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Abstract: In the past decade, there has been increasing attention paid to the recycling of cotton fabric
waste. In the present study, different concentrations of sodium hydroxide (NaOH) ranging from
1 M to 4 M were used to thermomechanically deweave cotton fabric. The fabrics treated with 1 M
NaOH and 2 M NaOH were partially deweaved, whereas those treated with 3 M NaOH and 4 M
NaOH were completely deweaved. Fourier-transform infrared (FTIR) spectroscopy was applied to
analyze the chemistry and structure of the cotton fabric. The FTIR spectra indicated that the structure
of cotton fabrics treated with 1–2 M NaOH were similar to that of pristine fabric, while the presence
of NaOH was observed. In the case of samples treated with 3–4 M NaOH, both the peak positions
and the band intensities were changed, in addition to the formation of cellulose II. FTIR spectra for
the recycled NaOH-treated cotton fabrics were compared, and no major structural changes were
identified. A post-treatment with deionized (DI) water removed excess Na+ ions, with the sample
showing a similar molecular structure to that of the pristine material. These results suggest the
feasibility of recycling aqueous NaOH for post-washing treatment as a new method for recycling
cellulosic fabric waste.

Keywords: cotton fabric; recycling; sodium hydroxide; deweaving; Fourier-transform infrared
spectroscopy

1. Introduction

The amount of textile waste generated globally is increasing every year and is becom-
ing a serious issue. Approximately 17.03 million tons of textile waste was generated in
2018 [1]. Currently, there are three major recovery methods for textile waste: reuse, recy-
cling, and combustion for energy recovery. About 14.7% (2.51 million tons) of textile waste
is recycled, and approximately 18.9% (3.22 million tons) is used for energy recovery [1].
The remaining 66.4% (11.3 million tons) of textile waste is landfilled [1]. The two major
methods of textile recycling are mechanical recycling and chemical recycling. Mechanical
recycling methods have been used extensively, which include shredding, open-end yarn
spinning, and thermoplastic polymer reprocessing [2]. However, this process can lead
to a reduction in the length and strength of the fibers [2]. Chemical recycling methods
dissolve or depolymerize textile completely into monomers that can be polymerized into
new products [2,3]. A considerable advantage of this method is that the source of the
textiles to be recycled and added contamination can be ignored once the polymers resulting
from the process are identical. However, it is restricted by the cost and efficiency, as the
productivity is rather low [4].

Cotton fabric is a popular type of textile that accounts for 24% of the global textile
market due to its comfort and durability [3]. Cotton fabric is primarily composed of cellu-
lose, an organic compound that cannot be dissolved directly with common solvents [5,6].
Several solvents (i.e., acid-based, ionic liquid, and alkaline) have long been used to treat
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cellulose [7–10]. Among these solvents, sodium hydroxide (NaOH) has been used ex-
tensively to dissolve cellulose [11–16]. Wang et al. and Sobue et al. reported that the
dissolution of cellulose could be limited, and cellulose is soluble within a very narrow
range of temperature and NaOH concentration: 7 wt.% (~2 M) to 10 wt.% (~3 M) NaOH
at <0 ◦C [17,18]. During the dissolution process, the Na+ from NaOH penetrates the
amorphous and crystalline regions and shifts the crystalline arrangement from parallel
(cellulose I) to antiparallel (cellulose II) [19]. This antiparallel arrangement of the cellulose
crystalline structure breaks the hydrogen bonds and liberates each molecule to choose its
“neighbors” under polar environments [20]. It has also been reported that cellulose swells
when it interacts with NaOH (or Na+) through the removal of the cellulose carboxyl group
and intra-hydrogen bonds [21,22]. This interfibrillar swelling is represented by a series of
ballooning phenomena along the cellulose fiber, resulting in cellulose dissolution [23,24].
The swelling and dissolution efficiency can be increased by increasing NaOH concentra-
tions [23,25,26]. In addition to the swelling and dissolution of cellulose material, alkaline
solution treatment improves the quality (i.e., dyeability and strength) of fabric materials,
while the weight loss and split number of the fibers are also increased [23,27].

