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1 Introduction

The main objective of this manuscript is to establish self-contained technical
manual on how to merge supplementary value chain information in a network
in order to establish a holistic ranking standard in a coherent and organic man-
ner. We propose a process of amalgamation of information matrices that is
based on the Lie-Trotter product formula (see e.g. the original paper of Trotter
[1] or [2] for more general cases) and analyze how this method adds value to
the quality existing ranking framework. In order to focus on the ideas, this
manuscript is mainly based on the original Economic Complexity Index (ECI)
which was developed by C. Hidalgo and R. Hausmann in 2009 (see [3] and [4])
to measure the accumulated productive know-how of a country and to deduce
from it its future growth prospects. It is based on the assumption that the
availability of capabilities in a country can be inferred from export data taking
into account the country’s diversification and ubiquity of its exported products
in a global network. Compared to models in neoclassical economics (see e.g.
[5] for Heckscher–Ohlin model) the ECI represents a step forward adding addi-
tional insight about the sustainability of countries. Since then there have been
multiple variations of methodological suggestions with similar predictive power
(see e.g. [6] and [7]).

We assume that first step for improvement of ECI is to understand mechanic
of the ECI from different perspectives and embed the ECI framework in its
stochastic counterpart which allows interpretations in statistical, probabilistic
as well as in information-theoretical terms. As one of the results, we present
a relationship between Shannon Entropy and the ECI. The second step is to
investigate to what extent the ECI can be viewed as a coherent sustainability
driver and what the alternatives are. These preparations will enable us to detect
the relevancy of the ECI as a coherent driver of economic sustainability and how
we can integrate additional value chain information in a coherent and tractable
manner.

It is also worth mentioning that the suggested amalgamation process of
global import data with export data allows the incorporation of internal eco-
nomic complexity (see [8], [9], [10] and [11] internal complexity) into the ECI
framework in a comparable way.

Althoug we used the original ECI as guidance, we expect that our main
objective can be explored further and applied to other ranking methods for sim-
ilar purposes (compare subsection 3.4). However, rigorous treatment of possible
generalizations is out of scope of the present manuscript.
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2 How this manuscript is organized

In order to ensure the tractability, in section 3, we first recover the method of
reflection introduced in [3] and thereafter embed it in a modular scheme. We
translate the bipartite graph representing the exported products of countries
into a weighted graph inducing a Markov Chain on a Network of countries and
products respectively which are special Random Walks on a Graph. In this
section, we demonstrate how to switch from one playground to the other in a
coherent general way. The subsection 3.4 is devoted to prototypes of weight ma-
trices and their associated Random Walks on a Graph driven by the prototype
behaviors of market players in an organically evolving market (see e.g. [12],
[13] and [14] for further readings). But, in this subsection we also discuss how
the information matrices should be prepared, what the assumptions are behind
them, and performance equivalent versions of import information as supplemen-
tary value chain information.

In section 4, the stochastic counterpart of the method of reflection is intro-
duced, where we treat the stochastic interpretation of the ECI and PCI, and
give an elementary proof of the lemma allowing statistical interpretation under
mild assumptions for a general random variable X (which we call pay-off func-
tion) on the state space of the Random Walk on a Graph (see lemma 4.1). The
idea of the lemma 4.1 was already discussed for a certain case, with a rough
formulation of the conditions (e.g. see equation 11 and the related discussions
in [15]). The lemma 4.1 as well as a lemma in probabilistic terms (see lemma
4.2) deliver already appealing interpretations of e2 and hence ECI under mild
assumptions. In our proofs, we used “ergodicity”, and “positivity” of eigen-
values of a Random Walk on a Graph generated by intersection matrices [see
e.g. [16]], which is equivalent to the Method of Reflection for even time indices
(compare the section 3.3). These crucial properties are treated rigorously in the
Appendix. Especially, the positivity of the second eigenvalue plays an important
role, which is according to our literature research in this context not mentioned
explicitly. Finally, we demonstrate the sharp dominance of the Shannon En-
tropy of transition probabilities by e2 (given their initial know-how states, see
lemma 4.3), where the lemma 4.1 plays an important role.

Sustainability in a is sense a “more difficult risk management”. In risk man-
agement, it took decades to pay attention to coherency of a risk measure which
is now a well understood and crucial approach. In [17] the authors have formu-
lated the so-called “axioms of coherence for acceptance sets or for risk measures”
which are natural conditions from an economic point of view. The regulatory
capital required for insurance companies is now based on the coherent risk mea-
sure within the Swiss Solvency Test (SST). Inspired by this discipline, we also
drew our attention to the coherency issue from a sustainability point of view,
which is an important eligibility criterion, closely related to the predictive power
of a ranking instrument. In section 5, we formulate some coherency conditions
of complexity as a systematic driver of sustainability rating. In subsection 5.2
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we discuss the coherence of e2 as well as an alternative (diagonal of weighting
matrix S) by looking at prototype examples in standalone cases. Finally, we
also show that under monotony condition e2 behaves well (see lemma 5.1). The
coherency of e2 and diagonal of weighting matrix S with respect to the amal-
gamated version is discussed in the last subsection of section 5.

In section 6, we discuss some obvious approaches for merging of supplemen-
tary information and present our main result, which we call amalgamation on
a pre-S-level or shortly amalgamation. We believe that if an organic evolution
of an issue is in place, the amalgamation of supplementary information is an al-
ternative that can improve the quality of a ranking system in general. However,
in the present paper, our special focus will be on the amalgamation of import
information with export information.
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3 Modular Scheme of the Method of Reflection

Our main goal goal in this section is to introduce an engineering mindset based
on an alternative information matrix, that can be used for generating alternative
weight matrices allowing evolutionary interpretation.

The purpose of the next two subsection are to recover the original idea in the
matrix language and explore the different possibilities of information matrices.

3.1 Information Matrix (or Fundamental Matrix)

The Method of Reflection in the original ECI is based on the information matrix
covering all the information of a bipartite graph.

Given a bipartite graph (A,B,E) consisting of disjoint sets of numerated
vertexes A = {1, 2, ...m}, B = {1, 2, ...n} and edges E connecting the elements
of A with the elements of B, we can define a matrix (M(i, j))i∈A,j∈B which
captures all the information of the graph (A,B,E), by putting:

M(i, j) =

{
1 if i ∈ A and j ∈ B is connected by an edge in E
0 otherwise

(1)

In this manuscript, the matrix M will be called zero one information matrix
(or fundamental matrix.)

The more general information matrices with positive real numbers will be
denoted later by Y.

3.2 Recalling the Method of Reflection

Hidalgo et al introduced the Method of Reflection from which a transition prob-
ability matrix, governing the dynamic of network is constructed (see e.g. [2] and
[3]).

Given the countries C and the exported products of the countries P we can
directly write the information matrix as follows:

M(i, j) =

{
1 if i ∈ C exports the product j ∈ P
0 otherwise

(2)

By using the the above information matrix M we define a recursive process
starting from t = 0

ki,0 = number of products exported by the country i, (3)

Kj,0 = number of countries exporting the product j (4)

ki,0 and Ki,0 are called diversity of the country c and ubiquity of product j
respectively.

For t > 0 we put:
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ki,t =
1

ki,0

∑
j

M(i, j)Kj,t−1 (5)

Kj,t =
1

Ki,0

∑
i

M(i, j)ki,t−1 (6)

Each even time index 2t represents a ”complete” step in the above recursion
process mixing the diversity and ubiquity. If we use recursive step 6 for Kj,t−1
and plug into 5 we obtain:

k·,2t = DC ∗M ∗DP ∗M tr ∗ k·,2(t−1). (7)

Similarly we obtain

K·,2t = DP ∗M tr ∗DC ∗M ∗K·,2(t−1). (8)

Here DC and DP are diagonal matrices with:

DC(i, i) =
1

ki,0
(9)

and

DP (j, j) =
1

Kj,0
. (10)

We define transition probability matrices of countries rsp. products as fol-
lows:

PC = DC ∗M ∗DP ∗M tr (11)

PP = DP ∗M tr ∗DC ∗M (12)

With a simple time transformation k̂·,t = k·,2t and K̂·,t = K·,2t the above
recursions 7 and 8, can be written in equivalent form as follows:

k̂·,t = PC ∗ k̂·,t−1 (13)

K̂·,t = PP ∗ K̂·,t−1. (14)

In what follows we will omit the hats on k̂·,t and K̂·,t in on order to avoid
notational overflow and use k·,t and K·,t keeping the time transformation in
mind.

We would like to interpret PC(i, ĩ).
Let µi be the uniform probability measure on set of products exported by i

so that µi(j) = 1
ki,0

for all products j exported by i and 1i(j) = 1 if product j

is exported by i and zero otherwise.
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We can write

PC(i, ĩ) = Eµi
(1i1ĩ

1

K
) (15)

Where K is a function of products and is defined by K(j) = Kj,0 which is the
number of countries exporting the product j. 1

K(j) indicates the concentration of

the product j with respect to countries takes values between zero and one. Since
high value of 1

K(j) indicates low number of competitors, we can expect that the

higher the value of 1
K(j) the higher is its ”length” of its value chain (or better;

aggregated steps from origin to the end). Hence PC(i, ĩ) can be interpreted
as: ”expected length” of a value chain of common products exported by i and
ĩ, given the products of i. In some sense PC(i, ĩ) can also be interpreted as
”common knowledge” shared by ĩ and i, from the point of view of i.

Finally we would like note that if we work with zero one information matrix
as described above, each country i, PC(i, i) dominates the other elements in the
same row:

PC(i, i) ≥ PC(i, ĩ), ∀ĩ, (16)

This inequality already indicates that we are dealing with special transition
probability matrices.

In the next subsection, we would like to introduce a flexible and helpful
scheme which allows us to model the complexity in more general and modular
way.

3.3 Modular Scheme of Modeling Process

In this subsection, we would like introduce a scheme which allows to obtain
other possibilities of weighting a graph.

In terms of Graph Theory we can switch from our bipartite weighted graphs
GC = (C,EC , SC) resp. GP = (P,EP , SP ) consisting of vertexes, edges con-
necting the vertexes (which can be identified as subset of the Cartesian product
of vertexes) and weights of edges.

We put
EC = CxC (17)

resp.

EP = PxP (18)

and

SC = M ∗D1 ∗M tr (19)

resp.
SP = M tr ∗D2 ∗M. (20)

In the above scheme, the information matrix M does not have to be a zero-
one matrix. We only require that it has positive elements. Also D1 and D2

don’t have to be generated from information matrix internally. We only require
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that it is a diagonal matrix with strictly (in order to avoid degenerated cases)
positive elements at the diagonal.

Now we will define PC resp. PP left diagonals operating on SC resp. SP .

DC(i, i) =
1∑

ĩ SC(i, ĩ)
(21)

and

DP (j, j) =
1∑

j̃ SP (j, j̃)
. (22)

Now we can put:

PC = DC ∗ SC (23)

and

PP = DP ∗ SP , (24)

As a conclusion, the above process suggests that once the general information
matrix (or fundamental matrix) Y and a meaningful diagonal Matrix DC resp
DP are given, we can switch to weighted graphs GC = (C,EC , SC) resp. GP =
(P,EP , SP ) by putting

SC = Y ∗ U ∗ Y tr = Y ∗ U 1
2 ∗ U 1

2 ∗ Y tr. (25)

Followed by normalizing steps 21 and 22, respectively, in order to get the
Markov Chains 23 and 24.

However, the usual matrix operation with a general information matrix as
above doesn’t necessarily make sense. As mentioned before, our goal in this
section is to introduce an engineering approach that allows different weight
matrices generating different transition probability matrices accordingly which
can be interpreted.

For this purpose, we will put:

SC = A ◦f Atr. (26)

Our choice of notation “◦f” instead of matrix multiplication “∗” at the right
hand side of the equation 26 is deliberate. Roughly speaking, it allows a sym-
metric binary function f(a, b) between matrix elements preserving the desired
properties such as positivity and which can be interpreted in probabilistic terms.
The operation ◦f imitates the matrix multiplication operation with general sym-
metric binary function generalizing the multiplication of real numbers:

A ◦f Atr =
∑
k≤n

f(A(i, k), Atr(k, î)) (27)

Here
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A = YN ∗ U
1
2 (28)

and YN in 28 is generated from Y by an additional moralizing step ensuring
theoretical consistency so that it makes sense in probabilistic terms complies
with the binary function f .

The precise formulation for different prototype probabilistic assumptions will
be treated in the next subsection.

Note that in the original approach, for the construction of Markov Chains on
state spaces C resp. P, the building blocks such as ubiquities of the products or
diversities of the countries are generated by a zero-one matrix M and therefore
they are purely internal. However, depending on the application, it might also be
more meaningful to use other diagonal matrices exogenous nature for weighting
purposes in the above definition of SC resp. SP .

Since our conclusions are analog for ECI and PCI, for the rest of this
manuscript, we will omit the subscripts C and P in S and P and simply write
S and P instead of SC and PC or SP and PP unless there is a necessity within
a context.

3.4 Information Matrices and Engineering of S

Our plan is to introduce an evolutionary mindset. In order to motivate our
approach, we will first recall the original information matrix of ECI followed by
an alternative with its associated diagonal matrix in the same spirit. The goal
of this second approach is to avoid losing information by possible intermediate
steps. Thereafter, we will introduce different weight matrices under different
behavior assumptions of the market players. Finally, we discuss how to generate
the economic performance equivalent (EPE) information matrix of import trade
volume of the countries.

3.4.1 Original Information Matrix

In page 6 of [6] M(i, j) was generated as follows (only with a slightly different
notation):

Let Xi,j be the random variable representing the exported trade volume of
country i in product j and xi,j its observed realization. Then the expected
export of product j by a country i can be estimated by:

̂E(Xi,j) =

∑
î∈C xî,j

∑
ĵ∈P xi,ĵ∑

î,ĵ xî,ĵ
(29)

or

̂E(Xi,j) =

∑
î∈C xî,j∑
î,ĵ xî,ĵ

∑
ĵ∈P

xi,ĵ (30)

The first term on the right-hand side of the last equation estimates the
probability that the product j is exported (share of j with respect to global
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export volume) and the second term estimates the expected exported volume
of the country i.

Now we can put:

M(i, j) =

{
1 if

xi,ĵE(Xi,j)
≥ 1

0 otherwise
(31)

The term
xi,ĵE(Xi,j)

in 64 most commonly refers to an index, called the Balassa

index or RCA (revealed comparative advantage).
The above definition means that, if a country i has revealed comparative

advantage with respect to the product j, thenMi,j will be one and zero otherwise
which is intuitively appealing. On the other hand, if we make a theoretical
observation, by looking at special cases we might have surprises. For example,
if the exported product profile of a country i is a multiple of a country î, than
they will have the same values in their associated rows in M , implying the
same ranking in ECI. Let us assume two countries with same population size
and exported products, but the first one having two times more export volume.
In this case, the same ranking might be distorted, since due to its presumable
efficiency, the first country is likely to have a more efficient and innovative
production process than the second one. As far as we understand the original
method, we think that this critical point (at least theoretically) should be kept
in mind, although from an empirical point of view it seems to represent minority
cases.

3.4.2 An Alternative Information Matrix and Engineering of S

As mentioned before, although the original method with zero-one matrix (in
other words Y = M) is proven to be useful, one can have the view to let data
talk as much as possible and avoid losing any information or model mismatch
risk to a certain extend. Among others, we would like to introduce an alternative
way to rule out possible distortion, mentioned at the end of the last section.

