow
the steps expressed in Figure 6, which establish the actions needed for the application of
the model and the analysis of its use. The first step is estimation of the qualitative variables.
The second step is identification of the stage of maturity to which each technology belongs.
Then, in step 3, all variables that have been calculated are entered into the model, and
the sample size is set. In step 4, simulations are carried out, and finally, the results of the
simulations are analyzed in step 5.
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Results and Discussion

Step 1. Estimate Qualitative Variables

In order to estimate the qualitative variables of the model, researchers from the project
and representatives from the company were selected to answer the questions previously
described in Table 7 to create the respective probabilistic tables. In order to guarantee
confidentiality, the answers were anonymous. Table 9 presents the results of the survey
conducted with experts.

Table 9. TRL and MRL estimates.

Technological Level
Cast Iron Polymeric Concrete

TRL MRL TRL MRL

1 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 16.67%
4 0.0% 0.0% 33.33% 33.33%
5 0.0% 0.0% 16.67% 33.33%
6 0.0% 0.0% 16.67% 0.00%
7 0.0% 0.0% 16.67% 0.00%
8 16.7% 16.7% 16.66% 16.67%
9 83.3% 83.3% 0.00% 0.00%

On the other hand, in Table 10, the a priori variables of TS are shown for the four op-
tions of the research form: No, Likely not, Likely yes and Yes, following Equations (2) and (3)
previously described.

Table 10. A priori variables of TS.

Variable
Cast Iron Polymeric Concrete

NO YES NO YES

Access to Financing 16.67% 83.33% 6.67% 93.33%
Access to Labor 16.67% 83.33% 6.67% 93.33%

Competitive advantage of the competition 26.67% 73.33% 26.67% 73.33%
Technologies being developed 3.33% 96.67% 33.33% 66.67%

Product is easy to imitate 6.67% 93.33% 43.34% 56.66%
Access to Customers 3.33% 96.67% 6.67% 93.33%

Few Customers 70.00% 30.00% 70.00% 30.00%

Regulation 66.66% 33.34% 66.66% 33.34%
Capital Requirement 16.67% 83.33% 60.00% 40.00%

Many Suppliers 16.67% 83.33% 23.34% 76.66%
Access to Suppliers 10.00% 90.00% 16.67% 83.33%
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Step 2. Identify the stage in the TLC

For the S-curve variable, the steps chosen for TLC analysis and evaluation were
based on consolidated references from statistical studies [51–53]: data collection, model
development and comparison between models, with the use of smoothing methods using
growth curves, since these are related to the theoretical basis of S-curves [16,64]. For the
data-collection stage, global patent data were obtained, accessed on 17 October 2020 [49],
through the use of keywords related to the two aforementioned technologies. The following
combinations were used:

• Cast Iron: (AY >= (1900) AND AY <= (2020)) AND (AB = (grey adj cast adj iron) AND
AB = ((sewer adj grate) or (drain adj cover) or manhole or (shaft adj cover*) or cover));

• Polymeric Concrete: (AY >= (1900) AND AY <= (2020)) AND AB = ("polymer resin"
or “polymer” or epoxy or polyester) AND AB = (concrete) AND AB = ((sewer adj
grate) or (drain adj cover) or manhole or (shaft adj cover*) or cover).

From the collected data, the model development stage was initiated using an algorithm
developed in the R Studio environment [54]. With the obtained data, information from 194
patents regarding cast iron and 2455 patents related to polymeric concrete was imported.
As can be seen in Table 11, for both CI and PC, the logistical curve produces the best results
for all indicators.

Table 11. Metrics for model selection.

Model
(A) Cast Iron (B) Polymeric Concrete

R2 RMSE AIC R2 RMSE AIC

Logistic 0.9958 3.38 179.5 0.9969 39.2 336.3
Exponential 0.9956 3.50 179.3 0.9918 64.4 362.9

Richards 0.9955 3.52 183.5 0.9952 48.7 350.8
Gompertz 0.9935 4.42 193.6 0.9886 77.7 375.6

Then, the curves and their respective inflection points were established using
Equations (4) (cast iron) and (5) (polymeric concrete), which were obtained from the
developed algorithm using the parameters of the logistic curve:

Patent (t) =
1316.8(

1.018 + 1292.1 ∗ e(−0.089∗t)) (4)

Patent (t) =
20, 176.0(

4.32 + 4667.3 ∗ e(−0.1081∗t)) (5)

where (t) is time.
Following the concepts explained in Section 3, the second and third derivatives were

calculated for each function. Thus, the roots were obtained to determine the inflection
points, and the four phases of the S-curve were identified. Subsequently, the graphs in
Figure 7 were generated.

