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Abstract: Canada’s in situ oil sands can help meet the global oil demand. Because of the energy-
intensive extraction processes, in situ oil sands operations also play a critical role in meeting the
global carbon budget. The steam oil ratio (SOR) is an indicator used to measure energy efficiency
and assess greenhouse gas (GHG) emissions in the in situ oil sands industry. A low SOR indicates an
extraction process that is more energy efficient and less carbon intensive. In this study, we applied
machine learning methods for data-driven discovery to a public database, Petrinex, containing
operating data from 2015 to 2019 extracted from over 35 million records for 20 in situ oil sands
extraction operations. Two unsupervised machine learning methods, including clustering and
association rules, showed that the cyclic steam stimulation (CSS) recovery method was less efficient
than the steam-assisted gravity drainage (SAGD) recovery method. Chi-square tests showed a
statistically significant association between the CSS recovery method and high SOR (p < 0.005).
Two association rules suggested that the occurrence of non-condensable gas (NCG) co-injection
produced a low SOR. Chi-square tests on the two rules identified a statistically significant relationship
between gas co-injection and low SOR (p < 0.005). Association rules also indicated that there was
no association between the production regions and SORs. For future in situ oil sands development,
decision-makers should consider SAGD as the preferred method because it is less carbon intensive.
Existing in situ oil sands projects and future development should explore the possibility of NCG
co-injection with steam to reduce steam consumption and consequently reduce GHG emissions from
the extraction processes.

Keywords: in situ oil sands; data mining; Petrinex; k-means; unsupervised machine learning; clustering

1. Introduction

To keep the average global temperature rise below 2 ◦C, a third of global oil reserves
have to remain undeveloped [1]. In 2019, Canada was the fourth largest oil producer,
contributing 5% to the global oil production [2], and had the third largest proven oil
reserves (following Venezuela and Saudi Arabia) with over 167 billion barrels (bbls) [3].
Canada plays a critical role in meeting the global carbon budget. Masnadi et al. [4] reported
that Canada was the fourth highest carbon-intensive upstream oil producer in the world,
after Algeria, Venezuela, and Cameroon. This is because over half of the oil production in
Canada comes from an unconventional oil resource called oil sands.

Oil sands account for 64% of Canada’s oil production and 98% of Canada’s oil re-
serves [5]. Oil sands is a mixture of sand, water, clay, and heavy oil. The heavy oil separated
from the oil sands is called bitumen, which contains particulate organic material, hydro-
carbons, associated metals, and sulphur compounds [6]. A solid at room temperature,
bitumen is the most viscous hydrocarbon [7]. Almost all oil sands reserves in Canada are
concentrated in the Athabasca, Cold Lake, and Peace River regions in Northern Alberta.
In situ oil sands extraction is one of two methods used to recover bitumen from oil sands.
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The other extraction method is surface mining. Surface mining for bitumen extraction will
become less economic than in situ recovery [1]. Eighty-one percent of the oil sands reserves
in Canada need to be recovered by in situ oil sands extraction [5]. Therefore, in the long
term, in situ recovery will be the primary method for future oil sands development. Two
in situ recovery methods are commercially used: steam-assisted gravity drainage (SAGD)
and cyclic steam stimulation (CSS). Both of these methods inject steam into reservoirs to
reduce the bitumen’s viscosity, which allows the bitumen emulsion to be pumped to the
surface for oil/water separation and further processing [8].

Canada’s oil sands development received broad criticism for its environmental im-
pacts, such as high energy use [9], high greenhouse gas (GHG) emissions [10], reduced
water quality [6], increased land disturbance [11], and increased fresh water use [12].
Among these, carbon emissions have been a focal point, both nationally and internation-
ally. Pipeline development, such as Keystone XL, was rejected, citing climate change
concerns [13]. The oil sands industry has contributed to Canada’s economic opportunities.
More than 400,000 people are employed by the oil sands industry and its related sectors [14].
Steam oil ratio (SOR) is an indicator used to measure energy efficiency and assess GHG
emissions in the in situ oil sands industry. It measures the amount of steam injected into
oil reservoirs and the amount of oil retrieved from underground reservoirs. A low SOR
indicates that relatively little steam is required to produce a barrel of oil, which indicates
that the extraction process is more energy efficient and less GHG-emission-intensive be-
cause most GHG emissions from in situ oil sands extractions are from steam generation.
To reduce the use of steam, non-condensable gas (NCG), such as produced gas (mainly
methane from oil-producing wells), is co-injected with steam by some operators. Solvents,
such as hexane (C6), pentane (C5), and butane (C4), were also tested to dilute bitumen
instead of steam [15]. Owing to the high cost and slow bitumen recovery rate of solvents,
solvent-based methods have not been commercialised [16]. However, solvent co-injection
with steam has been used by some in situ oil sands operators [17].

