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Abstract: Electroplating sludge (ES) is currently disposed in landfills and, because of its heavy metal 

content, poses serious threats to the environment and human health. However, ES might have po-

tential use as colouring agent due to its high concentration of chromium and nickel. Thus, the pre-

sent work aims at studying the effect of ES incorporation into stoneware bodies. The influence on 

the final characteristics of fired samples, ES amount and pre-treatment were analysed. It was found 

that stoneware pastes having uniform brownish hues can be obtained with only 3 wt.% of sieved 

(<212 μm) ES. The obtained specimens have, once fired, the desired technical and aesthetical char-

acteristics. Further, leaching tests confirmed the immobilisation of hazardous ES species in the ce-

ramic matrix. Hence, it can be concluded that this waste can be used as colouring agent of stoneware 

pastes substituting commercial pigments and contributing to more sustainable consumption and 

production in the ceramic sector. 

Keywords: hazardous waste management; stoneware paste; industrial electroplating sludge; waste 

valorisation; circular economy. 

 

1. Introduction 

The Cr/Ni electroplating sludge (ES), produced from the galvanizing of metallic sur-

faces to avoid corrosion, contains a relatively high amount of heavy metals (such as nickel, 

copper and chromium), soluble salts (chlorides and sulphates), pathogenic microorgan-

isms and organic pollutants [1]. Thus, this Cr/Ni sludge has a serious biological toxicity 

and can be a threat to human health. ES is classified as hazardous waste by environmental 

agencies (e.g., European Union Commission Decision 2001/573/EC) and according to the 

European Waste Catalogue it belongs to the family CER 19 02 [2]. Currently, this hazard-

ous waste is being disposed in landfills as a means of immobilising its heavy metal con-

tent. According to US Environmental Protection Agency (EPA), an estimated 1.3 million 

tons of wet electroplating sludge are generated per year, requiring proper disposal in 

landfills for hazardous wastes or immobilisation treatments [3]. In 2018, the amount of ES 

generated in the European Union (EU27) was around 150,000 tons [4]. The inertisation of 

the hazardous species of the ES in other processes/products might be a solution for avoid-

ing the high costs associated with landfilling [1,5,6]. In this regard, the scientific commu-

nity has been working on industrial waste valorisation to make processes more sustaina-

ble and efficient in relation to both economic and environmental aspects and contribute, 

in this way, to the circular economy. 

Ceramic products are a suitable route for the recycling of different types of waste 

since the compositions and the firing cycles can be adjusted to the requirements of each 
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product facilitating the incorporation of the different compounds [7]. Therefore, the addi-

tion of industrial wastes in the ceramic sector has been widely studied [8–12]. In structural 

and vitrified ceramic products, a wide variety of waste products/secondary raw materials 

have been studied, such as municipal waste [13], waste from water treatment [14,15], gal-

vanization sludge [16,17], aluminium sludge waste [18,19], glass waste [20,21], fine steel 

sludge [22] and red mud [23,24]. In more detail, the possible use of municipal sewage 

sludge in the production of ceramic floor tiles was studied [11]. It was concluded that an 

addition of 7 wt.% of this sludge to the standard formulation originates, after being fired 

at 1150 °C, a material with properties compatible with the ISO standards for this category 

of ceramic tiles (water absorption <10%). Low temperature stoneware tiles incorporating 

boron-rich waste glass were also investigated [7]. With this secondary raw material, a re-

duction of 140 °C in the firing temperature was achieved without compromising the prop-

erties of the tiles. The use of discarded sanitaryware waste as a raw material in sanitary-

ware production was also explored [25]. This residue aimed to substitute feldspar in the 

ceramic composition and in all tested compositions (substitution, in weight, from 5% to 

100% of the feldspar) no significant deviations from the control formulation were ob-

served for density, linear shrinkage and water absorption values. The flexural strength 

exhibited a decrease with the waste content increase; however, all the formulations pre-

sented values were above the minimum required for sanitary ware, 20.4 kgf/cm2. There-

fore, it was concluded that this discarded sanitaryware waste could be recycled. In addi-

tion, the influence of using electronic waste, namely cathode ray tube glass, in the produc-

tion of transparent ceramic frits was evaluated [26]. It was observed that the material in-

corporating 25 wt.% of this waste exhibits adequate properties (e.g., chemical resistance, 

thermal shock resistance, staining resistance, Mohs hardness, surface abrasion resistance 

and crazing resistance) according to the ISO 10545 and can, thus, be used. 