Spectroscopic techniques have been utilized to analyze the molecular structure of
two- and three-dimensional (2D/3D) materials, polymers, catalysts, and composite ma-
terials [28–35]. Fourier-transform infrared spectroscopy (FTIR) has been applied to study
the surface species and functional groups of cellulose-based materials due to its simplicity
and fast measurement [36–40]. Abidi et al. studied the structural changes of cellulose
using FTIR during cotton fiber development and estimated the content of cotton fiber
cellulose on the basis of the 667 cm−1 (OH out-of-plane bending mode) and 897 cm−1

(β-linkage of cellulose) bands [36]. Duchemin studied the conversion of cellulose I to
cellulose II during the mercerization process at −17 ◦C [27]. The author analyzed the FTIR
bands of inter/intramolecular hydrogen bonds and confirmed the cellulose I transition
(3290 cm−1 and 3333 cm−1) to cellulose II (3440 cm−1 and 3490 cm−1) with increasing
NaOH concentration. In addition to the OH peak positions, the peak area in the OH region
(3000–3700 cm−1) with the CH2 stretching band (2900 cm−1) as a reference was also used
to understand the cellulose I/cellulose II composition in the mercerization process [41,42].

From the economic or process simplification point of view, during the chemical recy-
cling processes, cotton fabric depolymerization followed by re-polymerization processes
should be reconsidered. It is hypothesized that the waste cotton fabric materials could be
deweaved under controlled chemical concentrations and temperatures. The deweaved
cotton fabric waste could be used directly to produce a yarn, followed by fabric production,
as shown in Scheme 1.
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Therefore, the aim was to investigate the cotton fabric deweaving process using a
chemical known to have an impact on fiber interactions, such as NaOH, in mild experimen-
tal conditions [12]. In this work, various concentrations of NaOH were used in combination
with mechanical stirring to treat samples of equivalent cotton fabrics, and the following
questions were addressed: (1) How is the deweaving process affected by NaOH concentra-
tion? (2) Will the molecular structure of cotton fabric be affected by NaOH concentration?
(3) Can we continuously reuse the same NaOH aqueous solution for the cotton fabric
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deweaving process? (4) Can any resulting NaOH residue be removed via a simple washing
procedure? This paper describes the feasibility of using NaOH for the deweaving of cotton
fabric. The morphology and functional group chemistry of cotton fabrics were studied
using combined Fourier-transform infrared spectroscopy (FTIR) and digital camera images.

2. Materials and Methods

Cotton muslin samples, which were originally procured from Arthur R. Johnson Co.,
Inc., Brooklyn, NY, USA, were purchased from the Fashion Institute of Technology (New
York, NY, USA). Sodium hydroxide (NaOH, reagent grade) was obtained from Sigma-
Aldrich and was used without further purification. The deweaving process was performed
on a Benchmark scientific hotplate stirrer (H3760-HS) connected with a temperature probe
(H3760-TP). A cotton fabric sample (3 cm × 3 cm, ~0.18 g) was added to a 50 mL NaOH
solution (1 M (3.8 wt.%), 2 M (7.4 wt.%), 3 M (10.7 wt.%), or 4 M (13.8 wt.%) of NaOH with
deionized water (resistivity: ~20 mΩ/cm)) which was preheated at 50 ◦C. The mixing speed
was 200 rpm and the reaction time was 30 min. After finishing the reaction, the sample was
separated from the NaOH solution and dried at room temperature. To test the recyclability
of aqueous NaOH, the same NaOH solution was used five times in a row. The consumed
NaOH solution (1–2 mL) during the reaction was replenished. Fourier-transform infrared
(FTIR) spectroscopy was conducted using a Nicolet™ iS50 FTIR Spectrometer equipped
with an attenuated total reflectance (ATR) accessory. The spectra (32 scans/sample, 4 cm−1

resolution) were collected in the range of 400–4000 cm−1 at room temperature. Each
spectrum was corrected by a background spectrum using the OmnicTM software (Thermo
Scientific, Waltham, MA, USA).