To control GHG emissions, the Government of Alberta implemented an emissions cap
of 100 megatonnes of GHG emissions per year from oil sands extraction in 2017 [18]. Ap-
proximately one billion barrels of crude oil were produced from oil sands and contributed
70 megatonnes of GHG emissions in 2019 [19]. While balancing economic benefits and
GHG emissions, decision makers face challenges to decide which development projects
should take priority and which reserves should remain underground.

In this study, we aimed to discover which recovery method and which region had
low SORs, low energy consumption, and consequently lower GHG emissions for in situ oil
sands extraction by characterising patterns of emissions and fuel use data. The discovered
patterns can provide information to decision makers for reviewing and approving new
project applications while maximising the economic benefits and meeting the emissions
cap of 100 megatonnes GHG emissions per year from oil sands extraction. We applied
knowledge discovery in databases (KDD) to Petrinex, Canada’s Petroleum Information
Network, and used data mining techniques (specifically, unsupervised machine learning
algorithms) to discover patterns from 20 in situ oil sands extraction schemes. Petrinex
provides information for collecting royalties and facilitates commercial activities, such as
production accounting. A detailed explanation regarding the data warehouse is provided
by Alberta Energy Regulator (AER)’s Manual 011 [20]. The unsupervised machine learning
algorithms used were clustering and association rules. KDD via unsupervised machine
learning techniques has been widely researched and used in a range of applications in
various industries [21]. For example, Lv [22] developed segmentation rules for batch
process monitoring using the k-means clustering algorithm. Independent component
analysis has been used for fault diagnosis and detection in industrial processes [23,24], and
data clustering was used in chemical processes to detect faults on a separation tower [25].
In the oil industry, machine learning techniques were used to predict pressure, volume, and
temperature (PVT) properties of crude oil [26,27], crude oil price [28,29], and enhanced oil
recovery [30,31]. In oil sands operations, machine learning methods were applied to analyse
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incident reports and increase process safety [32,33], and predict crude oil production from
in situ oil sands extraction [34,35]. To the best of our knowledge, data mining techniques
have not been applied to the Canadian oil and gas data warehouse or, more broadly, to any
oil and gas data warehouse.

This study:

1. Assesses the impact of production regions and recovery methods on steam injection
and oil production using clustering, unsupervised machine learning algorithms;

2. Evaluates whether production regions have a relationship with solution gas produc-
tion by an unsupervised machine learning method, namely association rules;

3. Evaluates whether solvent co-injection with steam can reduce SORs and whether pro-
duction regions have a relationship with solution gas production by an unsupervised
machine learning method, namely association rules.

2. Materials and Methods

The KDD process is iterative, interactive, and includes the following main steps [36]:

1. Data selection: Relevant data are retrieved from the database, then a subset of data
samples is selected to create a target dataset on which the discovery will be performed.

2. Data pre-processing: Outliers, inconsistent, or missing data are removed.
3. Data transformation: Appropriate data forms are created for mining. The task may

consist of dimension reduction, data integration, and other steps.
4. Data mining or pattern discovery: Interesting patterns are extracted. Data mining is

an essential step in the process of KDD [37]. Data mining tasks are generally grouped
as predictive or descriptive. The predictive task builds a model to predict the future
with methods such as correlation and regression. The descriptive task characterises
properties of the data with methods such as clustering, identifying frequent patterns,
and understanding associations.

5. Interpretation and evaluation: The mined patterns are interpreted and evaluated
(commonly with pattern visualisation techniques).

KDD is a computational process for finding useful knowledge from a large amount
of data [38]. For this study, we followed the standard KDD steps described above using
the data science library Pandas (version 0.25.3) and the programming language Python
(version 3.73) (Figure 1).
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2.1. Data Selection

The monthly operating data obtained from Petrinex [39] contain mandatory reports
on monthly activities from oil and gas licensees or operators in Alberta to the AER [40]. The
monthly data from 2015 to 2019 were then tabulated into one dataset with 29 columns and
over 35 million rows. The 29 columns provided information such as facility location, facility
operator, well status, facility activity, and facility type. The 35 million rows contained
monthly records for the entire oil and gas industry in Alberta. The monthly records
included oil and solution gas production from oil batteries, fuel gas use, steam injection
volumes, and NCG injection volumes.