Concerning the use of electroplating sludge (ES) in the ceramic sector, some studies 

have been performed on the preparation of inorganic pigments [27] and in ceramic bodies, 

tiles and bricks, [28–30]. However, no work involving the integration of this waste in ta-

bleware and decorative ceramic products was found, revealing the existence of opportu-

nities for differentiation and innovation. 

The global tableware market size was valued at EUR 37.1 billion (USD 40.1 billion) 

in 2018 and is expected to expand at a compound annual growth rate (CAGR) of 6.0% [31]. 

Nowadays, an increasing demand for textured surfaces and colour patterns to reach aes-

thetic and visual diversity is observed [31]. In addition, the European Commission devel-

oped the European Green Deal, which aims to boost the efficient use of resources by mov-

ing to a circular economy, restoring biodiversity and cutting pollution [32]. Consequently, 

ecofriendly products have also been increasingly required [33] placing the integration of 

industrial wastes as colouring agents in line with this trend. The environmental ad-

vantages of using hazardous wastes in ceramic bodies’ composition start with the avoid-

ance of disposal, with the immobilisation of dangerous species also expectable upon the 

thermal treatment if processing conditions are simultaneously controlled. Costs reduction 

is favoured by minimizing the required amount of commercial pigments, since they are 

partially substituted by the waste. Actually, the ES has no commercial value and repre-

sents a cost for the companies due to the high landfilling fees, therefore its cost would be 

lower than that of commercial virgin raw materials [27]. Moreover, the use of a coloured 

paste simplifies the production process of the ceramic pieces given that the various aes-

thetic effects result from surface reliefs of the ceramic piece. In this case, the same enamel 

can be used, reducing its waste and the time spent to change it. 

This work studied the incorporation of ES as colouring agent of stoneware bodies. 

Different ES proportions (1 and 3 wt.%) and pre-treatments after drying were tested: (I) 

disaggregation + sieving at 425 μm, (II) milling + sieving at 212 μm, (III) = (II) + calcination. 

Lab-scale specimens were produced and characterised, but the proof of concept was ob-

tained in a pilot scale trial involving the production of cups. Leaching tests were per-

formed to check its effectiveness at immobilizing the hazardous species. 
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2. Materials and Methods 

2.1. Materials 

A typical stoneware ceramic suspension provided by Grestel—Produtos Cerâmicos 

S.A. was used for the incorporation of Cr/Ni-rich electroplating sludge (ES) generated by 

Grohe Portugal—Componentes Sanitários, Lda. Dolapix was the commercial deflocculant 

added to adjust the viscosity of the slurry. For the leaching experiments, glacial acetic acid, 

from Fisher Chemical, was used. 

2.2. Samples Preparation 

Two distinct incorporation levels (1 and 3 wt.%) of ES were tested. The sludge was 

dried at 105 °C and, afterwards, was subjected to three different pre-treatments: 

1. Manual disaggregation in an agate mortar followed by sieving at 425 μm; 

2. Milling with zirconia balls during 10 min (proportion of 1:4, ES:balls) followed by 

sieving at 212 μm; 

3. Milling and sieving at 212 μm (as in II) + calcination at 600 °C (heating rate of 10 

°C/min and a dwell time of 30 min). 

ES collected in two distinct periods were used: Lot A (collected in 2018) and Lot B 

(collected in 2019). Table 1 presents the tested formulations. The numbers reveal the added 

ES amounts (1 and 3 wt.%) and the letters detail the applied pre-treatment (s—sieved at 

212 μm and c—calcined at 600 °C). In ES1 and ES3 the sludge was simply disaggregated 

and sieved at 425 μm (pre-treatment I), in ES3s the sludge was milled and sieved at 212 

μm (pre-treatment II) and in ES1sc and ES3sc was milled, sieved at 212 μm and calcined 

(pre-treatment III). The sludge from Lot A was used in all tests, while the one collected in 

2019 (Lot B) was only tested with the highest concentration, 3 wt.%. 

The formulated suspensions were homogenised in a turbo diluter adding water and 

Dolapix amounts to reach density and viscosity values of ≈ 1720 g/cm3 and ≈ 30 s (Ford 

cup with 4 mm diameter), respectively, which are the values used industrially for the slip 

casting process. 