The positions of the curves using real data suggest that the PC is in a transition
between the phases of growth and maturity (Figure 7b). According to GAO et al. [16],
when a technology is in the maturity phase, it tends to become a key technology; it is
integrated into products or processes and maintains a highly competitive impact. Therefore,
polymeric concrete is approaching an important opportunity to become a key technology
in the coming years.

In contrast, CI was expected to be in the maturity or saturation stages since, according
to Takata [65], it has been replaced by other materials, such as steel and plastic, in addition
to presenting a clear decline in the number of companies that use it. On the other hand,
the position on the curve between emerging and growth may indicate a reaction by the CI
market as it aims to regain its space by introducing new products and processes, explaining
the significant increase in the number of patents published in recent years. This view is
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also corroborated by the concept of these phases in the S-curve established by [30]: a new
technology with low competitive impact and low integration into products or processes.
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In this direction, research has been carried out with an aim to promote the optimization
of the casting process. Rathore [66] implemented a systematic procedure to analyze defects
and then reduce them by optimizing the process parameters. Three parameters were
selected to investigate their effects on the final quality: pouring temperature, pouring time
and gating system. Advances related to numerical simulations for adequate design for
manufacturing, focusing on reproducible quality and cost reduction, were also discussed
in the work of [67].

From the perspective of the component, the design optimization of casted products,
such as manholes, is also a research focus, as investigated in the work of [68]. This work
proposed the optimization of the number of vertical reinforcements by using numerical
linear static simulations. Similarly, the authors of [69] proposed an eco-design of the
manhole shape through a structural analysis, along with subsequent validation using
physical tests and an environmental impact analysis. The results showed the possibility of
achieving an approximately 20% mass reduction for one casting, from a weight of 22.60 kg
to 18.05 kg.

Based on the data analysis and information from the literature described above, the
values in Table 12 were estimated for the model. It is important to point out that the
mathematical S-curve model indicates that CI should be between the emerging and growth
phases, whereas the literature indicates that it should be in decline. The mathematical
and literature predictions for PC are similar. Therefore, an estimate was developed that
examined these two outcomes for CI, since the mathematical analysis cannot be dissociated
from the opinion of experts [16].

Table 12. Estimate of the S-curve variable.

Emerging Growth Maturity Saturation

Cast Iron 15% 35% 15% 35%
Polymeric Concrete 5% 30% 60% 5%

Step 3. Enter Values in the Model and Define Sample Size

In this step, two files were created based on the model in GeNIe. The first was for
PC and the second was for CI. For each simulated scenario or inference, a text file was
generated with 100,000 samples each, generating 8 files with a total of 800,000 samples.
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The selection of the sample quantity for each simulation was based on an initial simulation
to verify the convergence of data, following the law of large numbers [70]. The analysis
in Table 13, which used the case study data, shows that as more samples were taken for
the same simulation, the results converged. Therefore, a sampling profile of 100,000 was
selected for each simulation, as this value generates an absolute error below 0.2% in relation
to a sample size of 1 million, as shown in Table 13.

Table 13. Simulation to define the number of samples.

Number of Samples Technology Sustainability Absolute Error

1 0.0% -
10 50% 50%
100 28% 22%
1000 33.9% 5.9%
10,000 35.0% 1.1%
100,000 34.8% 0.2%
1,000,000 34.9% 0.1%

Step 4. Perform Simulations

With the data described in the previous steps, four different scenarios were established
to perform the simulations:

• Base scenario 1: Study of the data originally researched and calculated.
• Inference scenario 2: What if the TRL of PC were equal to 9?
• Inference scenario 3: What if the TRL and MRL of PC were equal to 9?
• Inference scenario 4: What if it were possible to develop new formulations for CI that

would make imitations more difficult?