Sustainability 2021, 13, 1968 4 of 14

The following procedures were performed to select data associated with in situ oil
sands schemes:

1. Under the reporting facility types, battery (BT) and injection facility (IF) were selected.
2. Under the reporting facility subtypes, in situ oil sands and sulphur reporting at oil

sands were selected.
3. BT and IF were linked by 11,000 well IDs provided in the Well to Facility Link

Report [39]. The paired injection wells and producing wells for the scheme had
the same well IDs. Depending on the stage of production, the number of wells
for each scheme ranged from 100 to over 600 wells. The linked BT and IF IDs
formed a dataset for in situ oil sands extraction schemes only, which was the target
dataset in this study. The linked BT and IF IDs for each scheme are provided in
the Supplementary Material.

The oil sands scheme included all BT and IF IDs associated with in situ oil sands
extraction and excluded bitumen upgrading and producing wells. The BT is the facility
that separates and measures products from producing wells. The IF is where steam is
injected into the oil sands reservoir.

2.2. Data Preprocessing

In this study, 11 monthly records with oil production less than 5000 m3 (approximately
100 bbl/day) were removed. These months had production interruptions such as the 2016
forest fire in Northern Alberta, or production started with volumes that were 5 to 10 times
smaller than the following months. A detailed analysis of the data removal is provided
in the Supplementary Material. In addition, MEG Energy’s Christina Lake scheme did
not have any fuel use data due to confidentiality. Therefore, this scheme was removed.
With the exclusions removed, 20 in situ oil sands schemes with 1127 monthly records were
populated for knowledge discovery (Table 1). The 20 schemes accounted for 82.4% of all in
situ oil sands extractions in 2019 [41].

Table 1. In situ oil sands schemes. CSS: cyclic steam stimulation; SAGD: steam-assisted gravity drainage.

Operation (In-Text
Reference) * Operator Scheme Name Region Recovery

(Extraction) Method

IMOCL Imperial Oil Resources Cold Lake Cold Lake CSS
SUFB Suncor Energy Inc. Firebag Athabasca SAGD

CNRLWL Canadian Natural Resources Limited
(CNRL)

Wolf Lake, Primrose,
and Burnt Lake Cold Lake CSS

CVECL Cenovus Energy Inc. Christina Lake Athabasca SAGD
CVEFC Cenovus Energy Inc. Foster Creek Athabasca SAGD
COPSM ConocoPhillips Canada Resources Corp. Surmont Athabasca SAGD

CNOOCLK CNOOC Petroleum North America ULC Long Lake Athabasca SAGD
HSESR Husky Oil Operations Limited Sunrise Athabasca SAGD

CNRLJF Canadian Natural Resources Limited Jackfish Athabasca SAGD
HSETL Husky Oil Operations Limited Tucker Lake Cold Lake SAGD

CNRLKB CNRL Kirby Athabasca SAGD
AOCLM Athabasca Oil Corporation Leismer Athabasca SAGD
SHAMR PetroChina Canada Ltd. Mackay River Athabasca SAGD
AOCHS Athabasca Oil Corporation Hangingstone Athabasca SAGD
PGFLB Pengrowth Energy Corporation Lindbergh Cold Lake SAGD

CNULPR Canadian Natural Upgrading Limited Peace River Peace River CSS
SUMR Suncor Energy Inc. Mackay River Athabasca SAGD

COGGD Connacher Oil and Gas Limited Great Divide Athabasca SAGD
OSUM Osum Production Corp. Orion Cold Lake SAGD
JCOS Japan Canada Oil Sands Limited Hangingstone Athabasca SAGD

* Operators are based on the 2019 Alberta Energy Regulator (AER) ST53 report. Assets may have changed ownership from 2015 to 2019.
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2.3. Data Transformation

Of the 29 columns in the target dataset, 12 were removed. The removed columns
contained information such as scheme locations and submission dates. A list of removed
columns is provided in the Supplementary Material. Data in the target dataset were
summarised to extract the operating parameters listed in Table 2 and for pattern discovery
and unsupervised machine learning. The dataset had 1127 rows, each representing one
monthly record. Of the 20 schemes, 13 had 60 monthly records, 3 schemes had 59 monthly
records, and the remaining 4 schemes had 29 to 57 monthly records. The target dataset is
provided in [42].