To obtain parallelepipedic samples (of approximately 12 × 2 × 1 cm3) the slip was 

sieved (at 425 μm) and then cast in gypsum moulds. The samples stayed overnight in the 

mould, then were removed and kept at room temperature (≈20 °C) for 1 day. Subse-

quently, they were dried (at 120 °C for 12 h) and fired according to the cycle shown in 

Figure 1a, up to a maximum temperature of 1220 °C. The used firing cycle is similar to the 

one used industrially for this type of paste. 

Additionally, for the leaching tests, cups were prepared with the compositions pre-

sented in Table 1 (an example is displayed in Figure 1b). For this purpose, to obtain the 

desired wall thickness, the slip stayed 30 min in gypsum moulds and then the extra casting 

slip was poured. The subsequent procedure was similar to the one followed for the paral-

lelepipedic specimens. However, before firing (following the same cycle Figure 1a), the 

cups were industrially glazed with an opaque white glass. 

Table 1. Stoneware paste tested compositions (a). 

 ES0 ES1 ES3 ES3s ES1sc ES3sc 

 wt. (%) 

Stoneware paste 100 99 97 97 99 97 

ES (pre-treatment I) - 1 3 - - - 

ES (pre-treatment II) - - - 3 - - 

ES (pre-treatment III) - - - - 1 3 

(a) ES amount taking into account the loss on ignition (LOI) and moisture values. 
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(a) (b) 

Figure 1. (a) Firing cycle used, (b) Industrially glazed cup sample. 

2.3. Characterization Techniques 

2.3.1. Physicochemical Characteristics of the Electroplating Sludge 

The chemical composition of the electroplating sludge was obtained by X-ray fluo-

rescence (XRF) in a Philips X’Pert PRO MPD spectrometer while the loss on ignition (LOI) 

at 1000 °C was also determined. Thermal analyses (DTA/TG, differential and thermograv-

imetric) were performed simultaneously (STA 409 EP, Netzsch equipment). The particle 

size distribution was obtained by laser diffraction in a Coulter LS analyser (LS 230, Fraun-

hofer optical model). Lastly, the moisture content of both ES and stoneware paste was 

determined using an AMB balance (model 310, Adam equipment). 

2.3.2. Specimens Characterization 

Characterization tests of wet (as-casted), dried and fired specimens were carried out 

using five replicates in each test and their respective mean value and standard deviation 

were calculated. The linear shrinkage of the samples upon drying (LSD), firing (LSF) and 

total (LST) were calculated by the difference in sample length and dividing by the initial 

length (%). 

The fired specimens (10.8 × 1.8 × 0.9 cm3) were characterised in terms of: (i) weight 

loss (%) relative to the weight of the dried specimen; (ii) apparent density (g/cm3) deter-

mined from the sample weight and size; (iii) water absorption (%) determined by the dif-

ference of weight between the dry specimen and the specimen immersed for 2 h in boiling 

water—(according to the BS EN 1217 standard [34]) and dividing by the dry weight; (iv) 

three-point flexural resistance (kgf/cm2) using a universal testing machine—Shimadzu 

Autograph AG-25TA; (v) L*a*b*
 
colour coordinates (CIELab method). A portable colour-

imeter—Konica Minolta Chroma Meter CR-400 was used and data were collected in five 

distinct zones of each sample. The CIEL*a*b*
 
data are expressed as brightness L*, chang-

ing from 0 (black) to 100 (white), a*
 
(+ red,—green), and b*

 
(+ yellow,—blue) [35]. The 

colour difference, E, between the samples prepared with ES collected in 2018 (Lot A) and 

2019 (Lot B), was evaluated as follows: 

 ∆E = [(L��� � − L��� �)� + (a��� � − a��� �)� + (b��� � − b��� �)�]�.� (1)

where 0 < E < 1 means that differences in colour cannot be perceived by the standard 

observer; 1 < E < 2 only perceived by an experienced observer; 2 < E < 3.5 an inexperi-

enced observer can detect differences; 3.5 < E < 5 everyone can see the differences [27,36]. 