Let us denote the export volume of country i in product j by xi,j . The
question is what is a meaningful way of defining the weights of S. Since we
would like to compare different sizes of countries, it makes sense to rule out the
linear performance impact due to size. Hence, we will start with the export
volume of each country i in product j per capita which will be denoted by yi,j
defining the elements of the information matrix Y .

As mentioned before, the reciprocal of components of the row vector in the
original method K0,· = (K0,1,K0,2, ...,K0,n) can be interpreted as a concentra-
tion measure of products with respect to countries. Low ubiquity implies high
concentration of products (with respect to countries). Relying on the spirit of
this interpretation, we can replace the vector K0,· with the row vector g(Y ) by:

g(Y ) = (
(
∑
i yi,1)2∑
i y

2
i,1

,
(
∑
i yi,2)2∑
i y

2
i,2

, ...,
(
∑
i yi,n)2∑
i y

2
i,n

) (32)
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Note that if put Y = M is zero one matrix as in the original method, we
would get the previously defined ubiquity of the products back in this special
case so that g(Y ) = K0,..

Now we can define a diagonal matrix as a building block of S.

D(j, j) =
1

g(Y )j
(33)

D(j, j) defined as above is known as normalized Herfindahl-Hirschman-Index
(HHI-Index).

Now, assume that we have two countries i and ĩ with exactly the same
exported products and volumes per capita given by the rows i and ĩ of the
Matrix Y respectively. If we scale the exported volumes from i by a positive
multiple, we will change the concentration of all its products (which are by
assumption same products of ĩ).

In the original method, common knowledge of countries i and ĩ shared with
respect to specific exported product j are the same if either they both export
that product or they both don’t export that product which is decided by the
revealed comparative advantage. In other words if M(i, j) = M (̃i, j) which is
pragmatic. However, we can have a more granular approach. In constructing
S(i, ĩ) based on zero-one matrix information M, the matrix operation standard
(which is the ”sum of the reciprocal of the ubiquity of joint products i with
ĩ) and has a conceivable interpretation (which is the ”expected length of joint
know-howi with ĩ”). The question is if we leave the zero-one word, is it possible
to define a matrix operation for construction of S so that its elements can be
interpreted as ”expected length of joint know-howi with ĩ”?

Let us sketch the idea of how we would like to proceed in order to achieve a
positive answer to this question. If we would put S = Y ∗D ∗ Y tr directly we
cannot interpret the elements of S without ambiguity.

A work around is to write

S = A ◦f A, (34)

with

A = YN ∗D
1
2 . (35)

where

YN = Y ∗DN . (36)

Here, DN is an additional normalizing diagonal matrix with which we can
interpret the elements YN (i, j) of Y as the probability that i has one unit of indi-
visible manufacturing step under different prototype probabilistic assumptions
reflecting the behavior of market players. DN will be determined by backward
engineering in such a way that the mentioned interpretation based on a consis-
tent probability space that exists.
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In this way, the elements S(i, î) will have a clear interpretation as ”common
knowledge shared by i and î” under the given probabilistic assumption reflected
by its associated binary function.

Let us start with the above program.
Assume that we have a general network universe that covers all the value

chain of existing as well as future products that are waiting to be discovered (or
innovated, depending on the point of view). Assume that ”indivisible” labor
steps contributing to the global value of a product j conducted by some country
can be decomposed in small indivisible outputs H(j) = {uj,1, uj,2, ..., uj,K(j)},
which might very well include multiple copies in terms of know-how, if there
are countries producing the same intermediate output. By unifying the in-
divisible copy of equivalent outputs we obtain set of ”know-hows” V (j) =
{vj,1, vj,2, ..., vj,N(j)}, where each vj,2 has different output. The set V (j) can
be interpreted as an image set of some function defined on H(j) mapping into
V (j) in such a way that the equivalent outputs have the same image. Which
is somehow idealized and assumes that equivalent outputs require exactly the
same knowledge and rules out different ways of manufacturing. We chose this
pragmatic mindset in order to have a shortcut and avoid notational overflow.
Under these assumptions, the set of know-hows W (i, j) of each country i on a
product j can be interpreted as a subset of V (j) and the union of all know-hows
W (i, j) over all countries must be equal to V (j):

∪i≤mW (i, j) = V (j). (37)

Assume that the elements Y (i, j) of Y are proportional to the probability
that country i owns an indivisible unit of know-how vj,l in V (j) with a propor-
tionality factor Nj depending only on j :

P[W (i, j)] = Y (i, j)N(j) =: YN (i, j), ∀i ≤ m. (38)

The above assumption means that a share of a country i on product j per
capita times Nj is the probability that the country i owns any indivisible know-
how vj,l ∈ V (j). This assumption holds in idealized global market conditions
(e.g. high efficiency in the labor market as well as the market for goods), and
reasonable to start with as an approximation.

The assumption 38 can be written in compact form as

P[W (i, j)] = Y ∗DN (i, j) (39)

Where DN is nxn is a diagonal matrix which scales each column j with Nj :

DN (j, j) = Nj , (40)

in order to have consistent probability space on the set of existing know-how
for the product j.

The factors Nj will depend on the underlying probabilistic assumption and
will be defined in the following.
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The question is how to determine the element of the diagonal matrix DN

in the definition of matrix YN . This depends on the choice of the underlying
probabilistic dependency structure of countries given a product which can be
expressed by the symmetric binary function f defined on the set of the pairs
of positive real numbers. In following we will introduce three prototypes bi-
nary functions fl(YN (i, j), Y trN (j, ĩ))), l = 1, 2, 3 indicating the probability that
countries i and ĩ have common knowledge on product j

P[W (i, j) ∩W (̃i, j)] = fl(YN (i, j), Y trN (j, ĩ)), l = 1, 2, 3, (41)

each under its associated probabilistic assumption:
1) Independence assumption (S(1))

f1(YN (i, j), Y trN (j, ĩ)) =

{
YN (i, j) if i = ĩ

YN (i, j)Y trN (j, î) otherwise
(42)

2) Absolute dependency (S(2))

f2(YN (i, j), Y trN (j, ĩ)) = min(YN (i, j), Y trN (j, ĩ)) (43)

3) Absolute complementary (S(3))

f3(YN (i, k), Y trN (j, ĩ)) =

{
YN (i, j) if i = î
0 otherwise

(44)

The Independence assumption says that in the evolution of the know-how
process of countries, the market players of the countries accumulate their know-
how independently. The second assumption implies the dominance of the coun-
try exporting more per capita compared to the countries importing less. In
other words, if i exports more of j than ĩ, then i knows everything that ĩ knows
about j. The last assumption means that the knowledge about the products are
complementary which would in some sense imply absolute coordination of ex-
porting countries. We think that reality is a mixture of the above assumptions
even in a more granular form.

The diagonal matrix DN in the definition of YN depends on the above as-
sumption and can be determined with the boundary condition:

P[∪i≤mW (i, j)] = P[V (j)] = 1, (45)

in order ensure that we have in fact a probability measures on V (j) under
the above prototype assumptions.

The last two can be determined straight forward:
Absolute dependency case:

N2(j, j) =
1

maxi≤m(Y (i, j))
(46)

Absolute complementary case:
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N3(j, j) =
1∑

i≤m(Y (i, j))
(47)

independence case is bit more involving.
Using the following equation for independent events A1 and A2 recursively:

P[A1 ∪A2] = P[A1] + P[A2]−P[A1]P[A2] (48)

we can show that the boundary condition 45 requires the solution of following
polynomial equation:

1−x
∑
i≤m

(Y (i, j)) + x2
∑
i1<i2

Y (i1, j)Y (i2, j)− x3
∑

i1<i2<i3

Y (i1, j)Y (i2, j)Y (i3, j)+... = 0

(49)
which is equivalent to:

(1− Y (1, j)x)(1− Y (2, j)x)(1− Y (3, j)x)... = 0 (50)

The above polynomial has n solutions from which only one of them makes
sense (the other solutions would lead to an event with a larger probability than
one). Namely x = 1

maxi≤m(Y (i,j)) which leads to put:

N1(j, j) =
1

maxi≤m(Y (i, j))
(51)

Until now we took care of probabilities of sharing one unit of know-how without
assigning a value to them. Any know-how has some degree of intellectual com-
plexity or severity to access. In order to incorporate this issue, we will use the
nxn diagonal matrix D where each diagonal element D(j, j) indicates the con-
centration of product j with respect to countries. The result we are targeting is
that each element S(i, î) indicates the “expected value of common know-how”
shared by i and î. The intermediate step for this purpose is to define a matrix
A(i, j) indicating the expected value of know-how on product j owned by the
country i :

A = YN ∗D
1
2 . (52)

The equation above says that the expected value of know-how on product j
owned by the country i is the probability that country i owns one unit of know-
how, times the severity of the know-how which is similar to the well-known
formula “expected loss=Probabilty of Default times the Severity (or Loss given
Default) in credit risk. Please note that taking the square root of D (instead
of D) makes sense if we follow the path of the construction of D (which is
composition of quadratic elements). Formally we have:

A(i, j) = E[D
1
2 (j, j)1W (i,j)] (53)
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Where 1W (i,j) is the indicator function which takes the value 1 on the set
W (i, j) and zero otherwise.

Now we can define matrix operation ◦f , so that S(i.̂i) = A ◦f Atr(i, î) is the
”expected value of knowledge shared by i and î. This can be achieved directly
by putting:

S = A ◦f Atr =
∑
k≤n

f(A(i, k), Atr(k, î)), (54)

Note that in all three cases S = A ◦f Atr can be decomposed as

S =
∑
j≤n

A(., j) ◦f Atr(., j), (55)

where A(., j) is the jth column of A and each element A(i, j) means the
expected value of the know-how of country i on the product j.

It can be verified directly that each addend A(., j) ◦f Atr(., j) can be rep-
resented as co-variance of some random variables implying the positivity of
A(., j) ◦f Atr(., j) and hence, the positivity of S in all three cases. This prop-
erty holds also for S based on mixed assumptions, where for each product the
probability that a country i owns one unit of the nondivisible value chain is a
convex combination of the prototype assumptions.

Finally, by using the normalizing step 21 and 22 we can obtain the desired
transition probability matrices governing the associated Markov Chains.

Intuitively, none of the above three assumptions occur in reality in their
formulated extreme form as above and standalone they are not realistic. The
reality is rather a mixture of them depending on e.g. average age of the in-
novations or evolution of know-how spread. In the evolution of manufacturing
of products, know-how share, outsourcing, and other activities will drive the
weights of the above prototypes for the final S. Of course, from a statistical
point of view, when determining the parameter of mixture over-fitting should
be avoided. For the calibration of the mixture, a machine learning approach
can be an alternative.

Let us demonstrate the transition probability matrices under the assump-
tions S(1) , S(2) and S(3) by a simple special example which might help to
understand the implications.

Example 1

Let us assume that we have three countries and two products where each raw
(export per capita) is multiple of the others :

Y =


p1 p2

c1 8 4
c2 4 2
c3 2 1


Both products have the same consecrations represented by diagonal matrix

D:
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D =

 p1 p2
p1 d 0
p2 0 d


We obtain following transition probabilities P (1), P (2), and P (3) ::

P (1) =


c1 c2 c3

c1 p1 p2 p3
c2 p1 p2 p3
c3 p1 p2 p3


Where p1 > p2 > p3

P (2) =


c1 c2 c3

c1 p1 p2 p3
c2 q1 q1 q2
c3

1
3

1
3

1
3


Where p1 > p2 > p3 and q1 > q2
and

P (3) =


c1 c2 c3

c1 1 0 0
c2 0 1 0
c3 0 0 1


Please note that above if follow the path of original process wit M we would

obtain

P =


c1 c2 c3

c1
1
3

1
3

1
3

c2
1
3

1
3

1
3

c3
1
3

1
3

1
3


Comparing to the transition probability matrix P generated by the original

process, the P (1), P (2), and P (3) contain additional information depending on
the assumption. Especially (coming back to our comment at the end of subsec-
tion 3.4.1,) P (2) seems to be sensible with respect to our remark at the end of
3.4.1.

3.4.3 Economic Performance Equivalent (EPE) (or Compatible) Im-
port Information Matrix

In the last two subsections, we have discussed the building blocks of ranking
based on two possible information matrices for ranking purposes. Namely, the
original zero-one matrix M and the trade volumes of exported products per
capita Y . M is purely based on the trade volumes of exported products X,
whereas Y needs the population size in addition. Please recall that our main
objective is to merge export to import information which should add value to the
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quality of the ranking system based on solely export. A naive approach would
be to imitate everything we did in the last section with an import. Assume that
we are given a import matrix Xim, where its each element ximi,j is the the trade
volume of imported product j by country i. If we copy the recipe given by the
formulas 30 and 64 directly assuming positive ximi,j , then due to incompatibility
(with respect to what we expect in direction) merging process will not make
sense. On the other hand, if we change the sign of Xim, we will not have
Markov Chain not to mention positivity of associated S.

However, we can generate compatible M im by using the same estimator
given by the formula 30 for positive signed import trade volumes, but changing
the direction of inequality (!) in formula 64. Or equivalently, we copy the recipe
given by the formulas 30 and 64 directly assuming positive ximi,j , but replace the
ones with zero and zeros with ones.

Based on this approach, M im(i, j) = 0 means that j is a significant import
product for the country i. A high number of zeros in the column j means high
demand (or lower better lower demand/supply relation) for product j which at
the same time means a low number of ones in column j. Hence M im(i, j) = 0 (!)
with a low number of ones in the jth column should rather imply an unfavorable
ranking of i (i is buying something which everybody wants to buy). In the case
of export, M(i, j) = 0 with a low number of ones in column j should also imply
a rather unfavorable ranking for i (due to the low ubiquity of j which i doesn’t
own). This shows the compatibility of suggested Mex with export zero one
matrix in this case. Similarly, let M im(i, j) = 0, but with a high number of
ones in the jth column. This means j is a significant import of product for i
which nobody wants and therefore, i is adding comparably higher value in its
manufacturing. Hence, we expect a rather favorable ranking in this case. In the
case of the export zero-one matrix M , not exporting comparably high ubiquity
product should rather be more favorable, which sows compatibility also in this
case. The compatibility in other cases (e.g M im(i, j) = 1, with low number of
zeros) can be verified similarly.

If we leave the zero one world and would like to have a compatible import
information matrix, again we cannot just use the negative signed version of Y im

per capita. However, given the positive version of Y im, we can first determine
the maximal import trade volume per capita with in the importing countries:

ymax,imj = max
i

(yimi,j ). (56)

Next step is define compatable information matrix for import, which can be
achieved by matrix Y im,com define by:

yim,comi,j = ymax,imj − yimj (57)

Thereafter the application of the whole program in last section delivers com-
patible positive symmetric matrix Sim .