3. Results and Discussion
3.1. Cotton Fabric Treated under Various NaOH Concentrations

The variation in the degree of deweaving of the cotton fabric with NaOH concentration
is shown in Figure 1. To approximate the degree of deweaving, the area of the weaved
portion of the cotton fabric was measured and then divided by the area of the original
sample (9 cm2). It was observed that the cotton fabric sample treated with deionized (DI)
water showed the lowest degree of deweaving, while the sample treated with 1 M NaOH
and 2 M NaOH aqueous solutions displayed approximately ~40% and ~80%, deweaving,
respectively. Figure 1b–e show the cotton fabric treated with 3 M NaOH, indicating that the
cotton fabric was completely deweaved. Individual strands were separated and could be
clearly identified, which is the optimal condition for further processing, including spinning
and production of yarn. To investigate the effect on the texture of the cotton fabric using
a higher concentration of NaOH, cotton fabric was treated with 4 M NaOH, as shown
in Figure 1f. Notable differences were observed for the texture of the deweaved fabric
between the 3 M NaOH and 4 M NaOH treatment conditions. The cotton fabric treated
with 4 M NaOH deweaved into a mesh-like state compared to the individual strands shown
in that treated with 3 M NaOH. The fabric treated with 4 M NaOH showed a similar texture
to a cotton ball including some strands, indicating that the cotton fabric was partially
dissolved in addition to being deweaved. As shown in the results from Figure 1, it was
concluded that the degree of deweaving increases with increasing NaOH concentration,
and the optimum condition for the treatment of cotton fabric is expected using a 3 M NaOH
aqueous solution under the given experimental conditions. To check the recyclability of the
treatment solution and the effect of washing on the molecular structure and chemistry of
cotton fabric samples, the treatment with 3 M NaOH was further examined, and the results
are shown in the next section.
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Figure 1. Cotton fabric treated with deionized (DI) water and NaOH: (a) pristine cotton fabric;
(b) cotton fabric + DI water; (c) cotton fabric + 1 M NaOH; (d) cotton fabric + 2 M NaOH; (e) cotton
fabric + 3 M NaOH; (f) cotton fabric + 4 M NaOH. Reaction conditions: NaOH concentration (1–4 M,
50 mL), reaction time (30 min), temperature (50 ◦C), and mixing speed (200 rpm).

Economics and chemical waste reduction are major factors for consideration in any
recycling process. To investigate whether aqueous sodium hydroxide can be reused and
the effect of reused NaOH on product quality, cotton fabric samples were treated with the
same solution for five cycles. As shown in Figure 2, all cycles have achieved a completely
deweaved cotton fabric, and there were no significant texture and color changes. The
pH of the solution was measured in each cycle and remained constant (11.5–12.0). The
infinitesimal changes in solution pH suggest that the concentration of NaOH remained
constant in each cycle. The results showed that the ability of the sodium hydroxide
to promote the cotton fabric deweaving does not seem to be affected as the number of
cycles increases.
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Post-reaction treatment is also an important step for modifying the properties of cotton
fabric, as well as for impurity removal. The rinsing process using DI water was conducted
immediately after the treated fabric was removed from the NaOH solution. Figure 3a,b
show the images of the samples reacted under the same conditions without and with
rinsing using DI water, respectively. In the case of the unrinsed sample, the separated
strands were found to adhere to each other and the resulting texture was hard and brittle.
In contrast, the texture of the rinsed sample was very soft. The effect of post-treatment
on the structure of the treated fabrics was further analyzed by FTIR, as discussed later in
this section.
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3.2. FTIR Analysis of Cotton Fabrics