The fracture surfaces of the specimens were carbon coated and observed by Scanning Elec-

tron Microscopy/Energy Dispersion Spectroscopy (SEM/EDS, Hitachi S-4100, 25 kV accel-

eration voltage, Tokyo, Japan). 
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2.3.3. Leaching Experiments 

Leaching tests were carried out to determine the concentration of chromium (Cr), 

nickel (Ni), cadmium (Cd) and lead (Pb) removed by 4 vol.% acetic acid solution, accord-

ing to the EU Ceramic Directive 84/500/EEC [37]. For this purpose, a 4 vol.% acetic acid 

solution was firstly prepared from glacial acetic acid and distilled water. Subsequently, 

fired cups (Figure 1b) were randomly selected. Pieces were washed with a detergent so-

lution and then rinsed with tap water followed by distilled water. After drying, the cups 

were filled with the acid solution to within approximately 6 mm of overflowing. Finally, 

the cups were covered with aluminium foil, to prevent evaporation of the solution, and 

the acid solution stayed in the samples for 24 h at room temperature, 22  2 °C [37]. After-

wards, the solution was homogenised and analysed by inductively coupled plasma mass 

spectrometry (ICP-MS 7700 series). 

3. Results and Discussion 

3.1. Electroplating Sludge Characterization 

The chemical composition and the loss on ignition (LOI) of the electroplating sludge 

(Lot A and Lot B) is shown in Table 2. The main components of Lot A are nickel, chro-

mium, sulphur trioxide and silicon dioxide, totalizing 52.67 wt.%. In Lot B the most abun-

dant component is calcium oxide (16.08 wt.%) followed by the same four components of 

Lot A (Ni, Cr, SO3 and SiO2) whose total amount represents 43.6 wt.%. The quantity of 

colouring species Ni and Cr in each batch is different, being lower in Lot B due to the 

diluting effect of calcium oxide: Ni = 25.9 (Lot A) and 15.5 wt.% (Lot B); Cr = 15.3 (Lot A) 

and 9.1 wt.% (Lot B). The LOI value of both lots is also different, being 34.3 and 22.9 wt.% 

for Lot A and Lot B, respectively. 

The weight loss and heat flow curves of the electroplating sludge, Lot A, measured 

by DTA/TG are presented in Figure 2. The initial weight loss (TG line) observed upon 

heating is caused by dehydration and hydroxide decomposition, which is accompanied 

by an endothermic peak in DTA (≈180 °C). Between 400 and 600 °C, a slight exothermic 

peak is observed, which is associated with the burning out of organic compounds. The ES 

weight seems to stabilize at 600 °C; however, in order to confirm this fact, discrete firing 

at 600 and 800 °C (heating rate of 10 °C/min and dwell time of 30 min) was conducted. At 

both temperatures the values of weight loss were very similar (≈ 36 and ≈ 24 wt.% for Lot 

A and B, respectively). This observation guided the calcination conditions of the material 

for further use with the selected temperature being 600 °C. 

 

Figure 2. Electroplating sludge (Lot A) TG and DTA results. 
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Table 2. Average chemical composition of electroplating sludge (ES) (Lot A and Lot B). 

Component  Lot A (wt.%) Lot B (wt.%) 

Ni 25.9 15.5 

Cr 15.3 9.1 

SO3 5.84 10.5 

SiO2 5.63 8.5 

P2O5 4.45 2.7 

Cu 2.23 5.05 

Al2O3 1.66 3.27 

Zn 1.58 2.62 

CaO 1.09 16.1 

Pb 0.88 0.21 

Fe2O3 0.65 1.15 

W 0.34 0.19 

MgO 0.16 0.79 

Ta 0.16 0.11 

Nd 0.09 0.036 

Ce 0.09 0.038 

Ba 0.07 0.086 

K2O 0.07 0.119 

Cl 0.06 0.232 

Sn 0.06 0.024 

La 0.05 0.645 

TiO2 0.03 0.174 

Hf 0.02 0.028 

Zr  - 0.025 

V - 0.062 

Co - 0.512 

LOI 34.3 22.9 

Dried and manually disaggregated portions of ES were used to determine the particle 

size distribution. Particles ranging from submicrometric size (0.5 μm) to 700 μm were de-

tected, denoting the presence of agglomerates. The estimated average particle size is ap-

proximately 230 μm for both used ES lots. Since the hue and colouring power of the pig-

ment is strongly affected by the particle size distribution, the control of this characteristic 

(e.g., by proper sieving) is advisable and thus, sieving at 425 and 212 μm (pre-treatment I 

and II, respectively) were performed. 