Table 2. Operating parameters retrieved from the data warehouse.

Operating Parameters Units Selection Method

Fuel Use 103 m3 ActivityID column select FUEL
ProductID column select GAS

Flare Volume 103 m3 ActivityID column select FLARE
ProductID column select GAS

Vented Gas Volume 103 m3 ActivityID column select VENT
ProductID column select GAS

Oil Production Volume m3 ActivityID column select PROD
ProductID column select OIL

Steam Injection Volume m3 ActivityID column select INJ
ProductID column select STEAM

Gas Injection Volume 103 m3 ActivityID column select INJ
ProductID column select GAS

Solution Gas Volume 103 m3 ActivityID column select PROD
ProductID column select GAS

Other Solvent Injection Volume m3 ActivityID column select INJ
ProductID column select C3-SP, COND, etc.

Monthly SORs were calculated by dividing injection steam volumes by oil volumes
and then cross-checked against AER ST53 statistical reports to ensure BT and IF were linked
correctly and other parameters were appropriately extracted for each scheme. In Petrinex,
steam quantity is reported in m3 of cold water equivalent at a temperature of 15 ◦C, and
fuel gas quantity is reported in 103 m3 at 15 ◦C and 101.325 kPa absolute pressure.

2.4. Data Mining

Two unsupervised machine learning techniques were used: clustering and association
rules. Unsupervised learning is used to discover the underlying patterns within the data
to learn more about it. Unsupervised learning was conducted using the R programming
language. The k-means algorithm was executed using an R function called kmeans. The
association rule algorithm was implemented using a package in R called arules.

2.4.1. Clustering

Cluster analysis splits data into groups based on a similarity measure and is used
to explore hidden patterns [43]. In this study, we used a k-means algorithm with the
Euclidean distance similarity metric. We divided monthly production volumes and steam
injection volumes into k clusters based on the distance to the centroid of a cluster, with
the objective of maximising the similarity within groups and minimising the similarity
between groups [44]. The algorithm aims to minimise the Euclidean distances of all
points with their nearest cluster centres by minimising the within-cluster sum of squared
errors (SSE).

By clustering, we analysed how oil production responded to steam injection. Minimis-
ing steam injection quantities is the key to reducing GHG emissions from in situ oil sands
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extraction. We also examined how production regions and recovery methods influenced
oil production and steam injection. The steam injection and oil production data were
normalised using the z standardisation method before being fed into the algorithm. The
number of clusters (k) was selected based on the rule suggested by Harigan [45]. The rule
uses the intuition that when clusters are well separated by K* being the right number of
clusters, then:

• For K < K*, a (K + 1) cluster partition should be the K cluster partition with one of
its clusters split into two. This would significantly decrease the total within-cluster
variation (WK);

• For K > K*, both the K and (K + 1) cluster partitions will be equal to the right cluster
partition with some of the right clusters split randomly, so that WK and WK+1 are not
significantly different.

2.4.2. Association Rule

Association rules are used to identify sets of items that frequently occur together in
a dataset. It is a popular unsupervised machine learning technique for market basket
analyses, writer evaluations, medical diagnoses, etc. [43].

In this study, we evaluated whether co-injections were associated with low SORs
and if production regions were associated with high solution gas oil ratios (SGORs). The
association rule had three parameters: support, confidence, and lift [46,47]. In this context,
the association rule can be written as:

X ⇒ Y [support, con f ident, li f t].

Support measures how frequently X and Y happen together and is expressed as:

support {X ⇒ Y } = Number o f months containing both X and Y
m

,

where X is the co-injection or production region, Y is low SOR or high SGOR, and m is the
number of months in the entire dataset, which was 1127 in this study.

Confidence is the conditional probability that Y is true under the condition of X and
expressed as:

Con f idence {X ⇒ Y } = Number o f months containing both X and Y
Months containing X

= P(Y |X).

Lift is used to measure the correlation between X and Y and is written as:

Li f t {X ⇒ Y } = Con f idence {X ⇒ Y }
Percentage o f months containing Y

,

when Lift < 1, X is negatively correlated with Y. When Lift > 1, X is positively correlated
with Y, and when Lift = 1, X and Y are independent.