In summary, the resulting merging should imply e.g. ”buying cheap and
selling expensive” gives more favorable ranking than ”buying expensive and
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selling expensive”. This expectation from a ranking system requires not only
compatibility of import information matrix with the export information matrix,
but also at the same time coherency of ranking method, which we will treat in
section 5.
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4 Stochastic Counterpart of S and Interpreta-
tion of the ECI

The transformation of symmetric weight matrices SC or SP on a graph (first
playground) to transition probability matrices PC and PP respectively on the
one hand and characterization of Random Walks on a Graph (second play-
ground) on the other hand show that we don’t lose any information (up to
constant scaling factor) by switching from one playground to the other. In this
section, we will examine whether we can gain additional insight by switching to
Random Walk on Graph as a stochastic counterpart of SC or SP . In this sense,
we will answer the question of why it makes sense to rank the complexity of the
countries with the eigenvector corresponding to the second largest eigenvalue in
stochastic as well as in information-theoretical terms.

In Appendix, we justified that Markov Chain governed by P is reversible
(Random Walk on a Graph) and has positive eigenvalues. Using this fact
we will introduce the Lemmas 4.1 resp. 4.2. delivering the rank behavior of
stochastic processes driven by the Random walk on Graph resp. behavior of
the transition probabilities P t(ı, ĩ) for large t, where second eigenvector plays a
dominating role. By combining these lemmas, we will establish the relationship
between Shannon entropy and second eigenvector (lemma 4.3) which says that
the ECI(besides some pathological cases), is nothing else than the rank of the
asymptotic Shannon entropy (each country corresponds to a row which has an
entropy at time t).

4.1 Settings

Given the state space Z and the set of all paths

ZN = {ω = (ωt)t∈N |, ωt ∈ Z} =: Ω, (58)

we will say that the canonical process (St)t∈N on (Ω,P) (endowed with an
filtration) defined by

St(ω) = ωt (59)

is a time homogeneous Markov Chain governed by P if

P[St+1 = ĩ | St = i, St−1 = it−1, ....S0 = i0] = P (i, ĩ), ∀t ∈ N (60)

Above equation says that S is a stochastic process without a memory.
Often there is necessity to specify the initial distribution µ = (µ(1), µ(2)...µ(m))

of a Markov Chain St which we will shortly denote with ωµt instead of Sµt (unless
it causes confusion) indicating:

P[ωµ0 = i] = µ(i) (61)
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By using the well known Chapman-Kolmogorov equation, we can directly
verify that a Markov Chain ωµt with a initial distribution µ governed by a
transition probability matrix P satisfies the following equation:

P[ωµt = ĩ] =
∑
i≤m

µ(i)
∑

i1<...<it

P (i1, i2)P (i2, i3)...P (it−1, i) = P t(i, ĩ). (62)

where i1 = i, it = ĩ.
Hence, in terms of matrix operations

P[ωµt = ĩ] = (µ ∗ P t)ĩ (63)

Where P t is the tth power of P and (v)ĩ denotes the ĩth component of the
raw vector v.

For special choice of initial distribution δi defined by

δi(̃i) =

{
1 if i = ĩ
0 otherwise

(64)

we can directly verify that

P[ωδit = ĩ] = (P t(i, .))ĩ = P t(i, ĩ) (65)

Any function defined on Z induces a stochastic process ft define by

ft(ω) = f(ωt). (66)

We can directly verify that the expected value of ft given the initial distri-
bution µ can be obtained in with the following matrix operations:

E[fµt ] = Eµ[ft] = µ ∗ P t ∗ f. (67)

4.2 Role of e2 for Large t

Let us first list our assumptions in this subsection:

1) The Markov Chain governed by P is ergodic (which ensures a unique
stationary probability measure) and reversible, hence it is a Random Walk on
a Graph. The definitions and justification of these assumptions in our case are
presented in the Appendix.

2) In order to exclude the degenerated cases, we will assume that P is in-
vertible and all its eigenvalues (λi)i≤m are all different:

λi 6= 0 ∀i and λi 6= λĩ for i 6= ĩ (68)

3) Further, we will assume that the vector e2 has no zero components.
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e2,i 6= 0 ∀i ≤ m (69)

The last two assumptions are mild from practitioner’s point of view. For
example, if we work with zero one information matrices, with large number
of countries and large number of products comparing to number of countries
(which is satisfied by the number of countries and products considered in ECI),
we expect a negligible likelihood of cases contradicting the above assumptions,
which is even less restrictive if we work with real valued information matrices.

4) The stochastic counterpart of the method of reflection has appealing prop-
erties leading to coherent interpretations. An important fact which will play a
key role is that the eigenvalues P are positive so that we have.

1 = λ1 > λ2 > λ3..... > λm ≥ 0 (70)

The justification of this fact in our case is given in the Appendix.
and with assumption 2) we obtain:

1 = λ1 > λ2 > λ3..... > λm > 0 (71)

Given a pay-off function X : Z− > R of the states, we can define a stochastic
pay-off process by putting:

Xµ
t (ω) = X(ωµt ), (72)

X can be represented as a row vector X = (X(1), X(2), ..., X(m)) and we
can write:

P t ∗Xtr = (E[Xδ1
t ],E[Xδ2

t ]....E[Xδm
t ])tr, (73)

The method of reflection computes the time dependent expected pay-off
column vector u(t) defined by

u(t) = (E[Xδ1
t ],E[Xδ2

t ]....E[Xδm
t ])tr (74)

with a special choice of pay-off function defined by X(i) = ki,0.
Let us denote the unique stationary measure with π.
For any initial distribution µ we have

lim
t→∞

Xµ
t = Y (75)

in distribution (!), where Y is a random variable with P [Y = i] = π(i).
Hence, we have

lim
t→∞

u(t) = constant · (1, 1, ..., 1)tr = constant · e1 (76)

independent of the initial state of the Markov Chain.
The constant can be determined by
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constant = Eπ(X) =
∑

π(ci)X(ci) (77)

Let us represent u(t) in terms (ei)i≤m :

u(t) = α1e1 +
∑
i≥2

λtiαiei, (78)

where λi are eigenvalues of eigenvectors ei in descending order.
The original reasoning of Hidalgo et al for the choice e2 as a ranking standard

was the domination of variance of the system by the variance of e2 .
But what does this mean?
We interpret the above reasoning by observing that the prediction at time t

of the performance vector u(t+ 1) at next period t+ 1 can be approximated by
using second largest eigenvalue and its associated eigenvectors as follows:

u(t+ 1) ≈ u(t) + α2(λt+1
2 − λt2)e2 (79)

with a negligible error term for large large t.
Hence, the variance of the prediction based on the information at time t is

dominated by the second eigenvalue and its associated eigenvector:

Var[u(t+ 1)− u(t)] ≈ α2
2(λt+1

2 − λt2)2V ar[e2] (80)

for large t. Where the variance is taken with respect to uniform measure on Z.
In Hidalgo et al the pay-off is defined by special choice. Namely,

X(i) = ki,0 (81)

The observations give hope that normalized and centralized second eigen-
vector associated with second largest eigenvalue is a suitable complexity index
of the countries.

Statistically, assume that we have a large portfolio of independent individ-
uals each starting from some initial state having the same pay-off function but
iid Markov Chains driving the dynamic of their pay-offs. Depending on the
distribution of the initial states of the individuals, we can easily determine the
pay-off function on portfolio level which leads to a similar conclusion that the
variance of pay-off on a portfolio level is asymptotically dominated by the second
eigenvector of the Markov Chain. This statistical observation gives additional
hope but doesn’t answer the question ”what are we ranking?”. In statistical
terms, we can say even more which allows us an additional insight for statistical
interpretation. Namely, there exist t0 such that the rank of expected pay-off
process defined as above is strictly (not only asymptotically!) dominated for all
t larger than t0.

At this stage, we would like to spend few words in order to avoid confu-
sions which might be caused by the following small abuse of notation. We used
the notation i for countries but also for the elements of static state space Z of
Markov Chain generated by the information matrix in order to avoid rotational
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overflow. As an element of Z, i represents the ”observed” accumulated know-
how of i (given by the exported products of i) at time t = 0. Hence, in our
context P t(i, ĩ) represents the probability that the country i has the accumu-
lated know-how ĩ (which is the initial know-how state of ĩ) at time t, given the
initial accumulated know-how of i (which is also denoted by i).

Now we can start with our program of interpretations.

Let R : Rm \ E → {1, 2....m} be a ranking function which simply ranks the
components of the vectors in standard coordinate system according to relation
”≥” in R, excluding the elemets of E := {x ∈ Rm : ∃i, j ≤ m with xi = xj}
which is only a zero set with respect to Lebesgue measure on Rm.

We have the following lemma:

Lemma 4.1

Let X : Z : − > R be a random variable with

X =
∑
i≤m

αiei (82)

with α2 6= 0 and u(t) as in 74
Let ei,j be the jth components of ei in standard coordinate system.
Assume that e2,j are pairwise different (which means e2 ∈ Rm \E) and put:

min{| e2,j − e2,k |: j, k ≤ m, j 6= k} = ε > 0. (83)

Then there exist t0 > 0 such that:

R(u(t)) = R(α1e1 + α2λ
t
2e2) = R(α2λ

t
2e2) = R(α2e2) (84)

for all t > t0.

Proof. First note that u(t) can be expressed in terms of matrix operations:

u(t) = P t ∗Xtr, (85)

where P is the transition probability matrix resulting from subsection 3.3
for modular scheme.

For the proof the lemma we first observe the following simple properties of
ranking function R.

i) By multiplying with strictly positive constant c and adding any constant
eigenvector αe1 = α(1, 1...., 1)tr to a vector we do not change the rank of a
vector (rank neutrality).

R(x) = R(cx+ αe1) (86)

ii) Put

ρ(x) = min{| xj − xk |: j, k ≤ m, j 6= k} (87)
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and assume that ρ(x) = δ > 0. Then for any vector a ∈ Rm such that
max{| aj |: j ≤ m, } < δ

2

R(x) = R(x+ a) (88)

By assumption we have limt→∞ =
λt
i

λt
2

= 0 for all i ≥ 3 implies that there

exists a t0 so that:

| λ
t
iαi

λt2α2
ei,j |<

ε

2(m− 2)
(89)

for all i with 3 ≤ i ≤ m and t ≥ t0
Hence,

|
∑

3≤i≤m

λtiαi
λt2α2

ei,j |<
ε

2
, (90)

hence

|
∑

3≤i≤m

λtiαiei,j |<
ε | λt2α2 |

2
, (91)

The jth component u(t)j can be expressed as

u(t)j =
∑
i

λtαiei,j = α1 + λt2α2e2,j +
∑

3≤i≤m

λtαiei,j (92)

Hence, by 83, x(t) = α1e1 + λt2α2e2 and a(t) =
∑

3≤i≤m λ
t
iαiei satisfy the

condition of the observation ii) with δ = ε | λt2α2 |, for all t ≥ t0
Now, by corollary 7.11.1 in Appendix we know that all eigenvalues have

positive sign. Therefore, we can assume without loss of generality sign(λt2α2) =
+1 and using i) and ii) we obtain:

R(u(t)) = R(x(t) + a(t)) = R(x(t)) = R(α2e2) (93)

Which is the claim of the lemma.

Lemma 4.1 says that the rank of expected pay-off does not change after t0
and will be R(α2e2).

Now, assume that we have a pay-off of a bet given by the random variable X.
For any t, the ith component of (P t ∗X)i is the expected pay-off of the
know-how at time t given that we bet on i at time t = 0. As t tends to infinity,
the expected values will all converge to the same value which makes the bet at
infinity ”indifferent” or independent of our choice at t = 0. However, for any
initial betting state i, as t gets large, we will have that the rank of expected
pay-off will be the same as the rank of the second eigenvector corresponding to
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the second largest eigenvalue in spite of the indifference at infinity which is
some how surprising.

The next lemma 4.2 gives us further inside with a different method. Note that
that lemma 4.2 follows from lemma 4.1: We could take the vectors in the
canonical basis as pay-off functions, and than conclude 4.2 in a few steps. But
with the following proof, we want to introduce the reader already to the so
called eigenvalue representation. This representation needs reversibility
ergodicity positivity, which we can assume to be satisfied by P .

It is well known that second eigenvector e2 is related to the optimal cut
problem(see e.g. [18] and [19] ) to separate the vertexes (which are countries in
our case) into two classes C+ and C−. Without being specific on this issue let
us put:

C+ = {i : sign(e2,i) = +} (94)

C− = {i : sign(e2,i) = −} (95)

We will see that the above classification makes sense from probabilistic point of
view.

Lemma 4.2

Let i and ĩ be two countries. Then the following statements are equivalent:
i) The rank of i is higher than i :

e2,i > e2,̃i (96)

ii) There exist t0 ≥ 0 so that for all h in C+ we have

P t(i, h) > P t(̃i, h), ∀t ≥ t0 (97)

iii) There exist t0 ≥ 0 so that for all h in C− we have

P t(i, h) < P t(̃i, h), ∀t ≥ t0 (98)

Proof. We will only prove the equivalence of i) with ii) (the proof of the equiv-
alence of i) with iii) is analog). For this purpose we will use the ”eigenvalue
representation” of transition probabilities:

P t(i, h)

π(h)
− 1 =

∑
k≥2

λtkek,iek,h (99)

P t(̃i, h)

π(h)
− 1 =

∑
k≥2

λtkek,̃iek,h (100)

Where π is the unique stationary measure of P .
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The proof of above eigenvalue representation can be found in chapter12 of
[20].

By multiplying both sides of above equations with 1
λt
2e2,h

we obtain:

1

λt2e2,h
(
P t(i, h)

π(h)
− 1) =

1

λt2e2,h

∑
k≥2

λtiek,iek,h (101)

1

λt2e2,h
(
P t(̃i, h)

π(h)
− 1) =

1

λt2e2,h

∑
k≥2

λtiek,̃iek,h (102)

Since λi ≥ 0 and λ2 > λi,∀i > 2, (see Appendix), the right hand side of above
equations converge to e2,i and e2,̃i respectively. But, by assumption e2,i > e2,̃i
which implies that there exist t0 so that

1

λt2e2,h
(
P t(i, h)

π(h)
− 1) >

1

λt2e2,h
(
P t(̃i, h)

π(h)
− 1) (103)

for all t ≥ t0.
Hence,

P t(i, h) > P t(̃i, h), ∀t ≥ t0 (104)

Note that the proof actually shows:

P t(i, h)

π(h)
= 1 +

∑
k≥2

λtkek,iek,h = 1 + λte2,ie2,h + o(λt) (105)

and therefore
P t(i, h) = π(h) + λte2,ie2,hπ(h) + o(λt) (106)

which can be seen directly with the same type of arguments we used in the
proof.

Let’s now give an interpretation of the ECI by using lemma 4.2. The Markov
Chain governed by P assumes static state space which is naive and therefore
doesn’t describe a real-world dynamic of information transition realistically.
However, we can get a bit more motivation out of 4.2. let’s speculate a bit
about what P t(i, h) might roughly approximate in a more realistic
transition-dynamic. Let’s denote units of information in h by I(h). First, we

weigh the average value of this information from the perspective of i by π(h)
π(i)

(capacity of sources in h relative to the capacity of sources in i), analogue we
define the average value of I(h) from perspective of ĩ. Let f tI(h),i denote the
observed frequency of information transition from h to i along transitions of
length t countries, analogue we define f t

I(h),̃i
. We can also think of t as the

length of the walks starting from any time s ≥ 0. Due time homogeneity of the
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Markov Chain f tI(h),i respectively f t
I(h),̃i

, can be approximated by P t(h, i)

respectively P t(h, ĩ) independent of starting time s ≥ 0. Hence, we
approximate the expected value of information transition from h to i by
π(h)
π(i) P

t(h, i), analogue we approximate the expected value of information

transition from h to ĩ. Note that since the chain P is a random walk on a
finite graph, we have π(h)

π(i) P
t(h, i) = P t(i, h), π(h)

π(̃i)
P t(h, ĩ) = P t(̃i, h). Hence, by

lemma 4.2, for large t, π(h)π(i) P
t(h, i) > π(h)

π(̃i)
P t(h, ĩ) for all h in C+ if and only if

i is higher ranked than ĩ by the ECI.