3.2. Specimen Characterisation 

The fired specimens (10.8 × 1.8 × 0.9 cm3) and weight loss values are shown in Figure 

3. Observing Figure 3a, it can be immediately depicted that ES sludge promotes the col-

ouring of the ceramic paste. The obtained stoneware bodies incorporating ES show dis-

tinct brownish hues depending on the ES amount and performed pre-treatment. A rustic 

(nonuniform) aspect is observed in ES1 and ES3 samples, which is associated a broader 

particle size distribution (pre-treatment I). On the other hand, smoother colouration is ob-

served when ES was milled + sieved at 212 μm. Nevertheless, a more detailed discussion 

of ES colouring characteristics will be presented below. The weight loss values of the spec-

imens prepared with the calcined sludge (ES1sc and ES3sc) are similar to the control sam-

ple, ES0 (Figure 3b). This fact was expected since the pre-treatment applied to ES elimi-

nates any possible weight reduction caused by dehydration and hydroxides decomposi-

tion and organic compounds. On the contrary, the addition of non calcined Cr/Ni sludge 

slightly increases the weight loss of the samples. Nonetheless, all obtained values are 
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within the industrial limits (6–7 wt.%). Furthermore, very small differences are noticed 

when different ES lots are used (Figure 3b), not showing any influence of the composi-

tional variability of the lots on the specimens’ weight loss. 

Values of the drying, firing and total shrinkage are presented in Figure 4. It was not 

observed a notorious influence of the addition of the residue, neither of the lot or per-

formed pre-treatment. Moreover, all values are within the typical industrial shrinkage 

(drying and firing shrinkage: 6–7%; total shrinkage: 9–11%): this is expected since the in-

corporation level of the ES is relatively low. The values of the water absorption and the 

density of the fired specimens are presented in Table 3. Independently of the performed 

pre-treatment and batch (Lot A or B), the addition of the ES promotes a decrease in the 

water absorption which is due to the fluxing action of the metal-rich waste that seems to 

promote a higher densification degree. In line with the water absorption values, the den-

sity of the specimens exhibits a small rise for the samples containing ES; the higher values 

are observed for the specimens with 3 wt.% of ES. 

 
 

(a) (b) 

Figure 3. (a) Fired specimens; (b) Effect of the ES addition on the specimen’s weight loss. 

Table 3. Effect of the ES addition on water absorption and density values. 

  ES0 ES1 ES3 ES3s ES1sc ES3sc 

Water absorp-

tion (%) 

Lot A 
0.44 ± 0.001 

0.21 ± 0.001 0.21 ± 0.001 0.11 ± 0.001 0.06 ± 0.001 0.0 ± 0.001 

Lot B - 0.13 ± 0.1 0.08 ± 0.1 - 0.07 ± 0.1 

Density  

(g/cm3) 

Lot A 
2.07 ± 0.1 

2.05 ± 0.1 1.96 ± 0.1 2.09 ± 0.1 2.26 ± 0.1 2.12 ± 0.1 

Lot B - 2.20 ± 0.1 2.21 ± 0.1 - 2.10 ± 0.1 

 

  

1
0

.8
 c

m

1.8 cm

ES0 ES1 ES3 ES3s ES1sc ES3sc

0.0

2.0

4.0

6.0

8.0

ES0 ES1 ES3 ES3s ES1sc ES3sc

W
ei

gh
t 

lo
ss

 (
%

)

Samples

Control

Lot A

Lot B



Sustainability 2021, 13, 1999 8 of 13 
 

  
(a) (b) 

 
(c) 

Figure 4. Effect of the addition of ES on samples’ shrinkage: (a) drying, (b) firing and (c) total. 

Figure 5 shows the flexural strength values of the fired samples. Furthermore, in this 

case, the observed increase when ES level enhances is in line with the obtained water ab-

sorption values. Samples containing calcined sludge (ES1sc and ES3sc) present maximal 

strength (between 400 and 495 kgf/cm2), since the decomposition reactions on the waste 

occurred in the pre-treatment step. These reactions might liberate gases that will create 

internal porosity, being responsible for the strength decrease of non calcined ES contain-

ing samples (from 388 kgf/cm2 to around 300 kgf/cm2). 

 

Figure 5. Effect of the ES amount and performed pre-treatment on the flexural strength of the 

specimens. 