In the previous section, digital camera images provided the effect of NaOH concen-
tration, NaOH recyclability, and washing on the deweaved cotton fabric. To understand
the chemical and structural changes of cotton fabric samples, Fourier-transform infrared
(FTIR) spectroscopy was applied. As shown in Figure 4, cotton fabric samples treated with
DI water and 1 M NaOH showed very similar trends and peaks consistent with that of
the pristine cotton fabric. The broad peak in the range of 3000–3300 cm−1 corresponds to
the O–H stretching band, and the peak at ~2900 cm−1 corresponds to the C–H stretching
band. In the O–H stretching band regions, three peaks could be identified: ~3280 cm−1,
~3328 cm−1, and ~3405 cm−1. It was reported that the ~3280 cm−1 peak is related to the
intermolecular hydrogen bonds, while ~3328 cm−1 and ~3405 cm−1 can be assigned to the
intramolecular hydrogen bonding of cellulose [43–45]. The observed O–H stretching band
indicates that no significant hydrogen bond breaking occurred in the cellulose structure. In
addition to the C–H and O–H stretching bands, several weak/strong peaks can be found
in the 900–1800 cm−1 wavenumber region. In brief, the band at 1652 cm−1 is the O–H
bending of absorbed water, and the band in the range of 984–1052 cm−1 can be attributed
to C–O stretching [36]. These peaks are characteristic of native cellulose fibers and are
sensitive to the crystalline state in the amorphous region [43]. The peak at 895 cm−1 can
be assigned to the β-1,4-glycosidic linkages, which are responsible for linking glucose
monomers in the cellulose structure [46]. Compared to data from the sample treated in DI
water only, two new bands appeared in the spectrum of the sample treated with 1 M NaOH
at 862 cm−1 and 879 cm−1. Both bands could be assigned to C=O vibration in carbonate
ions, characteristic of NaOH [37,47]. Because the sample was only treated with NaOH,
we can reasonably assume that the new peaks are related to the NaOH. Analysis of the
1425 cm−1 peak may be controversial because it can be assigned to either a CH2 bending
mode or an NaOH peak [36,43,47]. Because the increased 1425 cm−1 peak intensity could
be related to the new peaks at 862 cm−1 and 879 cm−1, it was reasonable to assign this
peak to NaOH. This interpretation can also be applied to the 2–4 M NaOH spectra in
Figure 4d–f. The analogous FTIR spectra in Figure 4a–c suggest that the treatment of cotton
fabric with DI water and 1 M NaOH concentration did not affect the chemical structure of
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the cotton fabric. The spectrum of the sample treated with 2 M NaOH contained a strong
and sharp peak at 1425 cm−1, and the peak intensity at 862 cm−1 and 879 cm−1 was also
increased compared to the spectrum from the sample treated with 1 M NaOH. Since the
peak wavenumbers of O–H stretching bands were the same as in the pristine sample’s
spectrum, phase transformation was not fully developed. However, cellulose swelling
could be expected according to the decrease in O–H band intensities.
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It was reported that the cellulose structure changes from cellulose I to cellulose II
at higher NaOH concentrations (i.e., >10 wt.% or >3 M NaOH) [47,48]. As shown in
Figure 4e,f, cotton fabric treated with 3 M NaOH and 4 M NaOH exhibited quite different
spectra compared to that treated with the more dilute NaOH concentration. The intensity
of bands in the range 3000–3600 cm−1 corresponding to the intra- and intermolecular
hydrogen bonding decreased, while the intensity of the bands at 862, 879, and 1425 cm−1

corresponding to the bond vibration increased. This result indicates that most of the
Na+ ions interacted with O–H functional groups. Note that a new peak appeared at
1774 cm−1, which is also related to NaOH [47]. Oh et al. and Yue et al. reported that
the transformation of cellulose I to cellulose II is proven by an O–H peak shift from
3293–3334 cm−1 to 3438 cm−1 [43,44,48]. Although new peaks at >3400 cm−1 were not
discernible due to the weak intensity in Figure 4e,f, transformation from cellulose I to
II can be expected on the basis of the peak shape. The C–H stretching band shifted to
a higher wavenumber at 2952 cm−1, indicating changes in the β-1,4-glycosidic linkage
torsion angle [48]. Notably, the decrease in intensity in the C–O stretching regions denotes
the presence of a cellulose II crystal structure. It was reported that the size of hydrated
hydroxide ions could be controlled by NaOH concentration, where the size of the hydrated
hydroxide ions is inversely proportional to the NaOH concentration [49]. According to
the FTIR spectroscopy results, it can be concluded that, for NaOH concentrations at and
above 3 M, the reduced number of water molecules (or fully hydrated molecules) led
to smaller hydroxide ions, which could efficiently penetrate and react with the cellulose
crystal structure.
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3.3. FTIR Analysis of Cotton Treated with Recycled NaOH