In the context of the discussion above, we think of P (̃i, i) as an approximation
of the ”direct” information transition-rate from ĩ to i, and on the basis of this
approximation, we further approximate the information transition-rate from ĩ
to i (over the walk i1, ..., it), by P (i1, i2)P (i2, i3)...P (it−1,it). Hence

considering all possible walks of countries, P t(̃i, i) approximates the total
information transition-rate over t-walks from ĩ to i.

Note that we always said ”the rank of e2”. Obviously, before one can rank with
e2, one has to solve the sign problem first, i.e one has to decide which class is
C+ and which class is C−. We will see later in section 5 different prototype
examples where there is no reasonable choice of sign. In example 2, there are
two classes and each element of one class has a equivalent counterpart in the
other class with same absolute value of their associated e2, but with an
opposite sign. We will now introduce an alternative ranking method by means
of Shannon Entropy which solves this problem at least to a certain extend.

Shannon entropy is an established theory when it comes to study information
contend of objects formally (see [21] for further reading). To our knowledge, to
rank vertices in a network is not a widely applied method. The following
result shows that there is a general information theoretic meaning of e2 in a
large class of networks modeled by a Markov Chain (i.e ergodic,reversible,finite
Markov chains) and it says that the ranking of Shannon Entropy of transitions
probabilities of countries with an initial state i are given by e2 for large t if the
logarithm of stationary measure is not orthogonal to e2 . More precisely we
have the following lemma:

.

Lemma 4.3

Assume that assumption of the lemma 4.1 for the vectorX = (log2(π(1)), ..., log2(π(m))tr

are satisfied. Then with an adequate choice of sign we have:

R((H(t, 1), H(t, 2), ...,H(t,m))tr) = R(e2) (107)

for all large enough t.
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Here, H(t, i) denotes the Shannon Entropy of the probability measure P t(i, .) :

H(t, i) = −
∑
h≤m

P t(i, h) log2(P t(i, h)) (108)

Proof. It’s enough to show that, for each fixed state i

H(t, i) = α1 + α2λ
t
2e2,i + o(λt2) (109)

Where α1 and α2 are constants independent of t and o(x) refers to Landau-
Symbol (small o of x).

If the statement holds for the natural logarithm then it holds also for log2

as c log = log2 for a constant c. Hence, in the following we can switch from log2

to natural logarithm which we shortly denote with log.
For each fixed i the eigevalue decomposition says:

P t(i, h) = π(h) + π(h)
∑
k≥2

λtkek,iek,h (110)

Since by assumption λ2 is strictly larger than all the other eigenvalues except
λ1 we obtain:

P t(i, h) = π(h) + π(h)λt2e2,ie2,h + o(λt2) = π(h)(1 + λt2e2,ie2,h +
o(λt2)

π(h)
) (111)

Hence we can write,

log(P t(i, h)) = log(π(h)) + log(1 + λt2e2,ie2,h + o(λt2)) (112)

By the first order Taylor approximation of log(1 + x) = x + o(x) together
with calculation rules with ”small o” results in:

log(P t(i, h)) = log(π(h)) + λt2e2,ie2,h + o(λt2) (113)

Note that from the proof of lemma 4.1, for the pay-off function X(i) =
log(π(i)) we obtain∑

h≤m

P t(i, h) log(π(h)) = α1 + λt2α2e2,i + o(λt2) (114)

By combining 114 with 113 and using the calculation rules with ”small o”
results in:

∑
h≤m

P t(i, h) log(P t(i, h))) = α1+λt2α2e2,i+o(λ
t
2)+

∑
h≤m

P t(i, h)(λt2e2,ie2,h+o(λt2))

(115)
The last term on the right hand side of 115 can be written as:
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∑
h≤m

P t(i, h)(λt2e2,ie2,h + o(λt2)) = λt2e2,i
∑
h≤m

P t(i, h)e2,h +
∑
h≤m

P t(i, h)o(λt2))

(116)
Which can be summarized as:∑

h≤m

P t(i, h)(λt2e2,ie2,h + o(λt2)) = λ2t2 e
2
2,i + o(λt2)) (117)

Finally by combining 117 with 115 we obtain:

∑
h≤m

P t(i, h) log(P t(i, h))) = α1+λt2α2e2,i+λ
2t
2 e

2
2,i+o(λ

t
2)+o(λt2) = α1+λt2α2e2,i+o(λ

t
2)

(118)
which proves 109

It is worth to spend some time on lemma 4.3. The lemma 4.3 says that if
the α2 of the X := (log2(π(1)), ..., log2(π(m))tr is non-zero, then it ranks exactly
same as e2 for large enough t.Here by ranking with (H(t, 1), H(t, 2), ...,H(t,m))tr

we mean ranking in descending order. In other words lower components indicate
more favorable ranking.

The question is does ranking with (H(t, 1), H(t, 2), ...,H(t,m))tr have advan-
tages comparing e2. The answer is yes it has some advantages. Firstly we do not
have the mentioned sign problem. The components of (H(t, 1), H(t, 2), ...,H(t,m))tr

are always positive and as just mentioned the lower values indicate better rank-
ing. Secondly, if for example we have even number of counties and the transition
probability matrix P is symmetric at the same time with symmetric diagonal,
then there will be pairs of two equivalent countries. But in this cases α2 of
X is zero and e2 would rank one member of each equivalent pair with positive
and the other member with negative sign which is not coherent. But in this
cases ranking of (H(t, 1), H(t, 2), ...,H(t,m))tr (in descending order) jumps to
ranking of positive valued version of e3 automatically which is coherent.

We will now explicate why the notion ”complexity” makes sense for e2 to
certain extend.

For a fixed i and t let (χin)n∈N be iid copies of Random Walks on a Graph
with an initial state i governed by the transition probability matrix P and let
Z∞ be the set of all strings s = (̃i1, ĩ2, ...) in Z∞ realized by (χin)n∈N at time t.
Further let Sn be projection defined on Z∞ :

Sn(s) = (̃i1, ĩ2, ..., ĩn) (119)

The original Kolmogorov Complexity (plane-comlexity) is related to e2 by the
following theorem (theorem 148 in [22]):
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Theorem 4.4

Let t > 0 be fixed and C be the original Kolmogorov Complexity defined on
Sn(Z∞) for all n. Then

lim C(Sn(s))
n = H(P t(i, 1), ..., P t(i,m)) almost suerly

From above theorem and the lemmas 4.1 and 4.3, it follows that for large n
and large t, Kolmogorov Complexities C(ω(n)i) are ranked according to second
eigenvector e2, if α2 of the vector X = (log2(π(1)), ..., log2(π(m))tr is non-zero.

We saw that if e2 is not orthogonal to X = (log2(π(1)), ..., log2(π(m))tr

ranking of countries with H(t, .) for large enough t is equivalent to ranking by
e2 which is in practice almost always the case. Although H(t, .) or e2 can be
called a complexity measures, in section 5 we will see that they can interpreted
as coherent driver of sustainability only to a certain extend.

The question is can we do better than the alternative complexity measure
introduced by the lemma 4.3. In order to answer this question observe that the
proven equation 109 in the proof lemma 4.3 can be written as

H(t, i)− α1 = α2λ
t
2e2,i + o(λt2). (120)

For each fixed t, by summing the above equation over s ≤ t we obtain:∑
s≤t

H(t, i)− tα1 =
∑
s≤t

o(λs2) (121)

But since 0 ≤ λ2 < 1, the right hand side of the above equation dominated
by a convergent geometric series. Hence, the limits limt→∞

∑
s≤tH(t, i) − tα1

exists. Given the countries i and ĩ, with different product profile, in prac-
tice, the likelihood of having same limits for these countries becomes marginal
for large dimensional matrices with large enough product/country ratio (tested
numerically). Hence, assuming that the mentioned limits for countries with
different product profile are different , with simple we conclude the rank of∑
s≤tH(t, .)tr − tα1 remains same for all t larger than some t0. These observa-

tions together with the rank neutrality property with respect adding a constant
vector as well as scaling by positive number implies following lemma:

Lemma 4.5

Let AH(t, .) be the average entropy at t :

AH(t) =

∑
s≤tH(s, .)

t
(122)

If the limits limt→∞
∑
s≤tH(t, i)−tα1 are pairwise different then there exist

t0 so that

R(H(t1, .)
tr) = R(H(t2, .)

tr), ∀t1, t2 ≥ t0 (123)
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By the above lemma we gain another alternative ranking by R(H(t0, .)
tr for

large t0 which compensates the lack of memory of a Markov Chain to a certain
extend.

Finally, we would like to note that an interesting and further research object
is the speed of rank convergence or more precisely a criteria for how large t0
related to the lemmas 4.1, 4.2, 4.3 and 4.5 should be.
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5 Coherence of Sustainability Index and ECI

Does a rating model do, what we expect it to do?
If somebody claims that what he wants to do will have sustainable positive

net-impact, then there are at least three questions which comes in mind:

Who are the stakeholders or for whom should it have net-positive impact?

For how many generations or how long is the positive impact going to last?

What is the quality of his performance?

These interdependent and difficult questions are easier to answer when we
manage the risk of a company. Because the main stakeholders are the owners of
the company and risk management focuses mainly on shareholder’s view which
is broadly accepted, since the mainstream consciousness is that the owners are
at risk. Hence the boss (”as a risk-taker”) will tell the risk manager what
is sustainable and what is not. Due to regulatory paradigm shift in the last
decades, also clients gained more and more weight as stakeholders.

It took decades to measure the risk of insurance companies coherently (e.g.
with coherent risk measure such as Expected Shortfall), instead of traditional
non-coherent risk measures such as Variance (see e.g.Artzner, Philippe, et al.
[14]). Meanwhile, the concept is a well-accepted mindset and in Switzerland, the
regulatory capital required of insurance companies is determined periodically
based on coherent risk measure. Empirical evidence of sustainability ranking
with respect to key sustainability indicators is important. But its coherency is
not less important. Because as in risk management the ”more” incoherent a
model is, the more it allows ”model arbitrage” (which related to non-intended
incentives), distortions and might even give undesired incentives, which also
play role when it comes to its predictive power. Sustainability management is
in this sense”more difficult risk management”. Because comparing to ”boss tells
you what is sustainable and what is not sustainable,” there is a long way to go
for global consensus about the above questions when it comes to measuring of
net-positive impact in a context related to the above questions. It is not only
about ”I exist” (or survive) but also about long-term coexistence in a broader
view. Hence, we think that a sustainable measurement instrument should be
a learning tool in a framework that can improve coherently and give a better
quality answers when the global consensus improves. This mindset will be more
clear in motivating subsection 5.1.

ECI is to a certain extent eligible index giving an inside for the accumu-
lated productive know-how justified from a theoretical point of view (see lemma
4.1, lemma 4.2 and 4.3 for statistic, probabilistic and information-theoretical
properties) and has empirically justified explanatory power for macroeconomic
factors such as growth rate of GDP as well. However, since our objective is to
merge available value chain information of countries improving the quality of
sustainability index, it makes sense to examine the coherency behavior of ECI
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and compare it to an alternative. This question will be treated in subsection
5.2. In subsection 5.3 we give a shortlist of alternatives without further explo-
ration. In the last subsection, we will discuss the coherency behavior of e2 and
an alternative with respect to amalgamated versions.

5.1 Motivation; Expert in Box

Please note that our intention is by far not to generate an ideology or whatso-
ever. It is rather about what it means modeling of a sustainability index (or
ranking) which we hope that it can grow in a sustainable manner itself.

Quoting George Box ”all the models are wrong, but some are useful”. In
our opinion, the degree of usefulness of the sustainability index related to its
predictive power. But not less important than its predictive power is what kind
of incentives the model gives and to what degree it allows a model arbitrage
which are at same time hybrid notions to predictive power. Especially, a notion
such as sustainability index is expected to map a proxy of consensus in the
society which we mentioned at the beginning of this section.

Imagine a diligent expert who is commissioned with a challenging and noble
task to test a developed sustainability ranking. Presumably, his first goal would
be to understand, to which degree and why a model is not ”coherent” to what
he expects. If the answer to ”why” convinces him then he can even learn from
the model and its outputs add value to his expertise. But if the surprises don’t
convince him (which often the case), he would like to understand to what extent
in order to be able to engineer an improved model. For the achievement of this
objective a list of coherence condition which is free of contradictions itself could
help. This list can be classified as minimal conditions and proxy conditions for
common sense. Out of such a mixture of conditions we can assume statements
logical implications of this mixture and statement which cannot be decided by
the mixture of these conditions.

Let us display the class of possible coherence scenarios and how an expert
could feel about between his consistency conditions the model output.

Output vs. coherence statements Expert’s assessment
In line with coherence list Ok
Logical inconsistencies (minimal requirement) Incoherence of first order
Not inline with common sense Incoherence of second order
Not decidable Indifferent

Incoherencies to some extend can be expected. However, if they dominate
and especially occur systematically in case of first-order (which can be even clas-
sified as an inconsistency), then it becomes a serious quality issue also related
to its predictive power. The second case cannot be classified as an inconsis-
tency, but depending on the requirement, it can be classified as strong or weak
incoherence and from our point of view, it makes sense to keep an eye on it in
the engineering of a sustainability index. Let us illustrate this point with an
example. Assume that in our observed data we have countries who add value
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to their economy by an intelligent manufacturing process which increases their
diversity over time with negligible expense making these countries also highly
competitive with respect to mentioned products (not necessarily new) or helping
them to improve their internal economy. Now, assume contrary to our expecta-
tion (which is probably higher sustainability index) we have a negative change
of the countries sustainability index based only zero one information matrix
delivering less favorable ranking. The impact of such scenarios on the correla-
tion between the ”sustainability index” (which we are testing) and GDP will be
rather negative, which could also be an issue concerning the predictive power
of the ” sustainability index” since the productivity of a nation is a significant
driver of GDP. However, this expectation of an expert can be classified rather
as common sense and subject to consensus in society or within the experts and
the severity of ”inconsistencies” depends on how strong the conditions are. Al-
though at this stage we cannot rule it out completely, that the sustainability
index which the expert is testing is intelligent and able to handle some kind of
causal relationship in some constellations and such an upgrade of the country
(which increases his diversity) in some cases might even be justified depending
on the constellation of the zero-one information matrix. But we rather think
that the mentioned upgrade can be justified rather by additional information
sources and therefore implausible which is incoherence of second order.

Finally, there will be also cases that cannot be assessed as ”coherent” or ”not
coherent” which might need adjustment of condition list. This will be clearer
in the next subsection.

5.2 Some Coherency Conditions and ECI

Our plan in this subsection will be to formulate coherency conditions based
on the information matrix. By doing so and for the sake of simplicity we will
work with zero one information matrices. Please also note that our approach
in this subsection doesn’t give a final answer for this challenging issue. Nor
we claim that the below coherency conditions are free of redundancy. In this
subsection, we rather cover the quality of the sustainability index with respect
to the economic & risk management points of view. In this subsection, in order
to focus on the ideas, we will formulate coherence conditions on the zero-one
information matrices.