The colorimetric coordinates (L*a*b*) of all the prepared samples are shown in Table 

4 together with the calculated colour difference (E) between the specimens prepared 

with the two batches of ES (Lot A and Lot B). The incorporation of the ES into a stoneware 

ceramic paste induces brownish hues and the particle size distribution of the waste was a 
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strong influence in the attained tinting characteristics and colour uniformity—see samples 

ES3 and ES3s (Table 4 and Figure 3). ES with a higher maximum particle size (<425 μm) 

originates specimens (ES1 and ES3) having a nonuniform colouration (see Figure 3a). The 

reduction of the maximum ES particle size to 212 μm promoted the development of a 

much more uniform hue (samples ES3s, ES1sc and ES3sc—Figure 3a). However, in both 

cases, the increase in the ES content promoted the development of darker stoneware 

pastes. Despite the benefits on the mechanical strength values, the calcination of the waste 

does not significantly change the colour of the samples in comparison to those incorpo-

rating non calcined ES (see samples ES3s and ES3sc—Figure 3a). The b* chromatic coor-

dinates are very similar in all samples ranging from 11 and 17.6 and thus, only L* and a* 

chromatic coordinates were graphically represented—see Figure 6. As expected, the con-

trol sample is the brightest one (L* = 77) while those containing ES show darker brown 

hues as the incorporation level increases. Furthermore, it can be seen that the samples 

prepared with the ES subjected to pre-treatment II (sieved at 212 μm), ES3s, and pre-treat-

ment III (II + calcined), ES3sc, of both ES lots, are located at the bottom right portion of the 

table, which confirms their chromatic similitude. Lastly, the colour difference values (E) 

for the samples prepared with the two ES lots (A and B) are presented in Table 4. For the 

higher ES amount (3 wt.%) the calculated E value is quite small if the sludge, before 

being added to the stoneware paste, is subjected to the pre-treatment II (milled + sieved 

at 212 μm) being E = 1.91 (only perceived by an experienced observer). This value is even 

smaller (E = 0.7; not perceived) for the samples that incorporate the ES subject to pre-

treatment III (II + calcination). On the other hand, if ES that has been manually disaggre-

gated and sieved at 425 μm (pre-treatment I) is used (samples ES3), an obvious colour 

difference is observed between the ceramic samples prepared with the two ES lots (E = 

4.52). 

Table 4. Colorimetric coordinates and colour difference (E) of the samples. 

 

 

Figure 6. Graphical representation of the colorimetric coordinates L* (luminosity) and a* (-green, 

+red) of the fired samples. 
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The SEM micrographs and EDS images of the fractured surfaces of the specimens are 

shown in Figure 7. Regarding the control sample, ES0, it can be observed that a typical 

microstructure of a stoneware formulation is presented (a high densification degree and 

a quite homogeneous surface), with the major components being Al and Si. The samples 

incorporating 3 wt.% of ES (pre-treatment I—ES3 and pre-treatment III—ES3sc) exhibit a 

similar microstructure; however, areas with a dissimilar aspect are observed (see the cir-

cles on the SEM images). Looking at the EDS images, it can be noticed that these regions 

correspond to the places where the amount of nickel and chromium is higher. Neverthe-

less, it can be observed that the residue is well incorporated in the matrix. The size of the 

ES particles depends on the applied pre-treatment: ES3sc shows smaller particles than ES3 

(see Figure 7) which is in accordance with the performed pre-treatment, since in ES3sc the 

waste was ball milled, sieved (at <212 μm) and calcined (pre-treatment III). 

 SEM EDS 

ES0 

  

ES3 

  

ES3sc 

  

Figure 7. SEM micrographs and EDS of the fired specimens ES0, ES3 and ES3sc. 

3.3. Leaching of the Fired Products 

Table 5 presents the concentration of chromium (Cr), nickel (Ni), cadmium (Cd) and 

lead (Pb) leached from the stoneware cups (Figure 1b) by the acetic acid solution (4 vol.%). 

The maximum permitted values of lead and cadmium are 200 and 20 μg/L, respectively, 

according to the EU Ceramic Directive 84/500/EEC [37]. For chromium and nickel, the EU 

legislation has not defined any limits up to the present date. However, according to the 
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Council Directive 98/83/EC [38], the maximum concentration of total chromium on drink-

ing water for human consumption is 50 μg/L, while for nickel the maximum concentration 

is 20 μg/L. 