To investigate whether using recycled aqueous NaOH can cause any structural or
chemical changes in the cotton fabric, pristine samples were treated using the same NaOH
solution without replacement (Figure 5). It should be noted that the FTIR spectrum of the
sample from the first cycle (Figure 5a) was reproduced under the same reaction conditions
used for the sample treated with 3 M NaOH (Figure 4e). In comparison to the FTIR
spectrum of the pristine cotton fabric (Figure 4a), there was a significant increase in the
intensity of the peak at 1425 cm−1, and most O–H peaks disappeared. The sample spectra
from reactions 1–5 were well matched with each other and identical to that of the 3 M
NaOH single reaction. Although a change in NaOH concentration could be expected using
recycled NaOH, the measured pH values (11.5–12.0) were not changed. According to the
digital camera image (Figure 2) and FTIR spectroscopy results, the recyclability of aqueous
NaOH was concluded to be feasible to obtain the desired result without inducing major
chemical structural changes in the cotton fabric samples.
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3.4. FTIR Analysis of Samples with and without Washing Using DI Water

As shown in Figures 4e and 5, data from the cotton fabric treated with the 3 M NaOH
solution showed a very different infrared spectrum compared to the pristine sample. It was
reported that cellulose II formation is completed through the rinsing of excess Na+ ions
with water [47]. To analyze the functional groups in the sample treated with 3 M NaOH
after washing, FTIR spectroscopy was used. As shown in Figure 6, NaOH-related peaks at
862 cm−1, 879 cm−1, 1425 cm−1, and 1774 cm−1 vanished. Furthermore, the FTIR spectrum
of the washed sample displayed near-identical trends and peaks to that of the pristine
cotton fabric sample containing a cellulose I structure. This result shows that the molecular
structure of cotton fabric could be regenerated after washing, although the morphology of
the fabric changed to fibers. Although these experimental conditions should be applied
to waste fabric material, the combined processes of 3 M NaOH treatment and washing
confirmed that the current experimental conditions are quite promising for application to
the regeneration of usable fibers from cotton fabric wastes.
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The regeneration process of cotton fabric waste should be revisited using other simple
chemical reactions, especially using nontoxic chemicals under mild reaction conditions. The
proposed deweaving method with NaOH aqueous solution is a good option to satisfy the
objectives. However, to increase the deweaving rate with decreased NaOH concentration,
extensive research on process conditions (including the introduction of other environ-
mentally benign chemicals) should be performed. In addition to the chemical effect on
the deweaving procedures, other parameters, such as secondary chemicals, reactor size,
mixing condition, and temperature, should be considered in future works. Although only
ex situ characterizations were applied in this research, for fundamental studies, in situ
characterizations (such as synchrotron X-ray studies) should be considered. The streaming
potential can be used to identify the electrostatic impact of chemical treatments. Stream-
ing potential measurements identify the surface charge of textile fibers by comparing the
voltage difference in a dilute conductive solution from one side to the other of a fiber
mat through which the solution is passed under a known pressure versus a zero applied
pressure. The voltage difference can be used, along with the pressure differential, to obtain
the zeta potential of the fibers. Repeating the measurements while varying solution pH can
provide additional data indicative of fiber swelling and sorbed water retention. Further
surface-sensitive spectroscopies (such as X-ray photoelectron spectroscopy) can be used to
elucidate more subtle differences in surface chemistry, and scanning electron microscopy
can be used to more closely study the fiber structure following treatment.

4. Conclusions

In this study of the deweaving process for recycling, cotton fabric was treated with
various NaOH concentrations (1–4 M) at 50 ◦C, and the chemical and structural changes in
the cotton fabric were analyzed using Fourier-transform infrared spectroscopy (FTIR). The
degree of deweaving of the cotton fabric increased with increasing NaOH concentration
up to 3 M (10.7 wt.%). FTIR results indicated that the molecular structure of cotton fabric
was not changed up to 2 M NaOH treatment, while the presence of NaOH was observed
following treatment with 1 M NaOH (and above). Transformation of the cotton fabric
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crystalline structure from cellulose I to cellulose II could be observed in samples treated
at and above 3 M NaOH. Results related to the recyclability of aqueous NaOH indicated
that 3 M NaOH solution could be used for deweaving processes without replacement,
and the molecular structures of the treated samples were consistent. The washing process
rinsed away excess Na+ ions. The obtained results could be potentially applied to the
development of new methods for cotton fabric recycling processes.
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