Let us assume that I(M, i) is a one-period sustainability ranking of countries
based on the trade information matrix and start with what we would expect
from such an index from the logical point of view.

C1 (Condition of Equivalence1 ): Assume we are given a permutation σ of
countries and M1 and M2 are two information matrices with same dimensions
such that.

If M1(i, j) = M2(σ(i), j), ∀i ≤ m, j ≤ n then

I(M1, i) = I(M2, σ(i)),∀i ≤ m (124)
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C2 (Condition of Equivalence 2 ): Assume we are given a permutation ρ of
products such that:

M1(i, j) = M2(i, ρ(j)), ∀i ≤ m, j ≤ n then

I(M1, i) = I(M2, i), ∀i ≤ m (125)

C1 says that if we permute the countries and permute the rankings accord-
ingly than the countries should have the same rankings. C1 implies for example
that if two countries have exactly same values in their associated rows, then
their ranking will be the same:

If M(i, .) = M (̂i, .) then

I(M, i) = I(M, î). (126)

C2 says that permutation of the products has neutral effect on the ranking
of the countries.

The conditions C1 and C2 can be seen as a minimal requirement and the
second eigenvector e2 satisfies both of them. However, die situation becomes
critical if we require the following coherency conditions which is from our point
of view can be also classified as a minimal requirement.

C3 (Condition of Equivalence 3 ): A formal formulation of this condition is
subject to our working paper and we rather prefer an example which illustrates
what we mean with the condition of equivalence.

Example 2

Let us assume we have the following information matrix with six countries and
seven products.

M =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 0 0 0 0 0
c2 0 1 1 0 0 0 0
c3 0 0 1 1 0 0 0
c4 0 0 0 1 1 0 0
c5 0 0 0 0 1 1 0
c6 0 0 0 0 0 1 1


where ith row represent exported product of country i and takes the value

one at product j if j is exported.
Let us display the second eigenvector.

e2 =
(
−0.56 −0.41 0− 0.15 0.15 0.41 0.56

)
From the above information matrix we would expect the same ranking for the
first and the last country and we see no reason why the first and the last country
(which is the sixth country) should be rated differently from economic and/or
risk management point of view. They have both equal number of products with
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a isomorphic ubiquity profile. The ubiquity of the first product exported by the
first country and the ubiquity of the last product exported by the last country
are one. The other exported product by first and exported product by the
last country also have the same ubiquity. We can observe analog relation e.g.
between the second and the fifth country. More formally, the above information
matrix can be split in to two isomorphic (weight preserving and one-to-one) sub-
graphs C = {c1, c2, c3} and Ĉ = {c4, c5, c6} which are connected over c3 and
c4 symmetrically. However, second eigenvector reflects this natural expectation
only in absolute value. This is also why our statement 98 in the probabilistic
lemma 4.2 is restricted to countries (denoted by h) in the class C+ which is fixed
beforehand depending on the choice of sign of e2. On the other hand, observe
that in this example, the Entropy vector H(t, .) ranks the countries according to
positive version of e3 for all t larger than some t0 which is the same ranking as
the absolute value of e2 (see also the comments after the proof of 4.3). Note that
in this example AH(t) for large t ranks same as H(t) for large t. Where as the
diagonal of S ranks the fist and last country as highest and the others countries
as indifferent which is a bit unsatisfactory from complexity (or similarity) point
of view.

C4 (Strong Diversity Condition): In terms of sensitivity, if we add a product
to a country i without an expense, then its position should not become less
favorable than before by pairwise comparison to other countries. Formally let i
be fixed and M̂ be the information matrix which has only one additional product
on behalf of i in comparison to M. Then

{̂i : I(M, i) ≥ I(M, î} ⊆ {̂i : I(M̂, i) ≥ I(M̂, î)}. (127)

By using 126 as consequence of C1 and applying C4 successively, we can
conclude that if a country beside its low ubiquity products, can also compete
with all the other countries also with respect to large ubiquity products due to
its sub-processes as side-products with a negligible expense, then this country
should not have less favorable ranking than others. Or simply a country which
exports everything should not have a less favorable ranking then others.

Now let us assume that we have again six countries and seven products but
with different product mixes:

Example 3

M =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 1 1 1 1 1
c2 1 0 1 0 1 0 1
c3 1 0 1 0 1 0 1
c4 0 0 1 1 1 1 1
c5 0 0 1 1 1 1 1
c6 0 0 1 1 1 1 1
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Let us display the the second eigenvector.

e2 =
(
0.06 0.57 0.57 −034 −0.34 −0.34

)
If we accept the condition C4, one can ask why the first country should

have a rank lower than country 2 and 3, given the sign as above. If we change
the sign of e2 we have lower rank of first country comparing to forth, fifth and
sixth country. Hence in any case, the country that exports everything gets
considerably lower ranking than some other countries. Note that this example
is different from the previous example 2 and cannot be corrected by e3 or H(t, .)
for large t.

Ranking with the diagonal of S resp. AH(t, .) for large t is monotone de-
ceasing resp. increasing which is coherent.

Although ranking by diagonal of S resp. AH(t, .) for large t are highly
correlated, in some cases we observed slight incoherence of AH(t, .) for large t
with respect to diversity condition.

If the above condition is too strong for an expert, then he can try to asses
above example with the weaker diversity condition:

C5 (Week Diversity Condition): If we add a product to a country i without
an expense, then its ranking should not be less favorable than before. This
condition doesn’t exclude that the position between i comparing to some other
country î may be less favorable by adding a additional product. It only says that
overall ranking is at least as good as before. Clearly C4 implies C5. However,
the implication of C4 by C5 seems to be very challenging and we could neither
prove it nor find a counter example until now. Hence, an expert who has not
overcome this challenge jet cannot say that the C5 is rejected by e2 which rather
falls rather in the category of ”Not decidable” from his point of view.

What about ubiquity? Does a decline of ubiquity of products owned by a
country results in a better ranking?

For the above question we like formulate a possible version of complexity
condition in terms of sensitivity:

C6 (Condition of Ubiquity): Let j be a product exported by i and î. Assume
that for some reasons î decides not to export the product j next period anymore.
Assume also that the product profile of all the other countries remains the same.
In this case the ubiquity of j declines and we postulate that any country h which
did not export j and had lower rank than i will still have lower rank than i after
the decision of î.

Does the ECI satisfy the ubiquity condition C6 above?
The answer is no which can be observed by the following counterexample:

Example 4

For the first period put:
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M =



p1 p2 p3 p4 p5 p6
c1 1 1 1 1 1 1 1
c2 0 1 1 1 1 1 1
c3 0 0 1 1 1 1 1
c4 0 0 0 1 1 1 1
c5 0 0 0 0 1 1 1
c6 0 0 0 0 0 1 1


the corresponding eigenvector of the random walk is ,

e2 =
(
0.45 0.19 −0.06 −0.29 −0.5 −0.65

)
We strongly believe that choice of sign is adequate in the first period!
Now we remove the product 4 from the country 1 and obtain:

M =



p1 p2 p3 p4 p5 p6
c1 1 1 1 0 1 1 1
c2 0 1 1 1 1 1 1
c3 0 0 1 1 1 1 1
c4 0 0 0 1 1 1 1
c5 0 0 0 0 1 1 1
c6 0 0 0 0 0 1 1


e2 =

(
0.67 0.1 −0.2 −0.44 −0.34 −0.43

)
The ubiquity of the product 4 decreased after removing it from country 1. The
country 4 still has the product 4, but its rank became lower than the rank of 5
(5 didn’t have the product 4, and had a lower rank than 4 in the previous
period). If we change the sign of e2 than for example the rank of country 2
would be lower than the rank of 6 , although country 2 still has the product 4
and the country 6 didn’t have the product 4 in the previous period). However
the diagonal of S resp AH(t, .) for large t are monotone deceasing resp.
increasing which can be seen as coherent in this example.

Note that since in case of increasing resp. reducing the diversity of a country
(without using a new product), has an effect on the ubiquity of the products,
there is relationship between the notion of diversity and complexity. We would
like to go one step further without exploring this issue further.

As mentioned before, e2 satisfies the coherency conditions C1 and C2. But,
we think from economic point of view, satisfying this natural conditions cannot
be enough for its comparable high correlations with GDP. Next lemma gives a
one good reason why this is the case.

If the inclusion relation ⊆ is a total order between the products of the coun-
tries, ECI delivers coherent results if sign of e2 is chosen adequately. This means
e2 delivers coherent ranking if we can find some permutations of countries so
that we can achieve that the first country exports all the products that the sec-
ond country export, the second country exports all the products that the third
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country exports, third country exports all the products that the forth country
exports,.., and so on.

Formally:

Lemma 5.1

Assume that the products (ci)i≤m of countries (i)i≤m satisfy

c1 ⊇ c2 ⊇ c3...cm−1 ⊇ cm. (128)

Then with an adequate choice of sign we have

e2,1 ≥ e2,2 ≥ e2,3...e2,m−1 ≥ e2,m. (129)

Proof. It turns out that this intuitively natural lemma is tricky. The idea is first
to show that if a transpose Xtr of a pay-off function X is monotone decreasing
(as the diagonal does), then P ∗Xtr is also monotone decreasing. Thereafter,
we can take any monotone decreasing pay-off function X which has nonzero
α2 in its eigenvalue decomposition. Finally, lemma 4.1 ensures that ranking of
α2e2 is the same as the ranking of P t ∗Xtr,∀t ≥ t0 which is the ranking of the
diagonal of P because of monotony of P t ∗Xtr which proves the claim.

In order to focus on the ideas we will assume that inclusions are strict (this
restriction is not really necessary, it makes the proof easier to follow):

c1 ⊃ c2 ⊃ c3...cm−1 ⊃ cm (130)

and prove

e2,1 > e2,2 > e2,3...e2,m−1 > e2,m. (131)

Please first observe that under the above condition we have:

P (i, k) = P (i, i), ∀ k ≤ i (132)

P (i, i) > P (i+ 1, i+ 1), ∀i (133)

132 can be verified directly from 130.
For 133 put

di = ki,0 (134)

and

uj = Kj,0. (135)

Then by 130 we have

P (i, i) =
a+ b

di
(136)

and
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P (i+ 1, i+ 1) =
a

di+1
, (137)

where

a =
∑
j∈ci+1

1

uj
(138)

b =
∑

j∈ci\ci+1

1

uj
(139)

By 130 we also have

1

uj
<

1

i
, ∀j ∈ ci+1, (140)

and

1

uj
≥ 1

i
, ∀j ∈ ci \ ci+1, (141)

above last two inequalities together with 138 resp.139 imply

a <
di+1

i
, (142)

resp.

b ≥ di − di+1

i
, (143)

Hence by 142 we have,

di+1a+
di+1

i
(di − di+1) > di+1a+ a(di − di+1) = adi (144)

Dividing the above expression by didi+1 we obtain

a

di
+
di − di+1

idi
>

a

di+1
(145)

Hence, by 143 we have

a

di
+

b

di
>

a

di+1
, (146)

which implies 133
Note that since the rows P (i, .) are probability measures 132 and 133 imply

P (i, k) = P (i+ 1, k) + ε, ∀ k ≤ i (147)

for some ε > 0 and

P (i, k) = P (i+ 1, k)− δk, ∀ k > i (148)
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for some positive δk with
∑
i<k≤m δk = iε.

Now assume that we are given strictly monotone decreasing Xtr :

Xtr
1 > Xtr

2 ... > Xtr
m . (149)

Then we have

(P ∗Xtr)i =
∑
k≤i

P (i, k)Xtr
k +

∑
i<k≤m

P (i, k)Xtr
k . (150)

Hence,

(P ∗Xtr)i =
∑
k≤i

(ε+ P (i+ 1, k))Xtr
k +

∑
i<k≤m

(P (i+ 1, k)− δk)Xtr
k (151)

for some positive δk with
∑
i<k≤m δk = iε.

But because of monotony of Xtr we also have∑
k≤i

εXtr
k +

∑
i<k≤m

−δkXtr
k > 0 (152)

Hence by combining 151 and 152 we obtain

(P ∗Xtr)i =
∑
k≤m

P (i, k)Xtr
k >

∑
k≤m

P (i+ 1, k)Xtr
k = (P ∗Xtr)i+1 (153)

which proves that P ∗Xtr
i is decreasing in i.

Definition 1

We will say that the ranking I is coherent with respect to monotony if

c1 ⊇ c2 ⊇ c3...cm−1 ⊇ cm (154)

implies that ranking according to I is monotone deceasing.

Note that in case of above monotony 154, it can be verified directly that
the diagonal elements S(i, i) of the weight matrix S are monotone decreasing
(compare section 3). Hence, we have the following simple lemma:

Lemma 5.2

Ranking the countries with the diagonal of S is coherent with respect to monotony.
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5.3 Alternative Ranking Methods

In this subsection we would like to note some alternatives to e2 that might be for
interest. The degree of coherence is an important driver of correlations between
two alternative measures. Two highly coherent alternative measures are likely
to have high correlation, so that the final choice will depend on other properties.

1) Ranking according to rank of diagonal elements of S(i, i)
2) Ranking according to rank of H(t, .) for large t
3) Ranking according to rank of AH(t, .) for large t

As mentioned before, there are different types of merging of supplementary
information. In the following we will analyze Lie-trotter approach (amalgama-
tion) by comparing the behavior of the amalgamated Random Walks on pre
S-Level (induced by the export and import data) with respect to e2 and above
alternatives on different prototype examples. As already mentioned, we think
know-how accumulation is well measured by the ECI (see lemmas 4.1, 4.2 and
4.3 for statistic, probabilistic and information theoretical interpretations). How-
ever, since we would like to be sure that the suggested amalgamation is an im-
provement that it is important to analyze the coherency behavior of alternative
rankings after amalgamation.

5.4 Coherency of Ranking Methods After Amalgamation

In this subsection we would like to demonstrate how different ranking methods
behave numerically after amalgamation of Sex with Sim. Note that due to com-
mutativity of amalgamation on pre S-Level (see subsection 6.2 for the definition
of amalgamation on pre S-Level ), all the conclusion in this subsection don’t
depend on the order of amalgamation.

For the Coherence after Amalgamation with respect C3 we would like to
present the following example:

Example 5

Put

Mim =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 1 0 0 0 0
c2 1 1 1 0 0 0 0
c3 1 1 1 1 0 0 0
c4 0 0 0 1 1 1 1
c5 0 0 0 0 1 1 1
c6 0 0 0 0 1 1 1


and
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Mex =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 0 0 0 0 0
c2 0 1 1 0 0 0 0
c3 0 0 1 1 0 0 0
c4 0 0 0 1 1 0 0
c5 0 0 0 0 1 1 0
c6 0 0 0 0 0 1 1


Let us display e2 of Random Walk induced by the amalgamated Sex,im

(= Sex ∗LT Sex ) and diagonal elements vD of Sex,im.

e2 =
(
0.43 0.44 0.35 −0.35 −0.44 −0.43

)
and

vD =
(
0.34 0.34 0.40 0.40 0.34 0.34

)
From coherence point of view, the first and the last country should be ranked

equally with respect to Mex and Mim before amalgamation. Moreover, both
export and import information matrices segregate the countries in two classes.
In one of the classes we have the first three and in the other class we have the last
three countries respectively, where each element of one class has an equivalent
counterpart in the other class and the equivalent pairs with respect to export
and import are the same. Hence, due to symmetry of the of the problem, the
amalgamated version should also segregate the countries in the same manner.
Similar to prototype example 2 before amalgamation, the absolute vales of e2
instead of e2 is coherent with respect to C3 which implies that H(t, .) for large
enough t ranks the amalgamated version in coherent manner. Note also that in
this case, the displayed diagonal vD as well as AH(t, .) for large t meet also our
coherency expectations with respect to C3.