The concentrations of lead and cadmium in the acetic acid solution are lower than 0.4 

and 10 μg/L, respectively, therefore they are significantly below the legal limits (20 and 

200 μg/L for Pb and Cd, respectively). Looking at the chromium concentration, it can be 

observed that, in all samples (21 μg/L for the ES3 samples and <20 μg/L for all the others), 

it is much lower than the maximum allowed for the drinking water (50 μg/L). A similar 

behaviour was observed for the Ni leaching concentrations since all the tested cups, with 

the exception of cup ES3, exhibit lower concentrations (≤15 μg/L) than the maximum ad-

missible values for drinking water (20 μg/L). This proves that amounts up to 3 wt.% of 

pre-treated (pre-treatments II or III) ES can be used as colouring agents in stoneware bod-

ies and endorses the benefits of the sieving (<212 μm) in the immobilisation of these haz-

ardous species. A reduction of more than 88% (from 42 to < 5 μg/L, samples ES3 and ES3s), 

was observed in the leached nickel concentration. These results show that it is possible to 

use Cr/Ni industrial sludge to colour stoneware bodies for tableware production, allow-

ing a partial or total substitution of the used commercial pigments, depending on the de-

sired colour. Consequently, a new solution for the valorisation and management of the 

electroplating sludge, an industrial hazardous waste, is proposed. This solution will allow 

ES reintroduction into the value chain of the ceramic sector as a raw material and contrib-

ute to the circular economy. Furthermore, it will allow the optimization of the available 

resources and reduce the consumption of virgin raw materials in the ceramic sector. 

Table 5. Concentration of several elements leached out from the fired cups at room temperature. 

Samples 

Concentration (µg/L) 

Cr  Ni  Cd  Pb 

≤50 (a) ≤20 (a) ≤20 (b) ≤200 (b) 

ES0 <20 <5 <0.4 9.9 

ES1 <20 15 <0.4 9.3 

ES3 21 42 <0.4 6.7 

ES3s <20 <5 <0.4 8.0 

ES1sc <20 <5 <0.4 10 

ES3sc <20 12 <0.4 7.7 
(a) Max. values—drinking water: Council Directive 98/83/EC [38]. (b) Max. values—mugs: EU Ce-

ramic Directive 84/500/EEC [37]. 

4. Conclusions 

In the present work, an industrial Cr/Ni electroplating sludge (ES) was incorporated 

in a stoneware paste, exploring the colouring potential of the waste and attempting to 

assure inertness/immobilization of the hazardous species. 

The addition of 1 and 3 wt.% of ES in stoneware bodies induces minor changes in 

some of the samples’ characteristics, namely, weight loss, shrinkage, water absorption and 

density. The visual appearance and the measured colour coordinates (L*a*b*) show that 

it is possible to obtain coloured stoneware products through the addition of the ES. The 

colour homogeneity and intensity obtained depends on the amount of the ES and its par-

ticle size. Higher ES amounts and smaller particle size give rise to a darker and more uni-

form colour. The amount of Cr, Ni, Cd and Pb leached from the semi-industrially pre-

pared cups showed that it is possible to incorporate up to 3 wt.% of the ES (milled and 

sieved at 212 μm) since the attained values, Pb = 8.0, Cd < 0.4, Cr < 20, Ni < 5 μg/L, are 

much smaller than the ones defined by the EU Ceramic Directive 84/500/EEC and the Di-

rective 98/83/EC, Pb  200, Cd  20, Cr  50, Ni  20 μg/L. 

Summarizing, this work proved that is possible to use a hazardous waste—Cr/Ni 

industrial sludge—to colour stoneware bodies for tableware, providing a new solution for 
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the management of this waste. Therefore, sieved ES (< 212 μm) up to 3 wt.% can partially 

or totally substitute commercial pigments, thus allowing the reduction in the consump-

tion of virgin raw materials and disposal costs, contributing to more sustainable consump-

tion and production in the ceramic sector. Furthermore, the reintroduction of the ES, a 

hazardous waste generated by a distinct industrial process, into the value chain of the 

ceramic sector contributes not only to the circular economy, but also to achieve a real in-

dustrial symbiosis. The lack of legislation regarding the incorporation of hazardous 

wastes into tableware products might be a challenge to industrially implementing this 

solution straightaway. Consequently, efforts to classify this waste as a by-product are 

needed. Moreover, the monitoring of the off-gases during the sintering process of ceramic 

pastes containing ES should also be performed together with a life cycle assessment. 
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