It should be noted here that the inferences made were established from the analysis of
the original data visualized in the model. This is an important aspect that creates flexibility,
since it allows for the analysis of other inferences that may arise if the model is used in
other projects.

Step 5. Analyze the Results

In this step, simulations carried out from the estimates of the variables previously
presented were analyzed, followed by the entry of data into the model to evaluate the
options for CI and PC. Based on the characteristics of BN probabilistic models [37], a
situation of decision-making under uncertainty was replicated [38] to assist in the selection
of options in the PDP. Below, each of the scenarios and inferences are presented by defining
their characteristics, displaying the respective graphs and tables and describing the analyses
and possible decisions.

• Base scenario 1: Study of researched and originally calculated data.

In this base scenario, the obtained results reveal that the probability of TS reaches
50% for CI and 36% for PC. As can be seen in Figure 8, PC presents a critical point when
compared with CI due to the low TRL and MRL. This situation is natural, since PC is
under development as a product. On the other hand, from the perspective of those who are
making the decision of whether to continue the project, it is possible that the performance
of PC can improve by increasing the maturity of the technology. Additionally, it appears
that the results for both supply-chain risk and the high level of competition are better for
PC than those for CI. This fact is very important, as it is possible to choose to continue
product development while clearly directing the focus of the efforts to follow. Table 14
summarizes the variables that most influence TS.
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Table 14. Values of the variables that most significantly affect TS for PC and CI.

Variable Polymeric Concrete Cast Iron

TRL 4–6 9
MRL 4–5 9

Technology Maturity 35% 49%

Another approach that can be taken from the analysis above is to create a hypothesis
regarding what would happen if the TRL and MRL of PC were equal to 9. This new
simulation or inference is an important option when using the model, as it allows for the
rationalization of cause and effect from the propagation of this change. The intention
is to verify the behavior of the two options in a possible combination of scenarios since
uncertainty is present in these contexts. Additionally, this combination can provide greater
clarity in these moments of decision under uncertainty.

• Inference scenario 2: What if the TRL of PC were equal to 9?

In the study of this inference, it is observed that despite improving the TS level of PC
from 36% to 44%, it is not sufficient to achieve the same result as CI, which is 50% (Table 15).
Furthermore, the level of integrated readiness is not sufficient to transform the PC solution
into a product ready for the market, as the MRL is still low. Thus, the next inference was
made by simulating the scenario in which both the TRL and MRL reach a level of 9.
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Table 15. Analysis results for a TRL of 9 for CP.

Variable Polymeric Concrete Cast Iron

TRL 9 9
MRL 4–5 9
Technology Maturity 44% 50%

• Inference scenario 3: What if the TRL and MRL of PC were equal to 9?

Given the observation of the previous inference, the propagation of changing the TRL
and MRL values to 9 was investigated. After the changes, and comparing the results with
those of the base scenario, it is observed that the TS dimension increases the probability of
being “Yes” from 36% to 55%. In this case, PC appears to be better than CI, the result for
which is 50%, as can be seen in Table 16. Hence, a reasonable decision may be to continue
investing in the PC project, provided that a strategy is established to overcome the existing
barriers to entry. It is also noteworthy that the supply-chain risk, high level of competition
and upscaling of technology for PC are improved in this scenario.

Table 16. Analysis results for a TRL of 9 and MRL of 9 for PC.

Variable Polymeric Concrete Cast Iron

TRL 9 9
MRL 9 9

Few Customers 31% 31%
Technology Maturity 55% 50%

Other possible applications for the model include its use as a source of ideas for
identifying other weaknesses and defining strategies. Another weakness of PC is related to
the current market having few customers, since the probability of this variable being “Yes”
is 31%. In order to address this issue, one could examine the feasibility of diversifying
customers and, for example, develop a sales strategy for construction companies and
condominiums. From there, it is possible to justify proceeding with the project and, at the
same time, develop a strategy to access new customers and establish market diversification.

• Inference scenario 4: What if it were possible to develop new formulations for CI that
would make imitations more difficult?

This inference is also important, as it is a mechanism of forming assumptions about
the competitor or studying other options in more depth. In this case, it should be noted
that the CI product is already consolidated in the market. Table 17 compares CI in this
inference with PC that has a TRL and MRL of 9. In this new inference, PC maintains an
advantage over CI, with values of 55% and 53%, respectively.