Coherence of Amalgamation with respect to diversity and monotony
The last prototype example and other numerical observations show that

behavior of e2 in case of amalgamated Random Walk show similar surprises as
it was the case before amalgamation. We have shown in 5.1 in case of monotony
of information matrices e2 behaves coherently if we rank them standalone. On
other hand intuitively, if we amalgamate the a monotone export information
matrix Mex with an in some sense ”neutral” Mim, it shouldn’t have an impact
on the ranking. Let us examine this with the following prototype example:

Example 6

Mex =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 1 1 1 1 1
c2 1 1 1 1 1 1 0
c3 1 1 1 1 1 0 0
c4 1 1 1 1 0 0 0
c5 1 1 1 0 0 0 0
c6 1 1 0 0 0 0 0
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and

Mim =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 1 1 0 0 0
c2 1 1 1 1 0 0 0
c3 1 1 1 1 0 0 0
c4 0 0 0 1 1 1 1
c5 0 0 0 1 1 1 1
c6 0 0 0 1 1 1 1


Mex is monotone and due to special structure of Mim, we expect that Mim

should not cause much distortion of any reasonable ranking of Mex. Alterna-
tively we can argue as follows: Mim defines two homogeneous equivalent classes;
first three and last three countries. The equivalent pairs are (c1, c6), (c2, c5) and
(c3, c4). Firstly, after amalgamation of monotone deceasing Mex to Mim (which
is due to commutativety the same as amalgamation of Mim to Mex ) should
deliver monotone decreasing ranking within the classes. Secondly, due to equiv-
alence of c3 with c4 before amalgamation, c3 should be rank higher than c4
after amalgamation of monotone decreasing Mex. Analog we can argue that
c2 should be higher ranked than c5 and c1 should be higher ranked than c6.
Combining these two facts imply that the after amalgamation of monotone de-
ceasing Mex to Mim any reasonable ranking I should be monotone decreasing:
I(c1) > I(c2) > I(c3)...I(c6).

This expectation is satisfied by e2 with the right choice of sign, regardless
of ”incoherence” ranking of e2 applied on Mim in standalone case(!) as well as
VD :

e2 =
(
0.321 0.316 0.308 −0.477 −0.485 −0.488

)
and

vD =
(
0.252 0.248 0.242 0.2020 0.2026 0.2019

)
The very light incoherence of diagonal at forth and fifth country is due to

numerical error (warning by our software in Amalgamation process).
It is interesting to note that the ”incoherence” ranking of e2 applied on Mim

before amalgamation becomes coherent after amalgamation with the monotone
information matrix Mex.

Finally we would like to note that H(t, .) and AH(t, .) applied on this ex-
ample deliver similar results.

Next we would like to demonstrate the balancing behavior of ranking alter-
native rankings with the following two information matrices:

Example 7
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Mex =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 1 1 1 1 1
c2 1 1 1 1 1 1 0
c3 1 1 1 1 1 0 0
c4 1 1 1 1 0 0 0
c5 1 1 1 0 0 0 0
c6 1 1 0 0 0 0 0


and

Mim =



p1 p2 p3 p4 p5 p6 p7
c1 1 1 0 0 0 0 0
c2 1 1 1 0 0 0 0
c3 1 1 1 1 0 0 0
c4 1 1 1 1 1 0 0
c5 1 1 1 1 1 1 0
c6 1 1 1 1 1 1 1


In this case again e2 is only in absolute value ”coherent”. As in standalone

similar cases H(t, .) or AH(t, .) for large t rates ”coherently”.
Let us look at vD :

vD =
(
0.27 0.23 0.22 0.22 0.23 0.27

)
vD in this case preserves the desired symmetry and ranks the more balanced

ones higher (first and last countries have a share in all products, whereas the
middle ones exclude at least one product).

Without incorporation of import information, the last country would have
the lowest rank. But after incorporation of import information it will be up-
graded which is reasonable from economic sustainability point of view.

Please also note that this example is at the same time an additional prototype
with respect to equivalence condition C3 which e2 satisfies only in absolute value.

Remark 1

Finally, as amalgamated version of lemmas 5.1 and 5.2 we would like to note
that e2 of Pex,im := Pex ∗LT Pim as well as diagonal of Sexp.im := Sex ∗LT Sim
with monotone export and import information matrices with equivalent order
relationship with respect to export and import information matrices behave
numerically well. Here, equivalent order relationship means:

cex,i ⊃ cex,̃i (155)

if and only if

cim,i ⊃ cim,̃i (156)
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where cex,i and cim,i denote the exported and the imported (with respect to
economic performance equivalent scheme!) products of country i respectively.

Our numerical investigations supports the idea. However, rigorous proof of
this statement is a bit involving. A possible idea for example in case of amalga-

mated version of 5.1 is the following: First note that P
1
n
ex resp. P

1
n
im share same

second eigenvector as Pex resp. Pem. Next step would be to show that P
1
n
ex resp.

P
1
n
im inherit the proven property that Pex resp. Pem map the monotone decreas-

ing pay-off functions into monotone decreasing pay-off functions as indicated in
the proof of lemma 5.1. Taking this property to the limit in the definition of
amalgamation would then deliver the proof.
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5.5 Summary of Coherency Results

In this section we will summarize the coherency of e2 as well as our alternative
rankings. Since the conditions C1 and C2 are satisfied by all the alternatives,
we will restrict our self on the other coherency conditions.

Coherency before Amalgamation
Following table gives an overview of coherency of ranking alternatives before
amalgamation.

Coherency of Alternatives
(before Amalgamation)

Ranking by C3 C4 or C5 C6 Monotony
e2 on example 2 on example 3 on example 4 yes

not satisfied not satisfied not satisfied (see lemma 5.1)
H(t, .) coherent on example 2 analog to e2 analog to e2 analog to e2

(see comments to lemma 4.3) (see lemma 4.3) (see lemma 4.3) (see lemma 4.3)
AH(t, .) analog to H(t, .) coherent coherent analog to e2 and

(see comments to lemma 4.3) on example 3 on example 4 H(t, .)
Diagonal not equivalent to H(t,.) equivalent to AH(t, .) coherent yes
of S on example 2 on example 3 on example 4 (see lemma 5.2)

Please note that ranking byH(t, .) or AH(t, .) for large t should be conducted
in descending order. In other words, the lower H(t, i) or AH(t, i) (for large t)
are, the more favorable are the ranking according to H(t, i) or AH(t, i) for large
t. The order of ranking methods in the above table reflects degree of coherency
by we have observed in our numerical analyzes and theoretical considerations.
As a summary we can say that H(t, .) ranks slightly more coherent than e2.
Moreover, AH(t, .) and diagonal of S behave quite harmonically to a large
extend and rank lightly more coherent than e2. and H(t, .).

Coherency after Amalgamation
Amalgamation of import to export changes the game. The following table gives
an overview of the behavior of different ranking methods Random based on
amalgamation on pre S-Level.
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Coherency of Alternatives
(after Amalgamation)

Ranking by C3 Balancing Impact of Monotony
Amalgamation of Import

e2 analog to before amalgamation on example 7 only numerically satisfied
(see examples 5 and 7) in absolute value satisfied (see also remark1)

H(t, .) for large t coherent on the examples analog to e2
5 and 7 (see lemma 4.3) (see lemma 4.3)

AH(t, .) for large t analog to H(t, .) coherent coherent
(see comments to lemma 4.3)

Diagonal of S yes yes yes

It is interesting to note that our further combination of prototype exam-
ples where e2 behaves incoherent before amalgamation, behaves coherently af-
ter amalgamating monotone information matrix on which e2 behaves coherently.
On the other hand, prototype example 7 shows that e2 might be risky if we would
like to ensure balancing effect (or compensating ”week” export with ”strong”
import). However this risk can be removed to a large extend by H(t, .) for large
enough t which is in some sense almost equivalent ranking method.

Finally we would like note that we also conducted simulations of rankings
in order to measure the correlations of above ranking methods. It turns out
that coherence of ranking methods plays important role for the correlation of
two ranking methods and can be interpreted as systematic driver of a ranking
systems. For example we can confirm that ranking by AH(t, .) for large t is
higher correlated with the diagonal of S than e2 with diagonal of S:

cor(R(e2), R(diagonal of S)) < cor(R(AH(t, .), ), R(diagonal of S)) (157)

As a summary of this section and due to introduced examples in this manuscript
other numerical investigations we did, we conclude that regardless of eligibility
of e2 as complexity ranking method to a certain extend, the diagonal of stan-
dalone as well as the amalgamated version of weight matrix S seem to be more
preferable from the coherency point of view. But on the cost of interpretations
given by the lemmas 4.1, 4.2, 4.3 and the lemma 4.5. On the other hand, the al-
ternatives H(t, .) is a bit more and AH(t, .) even more elaborate and numerical
point of view, more complex to handle.
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6 Integrating Import

The exported products in a closed system of trading countries give deep insight
about what empowers them. However two countries exporting the same product
with the same market share might very well have different value chain paths.
Hence, an assessment based on only on their exported products might in some
cases deliver distorted ranking. The question is not only what the countries
export, it is also what they import and their internal trade. However, among
others due to challenging data collection problem, we would like to postpone
direct merging of internal trade information. Also, we think merging the im-
port with the export information delivers already important insight about the
internal trade.

As mentioned in 3.2, P (i, ĩ) as ”expected length” of a value chain of common
products exported by i and ĩ.

The question is how both information matrices Mexp and M im or more
generally Y exp and Y im should be mixed meaningfully, in order to obtain an
improvement of the quality of ECI or other explanatory indicators of sustain-
ability which is still holistic.

There are various possibilities. A direct approach is to look at the trade
balance sheet and define an analog information matrix.

Formally (this is only in order to demonstrate the difficulties and it is not
our suggestion):

Mex + im
c,p =


1, if

yexi,j−y
im
i,j

yexi,j
≥ benchmark

1
2 , if | y

ex
i,j−y

im
i,j

yexi,j
|< benchmark

0, otherwise

(158)

Thereafter using the scheme in subsection 3.3 we can generate Random Walk
on Graph and work and adapt the idea of ECI by taking second eigenvector or
any other ”eligible” ranking method.

Among others one drawback of above approach is that it requires a sensitive
external ”benchmark” parameter.

Other possibilities could be import content of export for each country and
product which among requires tedious data preparation.

An approach which could avoid above drawbacks to construct a Markov
Chain where each random steps is defined by first applying the export Random
Walk P1 and than by import Random Walk P2 successively(see subsection 3.4.3
for compatible import information matrix) respectively. More precisely:

Pex,im = Pα1 ∗ P 1−α
2 . (159)

Here 0 ≤ α ≤ 1 and determines the weight of export and import respectively.
However, this obvious idea has its also drawbacks. The matrices P1 and

P2 don’t necessarily commute and the dynamic of resulting Markov Chain is
dominated by P1 or P2 depending on the order of matrix multiplication and
therefore the resulting second eigenvector depends strongly on this order, which
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we cannot decide without an ambiguity at this stage. Although in some cases
there might be good reasons for the dominance of one Random Walk by the
other one, we believe economic complexity or sustainability of a country grows
organically and export and import trade of country are interactively growing
process in which their order in the value chain cannot be identified without
additional information or assumptions. Therefore our target is to model a sus-
tainability index based on export and import data in an unbiased manner. We
will see later that if the domination of export or import should be an issue, then
it can be controlled by the parameter α anyway. Moreover, although Markov
Chain governed by Pα1 ∗P 1−α

2 process is ergodic, it is not necessarily a Random
Walk on Graph with positive eigenvalues. This is an another serious obstacle
for interpretations in statistic probabilistic or information theoretical terms.

Next we will introduce a more appareling approach which is source of our
main idea in the last subsection of this section, without further exploration of
further alternatives.

6.1 Amalgamation by Lie-Trotter Product Formula

The above discussion leads to natural limiting approach which is known as
Lie–Trotter product formula .

P1 and P2 are similar to a positive diagonal matrices D1 and D2 respectively:

P1 = φ1 ∗D1 ∗ φ−11 (160)

and

P2 = φ2 ∗D2 ∗ φ−12 (161)

Where φ1 are orthogonal transformation matrices.
We can define

P1,n = P
1
n
1 = φ1 ∗D

1
n
1 ∗ φ

−1
1 (162)

P2,n = P
1
n
2 = φ2 ∗D

1
n
2 ∗ φ

−1
2 (163)

Put

Pex,im,n = (P1,n ∗ P2,n)n (164)

Pim,ex,n = (P2,n ∗ P1,n)n (165)

If P1,n and P2,n are not commutative the Pex,im,n and Pim,ex,n are not
necessarily equal. However their limes coincide:

Pex,im := lim
n→∞

Pex,im,n = lim
n→∞

Pim,ex,n =: Pim,ex (166)

In order to see this observe that
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Pex,im,n = P1,n ∗ Pim,ex,n−1 ∗ P2,n. (167)

which implies the commutativity of limes process due to

lim
n→∞

P1,n = Id (168)

and

lim
n→∞

P2,n = Id (169)

This means instead of merging discrete manner by merging infinite decimal
manner we gain a commutativety of amalgamation process of export with import
which does not carry ambiguity of order of amalgamation.

The process can be carried out also for Pα1 and P 1−α
2

This order independent amalgamation will be denoted by P1 ∗LT P2. How-
ever, although numerically, e2 of amalgamation of import with export delivers
acceptable results from coherency point of view, it does not necessarily represent
a Random Walk on a Graph if P1 and P2 are not commutative. This motivates
to introduce our favorite suggestion in the next section.

6.2 Amalgamation by Lie-Trotter Formula on pre S-level

If we use the binary operation ∗LT on a ”S level” fallowed by normalizing the
resulting matrix according to subsection 3.3 we to obtain a Random Walk on a
Graph if the elements of amalgamated S are positive. More precisely we have
the following theorem:

Theorem 6.1

let S1 resp. S2 be symmetrical weight matrices induced by the export and
compatible import information matrices respectively. Then the amalgamated
Sex,im = S1 ∗LT S2 is symmetric and has a positive eigenvalues (see Appendix).
Moreover, if the elements of Sex,im are positive then the Markov Chain Pex,im
obtained by normalization of Sex,im according to subsection 3.3 is reversible and
represents a Random Walk on a Graph with positive eigenvalues.