For association rule mining, two parameters need to be defined: the minimum support
threshold (min_sup) and the minimum confidence threshold (min_conf). In this study, we
set the min_sup to 10% to ensure that at least two schemes had co-injection or a high SGOR
with at least 96 monthly records. The min_sup threshold also filtered out some injection
activities that might not have been intended to recover bitumen. We set the min_conf to
80% to ensure a high P(Y | X) .

We categorised SORs, solvent co-injection volumes, and SGORs based on the median
values. The criteria used are presented in Table 3. The solvents co-injected with steam
by the 20 selected schemes were gas (mainly methane), natural gas condensate, and
propane (C3).
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Table 3. Criteria used for association rule mining. SOR: steam oil ratio; NCG: natural gas condensate;
SGOR: solution gas oil ratio; C3: propane.

Rule X⇒Y Criteria Categorisation

SOR (Y)
SOR ≥median High SOR

SOR < median Low SOR

NCG/condensate/C3 injection (X)
Injection volume ≥median With co-injection

Injection volume < median Without co-injection

SGOR (Y)
SGOR ≥median High SGOR

SGOR < median Low SGOR

Production region (X) Athabasca, Cold Lake, and Peace River

The cut-off values (medians) are presented in Table 4.

Table 4. Cut-off values.

Production Indicators Cut-Off Values (Median)

NGC co-injection volume 1456 103 m3

SOR 3.31
SGOR 0.01444 103 m3 solution gas/m3 of oil

2.5. Interpretation and Evaluation

The uncovered patterns were visualised and are presented in the Results section.
A chi-square test for independence was used to assess the statistical significance level
of the dependence between the antecedent (X) and the consequent (Y) in an association
rule (X⇒ Y) [48,49]. The null hypothesis and an alternative hypothesis for the chi-square
test are:

• Ho: The antecedent (X) and the consequent (Y) are independent.
• Ha: The antecedent (X) and the consequent (Y) are not independent.

3. Results
3.1. Clustering

There were 1127 monthly records grouped into nine clusters based on steam injection
and oil production. Among the nine clusters, clusters 4 and 9 were the least efficient,
with more steam injection used per unit of bitumen produced (compared to the average).
Cluster 2 was the most efficient, with the lowest steam injection per unit of bitumen
produced (Figure 2).

3.2. Association Rule and Chi-Square Test

We tested 23 rules to determine whether solvent co-injection with steam, recovery
methods, and production regions impacted SORs and SGOR. The results of the association
rules are presented in Table 5. Among the 23 rules, Rules 1, 5, 11, 17, and 22 met the
criteria of support, confidence, and lift, indicating the antecedent itemset implies the
consequent itemset.

Chi-square tests were conducted on Rules 1, 5, 11, 17, and 22 for statistical significance.
The Pearson p-values from the chi-square tests for all five rules were less than 0.05; therefore,
we rejected the null hypothesis and concluded that there was a statistical association
between the antecedent itemset and the consequent itemset.
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Table 5. Association rule results.

Rule ID Antecedent (X) Consequent (Y) Support Confidence Lift

1 With solvent co-injection Low SOR 19% 93% 1.9
2 Without solvent co-injection Low SOR 31% 39% 0.8
3 Method = CSS Low SOR 0% 1% 0.0
4 Method = SAGD Low SOR 50% 57% 1.2
5 Method = CSS High SOR 16% 99% 2.0
6 Method = SAGD High SOR 34% 40% 0.8
7 Region = Athabasca Low SOR 43% 63% 1.3
8 Region = Cold Lake Low SOR 7% 26% 0.5
9 Region = Peace River Low SOR 0% 2% 0.0

10 Method = SAGD, without solvent co-injection Low SOR 37% 48% 0.8
11 Method = SAGD, with solvent co-injection Low SOR 22% 93% 1.6
12 Method = CCS, without solvent co-injection Low SOR 1% 1% 0.0
13 Method = SAGD, with solvent co-injection, Region = Athabasca Low SOR 93% 93% 0.4
14 Method = SAGD, with solvent co-injection, Region = Cold Lake Low SOR 0.4% 100% 0.4
15 Method = SAGD, without solvent co-injection, Region = Athabasca Low SOR 38% 50% 0.6
16 Method = SAGD, without solvent co-injection, Region = Cold Lake Low SOR 11% 43% 0.5
17 Method = CSS High SGOR 16% 100% 2.0
18 Method = SAGD High SGOR 34% 39% 0.8
19 Method = SAGD, with solvent co-injection High SGOR 14% 60% 1.5
20 Method = SAGD, without solvent co-injection High SGOR 26% 34% 0.9
21 Without solvent co-injection, region = Athabasca High SGOR 12% 20% 1.7
22 Without solvent co-injection, region = Cold Lake High SGOR 29% 87% 3.0
23 Without solvent co-injection, region = Peace River High SGOR 7% 100% 15.0
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4. Discussion
4.1. Efficiency of Recovery Methods