Table 17. Analysis results considering the feasibility of developing new formulations for CI that
would make imitations difficult.

Variable Polymeric Concrete Cast Iron

TRL 9 9
MRL 9 9

Technologies being Developed 67% 96%
Technology Maturity 55% 53%

As the values are close, other variables in the model could be used for decision-making,
such as access to labor, access to financing and market saturation. Table 18 shows the results
of these variables obtained from the simulations for the two options. It is observed that
for all variables, PC has a better result than CI. This fact may indicate that with a robust
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business plan and high TRL and MRL values, PC may be more likely to be sustainable
than CI.

Table 18. Comparison between CI and PC.

Polymeric Concrete Cast Iron

Access to Labor 93% 83%
Access to Financing 93% 83%
Market saturation 50% 53%

Therefore, from the simulations, inferences and analyses carried out, a reasonable
decision, provided that it is supported by the final opinions of experts and technicians,
may be that it is feasible to continue the PDP of PC. As a condition, it can be stipulated that
the TRL and MRL must be enhanced, in addition to establishing customer diversification
strategies and a robust business plan that can run in parallel to the PDP of PC. Consequently,
the role of such proposed model is to support the decision-making process as the additional
fourth dimension in the LCE analysis.

5. Conclusions

The study of sustainability has gradually gained a more holistic and in-depth view.
This work followed a methodology that included literature review, development of a model
with qualitative and quantitative data and application in a case study. The development
of the TS evaluation model makes it possible to overcome important gaps highlighted
by Peças et al. [2] in a taxonomy. Thus, is possible to achieve a more complete view by
incorporating TS as the fourth dimension into the existing environmental (LCA), cost (LCC)
and social (SLC) dimensions in current LCE models. The TS dimension has begun to
encompass the technical, market and scale-up perspectives [71], and the maturity phases in
the S-curve have been mathematically identified [64]. This model brings a novel approach
that encompasses all perspectives in the TS analysis, which was not covered in the literature
as described in Table 2. The present study aimed to develop a methodology for measuring
TS, and the results showed the following:

• The use of a hybrid BN makes it possible to encompass quantitative and qualitative
variables through the opinion of experts within the context of decision-making in a
PDP. Other relevant characteristics of the model are linked to the incorporation of
uncertainty related to the use of probabilistic theory. The application of the model in a
real project demonstrates its capacity for practical use in both business and academic
contexts. Simulations and inferences using the model emphasize its supportive role in
the decision-making process.

• The results of the investigated case study suggest that PC is a potential technology
for the production of manhole covers. If efforts are directed toward expanding the
maturity of this technology, combined with a strategy to access new customers, the
product may perform better than CI, assuming that the other variables remain constant.
Even in the scenario involving the emergence of new formulations for CI, PC maintains
an advantage over CI.

Therefore, the established model can serve as an analytical tool to facilitate decision
making; it is supported by a BN theoretical basis, which makes it possible to effectively
deal with uncertainty, with the integration and interdependence of variables and with
the combination of quantitative and qualitative data, in addition to making it possible
to generate model inferences. All of these aspects can be supported by the analysis and
opinions of experts in the context of PDPs, and can be used by companies, researchers
and product developers. It is important to highlight that the model can be applied in
various circumstances, such as the development of strategies for more sustainable products,
selection of more sustainable options and evaluation of competing products. The model
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can also be adapted, depending on the ease of the software that uses BNs, to allow for the
inclusion or modification of variables according to the context of the studies.

However, some limitations need to be discussed. First, the probabilistic tables of
nodes had to be estimated since there was no preliminary information. This item can
be incorporated into qualitative research as a development stage of the model. Another
limitation is related to the application of the model in a single project. Particularly in relation
to the research carried out with specialists to assess qualitative variables of technology
maturity, a large dispersion of results was observed in variables such as TRL and MRL.
Therefore, it is necessary to incorporate criteria that define the profile and experience
of the specialists who will evaluate these variables to ensure better consistency between
evaluations. For future studies, it is suggested to include other dimensions of sustainability,
such as social, cost and environmental factors, in PDPs.
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