The proof of symmetry and the positivity of eigenvalues of Sex,im and Pex,im
can be found in Appendix. The second condition ”positivity of the elements of
Sex,im” is from practical point of view mild. By generating random information
matrices in a time consuming process, we observed that the likelihood of Sex,im
having negative elements converges to zero as die size of information matrix
tends to infinity and becomes negligible if we deal with information matrices
with sizes comparable with the number of countries and products involved in
ECI ranking.
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7 Appendix

For a satisfactory interpretation of ECI or any sustainability index the stochastic
counterpart of a graph according to 3.3 must satisfy some properties. In our
context these properties can be listed as ergodicty, reversibility and that the
second eigenvector of its transition probability matrix is positive. Although the
literature is very reach in the area of graph theory and stochastic, we could
not find self-contained a reference which is tailored for our purpose. The first
objective of this section is to provide the reader with the mathematics of these
properties for the non-amalgamated case. Our second objective to show that
our main finding (which is the amalgamation of supplementary value chain
information) also satisfy these properties. By doing so, we will exclude all ”
pathological” cases in order keep the formalism simple and focus on ideas.

7.1 Random Walk on a Graph

Random Walks on Graph are special Markov Chains with appealing proper-
ties such as ergodicity and reversibility which plays a important role for our
interpretation of ECI. The Markov Chains governed by transition probabilty
matrices according to 3.3 are special Random Walks on a Graph (positivity of
their eigenvalues). However, in case of non-comutativity, we can only show that
the product of P1 ∗ P2 is ergodic. Reversibility and positivity is not necessarily
satisfied. Nevertheless, idea behind behind behind the proof will be useful for
our main result in the last subsection for amalgamation. Good news is that
the nth root of Random Walks in this class remains in this class. We will also
show that the reversibility and positivity of eigenvalues of P1 ∗ P2 can be also
expected if P1 and P2 are commutative.

Definition 2

Markov Chain on a state space Z governed by the transition probability matrix
P is called ergodic if following conditions are satisfied:

i. (connectivity): ∀i, j ∈ Z : P t(i, j) > 0 for some t (170)

ii. (aperiodicity): ∀i, j ∈ Z : gcd{t : P t(i, j) > 0} = 1 (171)

Here the term gcd denotes the gratest common divisor.
In the literature of probability theory, the property connectivity is called

irreducibility. Since we would like establish self contained bridge between prob-
ability theory and graph theory, the terminology connectivity seem us more
appealing.

Intuitively, above definition tells that transition probability matrix of an
ergodic Markov Chain mixes a large sample towards a unique stationary distri-
bution which we will formalize next.

Definition 3
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A a probability measure π on state space Z is called stationary with respect to
transition probability matrix P if

µ ∗ P = µ (172)

Distribution of an ergodic Markov Chains converges to attracting (or stable)
stationary distribution which is unique. Formally:

Theorem 7.1

Let Markov Chain on a state space Z governed by the transition probability
matrix P be ergodic. Then there exists unique stationary distribution π so that

lim
t→∞

µP t = π (173)

for all initial distributions µ on the state space Z.

Note that uniqueness of stationary distribution does not imply the ergodicity
in our sense, which we can demonstrate with the fallowing example.

Example 8

Put

P =

(
1 0
1
2

1
2

)
The first state is and absorbing state (and does not mix properly) and we

have

lim
t→∞

µP t = (1, 0)

for all initial distributions µ on the state space {1, 2}
But the connectivity is not satisfied since P t(1, 2) = 0, ∀t ≥ 0.

This kind Markov Chains are automatically ruled out in our case because
of special weight matrices define by the ”intersection” of an information matrix
M according to subsection 3.3.

Next we would like to formulate a useful a sufficient condition for aperiodicity
which is in some sense a uniform (or strong) connectivity.

Lemma 7.2

Markov Chain governed by P is aperiodic if there exists t0 so that

P t(i, j) > 0 ∀t ≥ t0,∀i, j. (174)

The proof of above lemma is straight forward and it implies directly the
following corollary.

Corollary 7.2.1

Markov Chain on a state space Z governed by the transition probability matrix
P is ergodic if there exist t0 so that

P t(i, j) > 0 ∀t ≥ t0,∀i, j. (175)

54



We would like exclude any country in our data which does not trade any-
thing, which means that each raw of the information matrix Y has at leas one
non-zero element. Then Markov Chain governed by P and which is generated
by M according subsection 3.3 for modular scheme satisfies:

P (i, i) > 0 ∀i. (176)

This property will help us to prove the ergodicity of Markov Chains governed
by the product of a product of transition probabilities. More precisely:

Lemma 7.3

Let P1 resp. P2 be connective Markov Chains generated by the information
matrices according modular scheme we introduced in section 3.3. Then P1, P2

and P1 ∗ P2 are all ergodic.

Proof. First we introduce a convenient notation which we will also use later for
amalgamation of Random Walks on a Graph.

Fix a i and j and put

A[0, t](i, j) = {I(t) = {i0, i1, ..., it} : i0 = i, it = j} (177)

and for I(t) = {i0, i1, ..., it} in A[0, t](i, j)

P1(I) = P1(i0, i1)P1(i1, i2)P1(i2, i3)...P1(it−1, it). (178)

Then we have

P t1+1
1 (i, j) =

∑
I(t+1)∈A[0,t+1](i,j)

P1(I(t+ 1)) =
∑

I(t)∈A[0,t](i,k)

P1(I(t))P1(k, j)

(179)
But the right hand side of the above equation satisfies:

∑
k∈Z,I(t)∈A[0,t](i,k)

P1(I(t))P1(k, j) ≥
∑

I(t)∈A[0,t](i,j)

P1(I(t))P1(j, j) (180)

This means, once P t1(i, j) > 0 then P t+s1 (i, j) > 0 for all s ≥ 0. By corollary7.2.1we
conclude that P1 is ergodic.

For the ergodicity of the product P1 ∗ P2 first observe that

P1 ∗ P2(u, v) =
∑
k

P1(u, k)P2(k, v) ≥ P1(u, v) ∗ P2(v, v),∀u, v ∈ Z (181)

On the other hand we have

(P1∗P2)t(I) = P1∗P2(i0, i1)P1∗P2(i1, i2)P1∗P2(i2, i3)...P1∗P2(it−1, it). (182)
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Inserting the inequality 181 into implies 182 we obtain

(P1 ∗ P2)t(I) ≥ P1(I(t))
∏

ik∈I(t)

P2(ik, ik) ∀I(t) ∈ A[0, t](i, j). (183)

Hence,

(P1∗P2)t(i, j) =
∑

I(t)∈A[0,t](i,j)

P1∗P2(I(t)) ≥
∑

I(t)∈A[0,t](i,j)

P1(I(t))
∏

ik∈I(t)

P2(ik, ik).

(184)
By assumption we have P2(u, u) > 0 for all u ∈ Z, and hence (P1∗P2)t(i, j) >

0 once P t1(i, j) > 0. On the other hand, from the proven ergodicity of P1 we have
P t+s1 (i, j) > 0, ∀s ≥ 0 once P t1(i, j) > 0. Hence, (P1 ∗ P2)t+s(i, j) > 0, ∀s ≥ 0.
We conclude that P1 ∗ P2 is ergodic.

Definition 4

A Markov chain on a state space Z governed by the transition probability ma-
trix P is reversible with respect to probability measure measure π on Z if the
following detailed balance condition is satisfied.

πiP (i, j) = πjP (j, i) (185)

or in compact form

D(π) ∗ P = P tr ∗D(π) (186)

Which means that the matrix D(π) ∗ P is symmetric.
More intuitive version of reversibility is the Kolmogorov Criterion for re-

versibility which states that probability of any path with the same start and
end state can be reverted, so that the forward and the backward predictions are
indifferent.

Definition 5

Ergodic and reversible Markov Chain on a state space Z (which is finite in our
case) will be called Random Walk on a Graph.

Lemma 7.4

Let let Z be state space and G(Z) = (Z,E(Z), S(Z)) be weighted and connected
graph with respect to S. Moreover, let P transition probability matrix generated
by (S,D) so that P = D ∗ S where D is the normalizing diagonal matrix as
introduced in section 3.3 for modular scheme.

Then the Markov Chain governed by P is ergodic and reversible with respect
to a unique stationary measure π.
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Proof. The ergodicity of the P is the consequence of lemma 7.3 and implies
existence of unique stationary π which we can write explicitly:

πi =
D(i, i)−1∑
j≤mD(j, j)

(187)

Clearly π is probability measure on Z. In order to see that it stationary
measure observe that

(π ∗D)i =
1∑

j≤mD(j, j)
∀i, (188)

which means that (π ∗D)i is a constant independent of i
Therefore,

(π ∗ P )i = (π ∗D ∗ S)i =

∑
j≤m S(j, i)∑
j≤mD(j, j)

=

∑
j≤m S(i, j)∑
j≤mD(j, j)

(189)

The first equality follows from the definition of P as in 3.3, second equality
follows from 188 and the last equality is given by the symmetry of S.

But, by construction of diagonal matrix D we have (see section 3.3)∑
j≤m

S(i, j) = D(i, i)−1. (190)

Hence, we have

(π ∗ P )i =

∑
j S(i, j)∑

j≤mD(j, j)
=

D(i, i)−1∑
j≤mD(j, j)

= πi, (191)

which means that π is a stationary measure.
Moreover,

D(π) ∗ P = D(π) ∗D ∗ S =
1∑

j≤mD(j, j)
S, (192)

which is symmetric from which the reversibility follows.

If Markov Chain governed by transition probability measure P is ergodic
and reversible with respect π, then it can be represented as product of diagonal
matrix with a symmetric matrix. This fact is formulated by the following lemma.

Lemma 7.5

Let P be ergodic and reversible transition probability matrix on finite state
space Z. Then there exist a diagonal matrix D̂ and symmetric matrix Ŝ so that
P = D̂ ∗ Ŝ.
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Proof. Per definition we have D(π)∗P is symmetric. The lemma fallows directly
by putting:

Ŝ = D(π) ∗ P (193)

and

D̂ = D(π)−1 (194)

As a summary, Random Walks on a Graph can be characterized with ergodic
Markov Chains having the representation P = D ∗ S. The Random Walks
on Graph generated according to section 3.3 for modular scheme are special
Random Walks with convenient properties such as positivity of its eigenvalues
(see next subsection for this property) which allows following useful lemma).

Lemma 7.6

If the transition probability matrix P of Random Walks on Graph is induced
according to subsection 3.3 for modular scheme with, then there is unique P

1
n

with positive eigenvalues, hence also positive according to our definition. More-
over, if the elements of P

1
n are positive, then of P

1
n represents a Random Walk

on Graph.

Proof. Let P = D−1 ∗ S with a positive symmetric matrix S according to
subsection 3.3 for modular scheme.

We can write P
1
n explicitly as follows:

P
1
n = θ ∗ D̂ 1

n ∗ θ−1. (195)

Where

θ = D−
1
2 ∗ φ (196)

Here, φ is unitary transformation diagonlizing the positive symmetric matrix
D−

1
2 ∗ S ∗D− 1

2 with the diagonal matrix D̂ so that:

φ ∗ D̂ ∗ φ−1 = D−
1
2 ∗ S ∗D− 1

2 (197)

We have

θD̂θ−1 = (D−
1
2 ∗φ)∗D̂∗(φ−1∗D 1

2 ) = D−
1
2 ∗D− 1

2 ∗S∗D− 1
2 ∗D 1

2 = D−1∗S = P
(198)

This legitimizes the nth root in 195.
We have to show that P

1
n can be represented as a product of diagonal matrix

with a positive symmetric matrix.

P
1
n = D−

1
2 ∗D 1

2 ∗ P 1
n = D−

1
2 ∗D 1

2 ∗ (D−
1
2 ∗ φ) ∗ D̂ 1

n ∗ (φ−1 ∗D 1
2 ) (199)
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By the commutativity of diagonal matrices we can write

P
1
n = D−1 ∗D 1

2 ∗ (φ ∗ D̂ 1
n ∗ φ−1) ∗D 1

2 (200)

It fallows that

P
1
n = D−1 ∗ Ŝ, (201)

where
Ŝ = D

1
2 ∗ (φ ∗ D̂ 1

n ∗ φ−1) ∗D 1
2 . (202)

Since φtr = φ−1, Ŝ must be symmetric with positive eigenvalues (see next
subsection for positivity of eigenvalues).

Moreover, note that the matrices P and P
1
n share the same right eigenvector

(1, 1, ....1)tr with eigenvalue 1 (positive nth root of one is one). Applying this

fact to P
1
n implies that the sum of the rows are equal to one, which proves that

P
1
n is also a transition probability matrix if the elements of P

1
n are positive.

As mentioned before, our main goal is to suggest an amalgamation of supple-
mentary value chain information in a coherent manner with a desired properties.
The fallowing lemma shows that if transition probabilities of Random Walks on
Graph commute then our task becomes fairly easy.

Lemma 7.7

Let P1 and P2 be commutative transition probability matrices Random Walks
on a Graph with the same state space Z so that

P1 ∗ P2 = P2 ∗ P1 (203)

Then Markov Chain governed by

P = P1 ∗ P2 (204)

is also a Random Walk on a Graph.

Proof. Please first note that P1 and P2 share a common stationary measure π
since by commutativity

Pn = Pn1 P
n
2 = Pn2 P

n
1 . (205)

The above equation says that if π1 respectively π2 are stationary measures
of P1 and P2 than as n tends infinity the distance µ ∗ Pn to π1 as well as π2
tends to zero. Hence π1 must be equal to π2 for any initial distribution µ on Z.

Since P1 is a random walk on graph with respect to π we can write

(D(π) ∗ P1 ∗ P2)tr = P tr2 ∗ P tr1 ∗D(π) = P tr2 ∗D(π) ∗ P1 (206)

On the other hand the commutatitivity of P1 with P2 implies the commuta-
tivity of P tr1 with P tr2 which implies
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(D(π) ∗ P1 ∗ P2)tr = P tr1 ∗ P tr2 ∗D(π) = P tr1 ∗D(π) ∗ P2 (207)

But

(P tr1 ∗D(π) ∗ P2)tr = P tr2 ∗D(π) ∗ P1 (208)

Hence D(π) ∗ P1 ∗ P2 must be symmetric.

For simplicity assume that the algebraic multiplicity of eigenvalues of {λ1,i :
i ≤ m} and {λ1,i : i ≤ m} are one and they are all strictly positive.

If e2,i are normalized eigenvector of P1 with eigenvalue λ2,i then we have:

P1 ∗ P2 ∗ e2,i = λ2,iP1 ∗ e2,i. (209)

Using the commutativity we obtain

P2 ∗ P1 ∗ e2,i = λ2,iP1 ∗ e2,i. (210)

Hence the one dimensional invariant subspace of P2 are also invariant under
P1 and vice versa.

We also have

e2,i ∗ P2 ∗ etr2,i = λ2,i > 0 (211)

On the other hand by mentioned in-variance we must have

e2,i ∗ P1 ∗ etr2,i = λ1,k > 0 (212)

for some k ≤ m. This implies that besides sharing the same system of eigen-
vectors, they also share the same positive sign. Hence all the eigenvalues of
P1 ∗ P2 are positive. However,and some how disappointing is that, the set of
commuting Random Walks of a fixed Random Walk is a poor set.

7.2 Positivity

For our interpretation of ECI (see lemma 4.1 and lemma 4.2 in subsection 4)
the sign of the second largest eigenvalue in absolute value(which we will shortly
phrase as ”second largest eigenvalue”) is crucial. The purpose of this section is
among others to convince the reader that the sign of the second largest eigen-
value is positive. Since we want to compare different amalgamation method
of supplementary value chain information matrices, we would like provide the
reader also with some facts about the positivity of the products of Markov
Chains.