Twenty schemes were clustered into nine groups based on steam injection and oil
production (Figure 3). CNULPR using the CSS recovery method and other SAGD schemes
was grouped into cluster 5, which had the lowest overall oil production and steam injection
volumes. This pattern indicated that the CSS method shared similar characteristics with
the SAGD method when production volume was low. The maximum oil production under
cluster 5 was 110,468 m3/month.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 17 
 

21 
Without solvent 
co-injection, re-

gion = Athabasca 
High SGOR 12% 20% 1.7 

22 
Without solvent 
co-injection, re-

gion = Cold Lake 
High SGOR 29% 87% 3.0 

23 

Without solvent 
co-injection, re-

gion = Peace 
River 

High SGOR 7% 100% 15.0 

Chi-square tests were conducted on Rules 1, 5, 11, 17, and 22 for statistical signifi-
cance. The Pearson p-values from the chi-square tests for all five rules were less than 0.05; 
therefore, we rejected the null hypothesis and concluded that there was a statistical asso-
ciation between the antecedent itemset and the consequent itemset. 

4. Discussion 
4.1. Efficiency of Recovery Methods 

Twenty schemes were clustered into nine groups based on steam injection and oil 
production (Figure 3). CNULPR using the CSS recovery method and other SAGD schemes 
was grouped into cluster 5, which had the lowest overall oil production and steam injec-
tion volumes. This pattern indicated that the CSS method shared similar characteristics 
with the SAGD method when production volume was low. The maximum oil production 
under cluster 5 was 110,468 m3/month. 

 
Figure 3. Clustering results: x represents the Cold Lake region; + represents the Peace River region; O represents the Ath-
abasca region. (a) includes schemes using the CSS recovery method. (b) includes schemes using the SAGD recovery 
method. 

The other two CSS schemes, IMOCL and CNRLWL, were different from SAGD. 
IMOCL had a steady operation in 2015–2019, and all 60 monthly data points were clus-
tered together and formed independent cluster 4. Fifty-three out of 60 monthly data points 
for CNRLWL were grouped into cluster 4. Clusters 4 and 9 injected more steam to gener-
ate similar oil production in comparison to other clusters that were SAGD schemes. This 
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The other two CSS schemes, IMOCL and CNRLWL, were different from SAGD.
IMOCL had a steady operation in 2015–2019, and all 60 monthly data points were clustered
together and formed independent cluster 4. Fifty-three out of 60 monthly data points for
CNRLWL were grouped into cluster 4. Clusters 4 and 9 injected more steam to generate
similar oil production in comparison to other clusters that were SAGD schemes. This
pattern indicated that the CSS method might be less efficient than the SAGD method when
the schemes proceed toward maturity. Rule 5 in Table 5 and the subsequent chi-square
test also indicated that the CSS method has higher SOR and is less efficient with the rule:
{Method = CSS} ⇒ {High SOR} (support : 16%, confidence : 99%, lift : 2.0) .

The HSETL, OSUM, and PGFLB schemes are located in the Cold Lake region. They
were grouped together with the schemes in the Athabasca region, which implied that
different regions might not have an impact on the oil and steam interaction.

4.2. Solvent Co-Injection with Steam

Solvent co-injection with steam to improve heavy oil recovery efficiency was first
reported in the 1960s [50] and has been successfully used in California for producing
and transporting heavy crude oil [51]. The solvents used in the 20 selected schemes
were gas (mainly methane), C3, and natural gas condensate. The CNOOCLK, COGGD,
and IMOCL schemes injected condensate between 2015 and 2019. The injection volumes
per month were 683 m3 for CNOOCLK and 740 m3 for COGGD. The IMOCL scheme
had a monthly average condensate injection of 9827 m3; large monthly volumes (greater
than 10,000 m3) were injected from June 2017 to January 2019. By December 2019, the
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condensate injection by IMOCL was stopped. Only CVEFC injected C3 at an average of
2868 m3/month from January 2018 to December 2019. The weighted average of the SOR
for CVEFC increased by 8% from 2.56 to 2.77 m3/m3 when comparing before and after C3
co-injection. However, these co-injection activities did not meet the min_sup threshold of
10%. Only gas co-injection met both min_sup and min_conf thresholds.

For gas co-injection, we used the median value (1456 103 m3) of gas injection volume
as a cut-off. Six schemes were considered co-injection schemes. Three schemes, CVECL,
CVEFC, and SUFB, continuously injected gas between 2015 and 2019 for 60 months. The
weighted average SOR of these three schemes was 2.36 m3/m3; it was 45% lower than
the weighted average SOR for the 14 schemes without gas co-injection that were fully
operational between 2015 and 2019 (Figure 4). The CNRLJF and COPSM schemes began
gas co-injection in mid-2016 and early 2017, respectively. The SHAMR scheme was a new
operation that began in June 2017; gas co-injection started in September 2018. The weighted
average SOR of SHAMR was two times higher than the weighted average SOR of CVECL,
CVEFC, and SUFB.
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The two association rules and chi-square tests suggested that the occurrence of gas co-
injection implied a low SOR, including {Gas Co− injection} ⇒ {Low SOR} (support : 19%,
confidence : 93%, lift : 1.9) and {Method = SAGD, and Gas Co− injection} ⇒ {Low SOR}
(support : 22%, confidence : 93%, lift : 1.6). The distribution of SORs is provided in Figure 5.

4.3. Solution Gas and Production Region

On average, between 2015 and 2019, in situ oil sands extractions produced 21 m3 of
solution gas/1 m3 of bitumen, with a median of 14 m3/m3. The Peace River region only
had one scheme: CNULPR. The arithmetic mean of the SGOR for CNULPR was 81 m3/m3.
The arithmetic mean of the SGOR for the Cold Lake region was 36 m3/m3, and for the
Athabasca region, it was 11 m3/m3. Although the schemes in the Cold Lake region had
higher SGORs (Figure 6), none of these schemes used gas co-injection (Figure 5).
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Rule 22 and its chi-square test also suggested that there was a strong relationship
between the Cold Lake production region and a high SGOR, with 29% support, 87%
confidence, and 3.0 lift.
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5. Conclusions

In this study, machine learning methods for data-driven discovery were applied
to a public database, Petrinex, containing operating data from 2015 to 2019 that were
extracted from over 35 million records for 20 in situ oil sands extraction schemes. The
use of clustering and association rules and two unsupervised machine learning methods
implied that: (1) the CSS recovery method was less efficient than SAGD recovery as schemes
proceed toward maturity (Rule 5); (2) gas co-injection resulted in low SORs (Rules 1 and
11); and (3) the Cold Lake region had higher SGOR compared to the two other regions
(Rule 22). The procedures and analyses introduced in this study for the two unsupervised
machine learning algorithms can be applied to any database in any country for data-driven
pattern discovery.

The chi-square test carried out on Rule 5 {Method = CSS} ⇒ {High SOR} (support :
16%, confidence : 99%, lift : 2.0) showed that there was a significant association between
the CSS recovery method and high SOR (p < 0.005). SAGD recovery might be the preferred
method for decision makers to consider in the future for in situ oil sands development
projects because the SAGD method is less GHG-emission-intensive. By choosing SAGD
recovery as a preferred method, the economic benefits are maximised while GHG emissions
are minimised.

Rule 1 {Gas Co− injection} ⇒ {Low SOR} (support : 19%, confidence : 93%, lift : 1.9)
and Rule 11 {Method = SAGD, and Gas Co− injection} ⇒ {Low SOR} (support : 22%,
confidence : 93%, lift : 1.6), shown in Table 5, suggested that the occurrence of gas co-
injection implied a low SOR. Chi-square tests on Rules 1 and 11 showed that there was a
statistically significant relationship between gas co-injection and low SOR (p < 0.005). The
association rules also indicated that there were no associations between the production
regions and SORs.

SORs are also affected by other factors, such as operational efficiency and equipment
maintenance. The application of the SAGD method and gas co-injection alone may not
result in low SORs. Existing in situ oil sands projects and future developments should
explore the possibility of gas co-injection with steam to reduce steam consumption and
consequently reduce GHG emissions from the extraction processes.
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