There are different notions of positivity of a matrix. For our purpose we
would like to be sure that the elements as well as the eigenvalues are positive.
The former condition is needed in order to ensure the normalized version of S
according to subsection 3.3 delivers transition probability matrix governing a
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Random Walk on Graph and the later is needed for its asymptotic behavior.
With a little abuse of terminology in our context, we will introduce following
notion of positivity:

Definition 6

We will call mxm matrix A positive if

xtr ∗A ∗ x ≥ 0 ∀x ∈ Rm (213)

It is easy to see that if a positive matrix has a diagonal form with real
diagonal elements (similar to diagonal matrix) then all the eigenvalues λi i ≤ m
are non-negative. Especially if A is a positive transition probability matrix we
can write:

1 = λ1 > λ2 ≥ λ3... ≥ λm ≥ 0 (214)

Products of positive matrices are not necessarily positive which can be shown
by the following example:

Example 9

Put

A =

(
1 1
0 1

)
Then A cannot be diagonalized. But, A and A2 are positive since

(x, y) ∗A ∗ (x, y)tr = x2 + yx+ y2 ≥ 0

and

(x, y) ∗A2 ∗ (x, y)tr = x2 + 2yx+ y2 ≥ 0

But,

(x, y) ∗A4 ∗ (x, y)tr = x2 + 4yx+ y2

which is not positive.
However, in some cases the positivity is satisfied.

The next two lemmas are well known facts.

Lemma 7.8

Let A be a mxn matrix. Then S = A ∗Atr is a positive symmetric matrix and
hence has positive eigenvalues. Moreover, if A is regular then all the eigenvalues
are strictly positive.

Lemma 7.9

Let A be positive matrix with a diagonal form. Then there is unique positive
nth root for every natural number n which can be explicitly written as:
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A
1
n = φA ∗ (DA)

1
n ∗ φ−1A (215)

Where φA is the transformation matrix which diagonalizes A. Moreover, if
A symmetric then φA is orthogonal symmetric transformation and hence A

1
n is

also symmetric.

A symmetric matrix is not necessarily positive even if all the elements are
positive which the following examples shows.

Example 10

Put

A =

(
0 1
1 0

)
A is not positive in our sense which can be checked by the test vector x =

(1,−1). Note that A is also not aperiodic (it has a period of 2).

Concerning the positivity, the situation does not change if we increase the
weight of the diagonals of A a only bit in order to satisfy aperiodicity and hence
ergodicity, which we would like to demonstrate with the following example.

Example 11

B =

(
0.1 0.9
0.9 0.1

)
Clearly, B is transition probability matrix. It has unique stationary measure

π = (0.5, 0.5) and it is ergodic since it satisfies the condition of corollary 7.2.1. It
is also reversible which can be directly checked. Hence B represents a Random
Walk. However since B has negative eigenvalue (because all the diagonals are
dominated by the other elements in the same row), it cannot be represented by
an intersection matrix according subsection 3.3 for modular scheme.

However, if the symmetric matrix is obtained according to modular scheme
based on the intersection of information matrices, then all the eigenvalues are
positive.

Lemma 7.10

Let M be zero one information matrix and D be a positive diagonal matrix with
proper dimension. Moreover, let S be defined according to in subsection 3.3 for
modular scheme:

S = M ∗D ∗M tr (216)

Then all the the eigenvalues of S are positive.

Proof. Put

A = M ∗D 1
2 (217)
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Then we have

S = A ∗Atr (218)

Hence, by Lemma 7.8 S must have positive eigenvalues.

Lemma 7.11

Let D be positive diagonal matrix and S positive symmetric matrix then the
matrices X = D ∗ S and Y = S ∗D are also positive and have diagonal form.

Proof. We will only prove the statement of the lemma forX.

D−
1
2 ∗X ∗D 1

2 = D
1
2 ∗ S ∗D 1

2 (219)

D
1
2 ∗S ∗D 1

2 is symmetric and positive which can be verified directly. Hence
the matrix D

1
2 ∗ S ∗D 1

2 must have positive diagonal form. By similarity of X
with D

1
2 ∗ S ∗D 1

2 we conclude that X and D
1
2 ∗ S ∗D 1

2 share the same roots
which are positive and therefore X must positive eigenvalues.

Corollary 7.11.1

Let P transition probabilities of Markov Chains generated according to 3.3 for
modular scheme:

P = D ∗ S1. (220)

Then P is a transition probability matrix with positive eigenvalues.
Moreover, if we exclude the pathological cases by assuming the eigenvalues

λi are all different then we can write

1 = λ1 > λ2... > λm−1 > λm ≥ 0 (221)

The following two lemmas show that if we only require positivity instead of
stronger assumption positive eigenvalues, then we can also weaken the assump-
tions.

Lemma 7.12

Let A and B mxm matrices and A positive. Then X = B ∗ A ∗ Btr is also
positive.

Proof.
x ∗B ∗A ∗B ∗ xtr = y ∗A ∗ ytr (222)

where y = x ∗B.
Hence, X is positive by positivity of A.
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Lemma 7.13

Let A be positive with a diagonal form and S symmetric with strictly positive
eigenvalues. Then the matrices X = S ∗A, Y = A ∗ S are also positive.

Proof. We will only prove that X is positive.

x ∗X ∗ xtr = x ∗ S ∗A ∗ xtr = x ∗ S 1
2 ∗ S 1

2 ∗A ∗ S− 1
2 ∗ S 1

2 ∗ xtr (223)

Put

y = x ∗ S 1
2 (224)

Then we have

x ∗X ∗ xtr = y ∗ S 1
2 ∗A ∗ S− 1

2 ∗ ytr (225)

By similarity A and S
1
2 ∗ A ∗ S− 1

2 share the same roots. It follows that
S

1
2 ∗A ∗ S− 1

2 positive. Hence, X is positive.

7.3 Amalgamation of Random Walks and Lie Trotter Ap-
proach

The behaivour of Random Walk on a Graph induced by an information matrix
M, such as diagonal or second eigenvector of its transition probability matrix
gives insight about how the countries evolve within a close system. But, co-
herency and meaningfulness of the key indicators of of a Random Walk on a
Graph are reasoned by its properties such as ergodicity, reversibility and the
positivity of the Random Walk on a Graph in our sense. Hence, we will pursue
these properties in engineering of ranking system which amalgamates supple-
mentary value chain information to ensure that these appealing properties are
inherited. Moreover, an amalgamation should be unbiased if there is no justifi-
cation that one system is dominated by an other system and reflect the organic
charter of complexity or sustainability. For example if the transition probability
matrices of export and import are commutative then our task becomes easy.
Simple product of these matrices deliver directly a Random Walk on Graph
satisfying desired properties. However in case of non-commutative transition
probability matrices, the dynamic of the Markov Chain is biased and domi-
nated by one of them depending on the order of matrix multiplication, which
cannot be decided without ambiguity. Further drawback of this natural attempt
is non-reversibility and non-positivity. In this section we will demonstrate that
these challenges can be accomplished in a elegant manner. We first present a
amalgamation method Random Walks on a Graph by Lie Trotter product of
their transition probability matrices, which rationalizes the ambiguity of order
away, inherits the ergodicity. However, our numerical results show that although
deviation from reversibility and positivity of this method are fairly small, we
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cannot ignore it as numerical error. Luckily, we could discover a work around
with which we can also ensure reversibility and positivity. This finding is pre-
sented at the end of this subsection is our main finding and which we think can
be used in more general context.

Following theorem is a simple version of well known paper of Trotter for
bounded generators of semi groups (see [7]).

Theorem 7.14

Let A1 and A2 two mxm matrices with well defined diagonal form, nth roots
and logarithm. Then following limes exists

A1 ∗LT A2 := lim
n→∞

(A
1
n
1 ∗A

1
n
2 )n. (226)

The symbol ∗LT refers to Lie-Trotter Product.
Moreover, we have following properties of Lie-Trotter Product:
I) Commutativity:

A1 ∗LT A2 = A2 ∗LT A1 (227)

II) Associativity: For mxm matrices A1, A2 and A3 with well defined nth
roots and logarithm we have:

(A1 ∗LT A2) ∗LT A3 = A1 ∗LT (A2 ∗LT A3) (228)

We would like to note that in our case the Lie-Trotter Product can be written
explicitly:

A1 ∗LT A2 = exp(log(A1) + log(A2)), (229)

where

log(A) = V −1 ∗ log(D) ∗ V (230)

Here V is the transformation matrix diagonalizing A :

A = V ∗D ∗ V −1 (231)

Note that if A is symmetric. then V can assumed to unitary transformation,
so that V −1 = V tr

It is wort to spend some time for the above theorem.
Firstly, the conditions of the above theorem are satisfied if all the eigenvalues

are strictly positive which not a serious restriction in practice.
secondly, if A1 and A2 are commutative then ”∗LT ” coincides with the usual

matrix product ”∗”.
thirdly, If A1 and A2 are transition probability matrices then A1 ∗LT A2

is also a transition probability matrix if their nth roots have positive elements
which is from practical point of view the case (see our comments after the proof
of lemma 7.6). This follows from the fact that nth roots as well as the products of
transition probability matrices are transition probability matrices which is also
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an inherited property at infinity. For the rest of this chapter we will assume this
from practical point of view mild condition that the nth roots of the matrices
which would like to amalgamate (P or S) have positive elements.

The question is, is there a sufficient condition so that ”∗LT ” product of
random walks ergodic which we will answer by the following lemma.

Lemma 7.15

Let P1 and P2 be transition probability matrices of connecting random walks
with strictly positive eigenvalues on the same state space Z so that, for every
pair (i, j) ∈ Z there exist a t1 and t2 with

P t11 (i, j) > 0 (232)

P t22 (i, j) > 0 (233)

Then P1 ∗LT P2 is ergodic if P1 and P2 have a time indiscreet RCLL (”right
continuous with left limits”) version.

Proof. Please note that we cannot use the lemma 7.3 for the ergodicity of prod-
uct of Random Walks directly. We have to ensure that the the right hand side
of inequality 184 in the proof of lemma 7.3 is bounded away from zero as n
tends to infinity in definition of 226.

We will use the continuous time version of the time homogeneous Markov
Chain governed transition probability matrix P so that:

P s = exp(s log(P )) (234)

which solves the following differential equation:

dU(s)

ds
= log(P ) ∗ U(s) (235)

With initial condition

U(0) = Id = lim
s→0

P s (236)

The explicit representation of P s according to 234 is justified since we assume
that all the eigenvalues of P are strictly positive which implies the existence of
real valued logarithm of the matrix P.

We have

lim
s→0

Id− P s

s
= log(P ) (237)

Especially,

lim
s→0

Id− P s

s
(i, i) = log(P )(i, i) (238)
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The idea is to look at the continuous version of the Markov Chain governed
by P1 and and P2 in discrete time intervals. For fixed natural numbers n and t
let

Htn = {l +
k

n
: 0 ≤ k ≤ n, l ≤ t− 1} (239)

equidistant points of interval [0, t].
For each i ∈ Z the probability Lδ(i) = P (Xs = i, ∀s ∈ [0, δ) | X0 = i) of

lingering at i in an infinite decimal interval [0, δ] can be approximated by

 Lδ(i) ≈ 1 + δ log(P2)(i, i). (240)

Here, (Xs)s∈[0,∞) is a RCLL (”right continuous with left limits”; see e.g.
page 4 and 5 of [11]) version of Markov Chain governed by P. Using the above
approximation and the time homogeneity property, for each i ∈ Z, we can
approximate the lingering probability Lt(i) of the above Markov Chain at i up
to t given that it starts from i at initial time 0:

Lt(i) ≈ (P
1
n )(i, i))n)t ≈ (1 +

1

n
log(P )(i, i))nt =: Ltn(i). (241)

We have

lim
n→∞

Ltn(i) = exp(t log(P )(i, i)). (242)

Hence, for each path (itk)tk∈Htn we obtain∏
tk∈Htn

P
1
n
2 (itk , itk) ≥ (((P

1
n
2 )(u, u))n)t. (243)

Where u minimizing state of the function P
1
n
2 (u, u) :

P
1
n
2 (u, u) = min{P

1
n
2 (i, i) : i ∈ Z} = min{exp(

1

n
logP )(i, i) : i ∈ Z} (244)

Note that since Z is finite state space, for large enough n, the above mini-
mizing state u dose not depend on n.

Put

α = min{ lim
s→0

1− P s2 (ii)

s
: i ∈ Z} = min{log(P2)(i, i) : i ∈ Z} (245)

By assumption we have P2(i, i) > 0, ∀i ∈ Z. Hence, we must have α > −∞
which implies that exp(α) > 0.

Letting t→∞ we obtain

lim
n→∞

∏
tk∈Htn

P
1
n
2 (itk , itk) ≥ lim

n→∞
(((P

1
n
2 )(u, u))n)t = exp(tα) > 0 (246)
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Now we can use the same idea as in lemma 7.3 and obtain

((P
1
n
1 ∗ P

1
n
2 )n)t(i, j) =

∑
I(t)∈A[0,nt](i,j)

P
1
n
1 ∗ P

1
n
2 (I(t)) ≥ P t1(i, j) exp(tα) > 0.

(247)
The right hand side of above inequality does not depend on n. Hence, once

P t01 (i, j) > 0 we conclude (P1∗LT P2(i, j))t ∀t ≥ t0. Which implies that P1∗LT P2

is ergodic.

Although we can only claim that the log of transition probabilities Random
Walks represent intensity matrices (which is necessary for having a time indis-
creet version) only approximately and not rigorously, our numerical results show
that the deviance from reversibility and positivity is insignificant. However they
cannot be argued away as numerical error.

But by the weighting matrices S1 and S2 fallowed by normalizing ensures all
the desired properties if the positivity and connectivity of the elements amal-
gamated S satisfied which is our key finding. Note that non-positivity and
non-connectivity of the elements amalgamated S is rare and numerically it be-
comes marginal as the size of information tends to infinity.

Theorem 7.16

Let P1 resp P2 two mxm transition probability matrices driven by modular
scheme from zero one information matrices M1 and M2 respectively as in 3.3,
so that

P1 = D̂1 ∗ S1 (248)

P2 = D̂2 ∗ S2 (249)

where

S1 = M1 ∗D ∗M tr
1 (250)

and
S2 = M2 ∗D ∗M tr

2 , (251)

with D̂1 resp. D̂2 normalizing diagonal matrices of S1 resp. S2.

Further, let S denote the Lie Trotter Product of S1 with S2 :

S = S1 ∗LT S2. (252)

Then S is symmetric and have positive eigenvalues. Moreover, if as is con-
nective and the elements of S are positive then the P induced by S according
subsection 3.3 is ergodic, reversible, hence Random Walk on a Graph.
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Proof. For the symmetry and positivity of the eigenvalues of S note that log(S1)
and log(S2) are symmetric by the definition of log, which can be directly checked
by the formula 231. Since sum of symmetric matrices are symmetric and
symmetry preserving property of exp we conclude that S = S1 ∗LT S2 =
exp(log(S1) + log(S2)) is symmetric and has a symmetric square root which
can be expressed as:

S
1
2 = exp(

1

2
(log(S1) + log(S2)). (253)

But

S = S
1
2 ∗ S 1

2 = S
1
2 ∗ (S

1
2 )tr (254)

Hence by lemma 7.8 it fallows that the amalgamated S is symmetric matrix
with positive eigenvalues by 7.4 and corollary 7.11.1.
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