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Abstract: The rice–wheat cropping system is the main food bowl in Asia, feeding billions across
the globe. However, the productivity and long-term sustainability of this system are threatened
by stagnant crop yields and greenhouse gas emissions from flooded rice production. The negative
environmental consequences of excessive nitrogen fertilizer use are further exacerbating the situation,
along with the high labor and water requirements of transplanted rice. Residue burning in rice
has also severe environmental concerns. Under these circumstances, many farmers in South Asia
have shifted from transplanted rice to direct-seeded rice and reported water and labor savings and
reduced methane emissions. There is a need for opting the precision agriculture techniques for the
sustainable management of nutrients. Allelopathic crops could be useful in the rotation for weed
management, the major yield-reducing factor in direct-seeded rice. Legume incorporation might
be a viable option for improving soil health. As governments in South Asia have imposed a strict
ban on the burning of rice residues, the use of rice-specific harvesters might be a pragmatic option
to manage rice residues with yield and premium advantage. However, the soil/climatic conditions
and farmer socio-economic conditions must be considered while promoting these technologies in
rice-wheat system in South Asia.

Keywords: rice–wheat cropping system; South Asia; water requirements; nitrogen; direct seeding

1. Introduction

Rice–wheat cropping systems (RWCS) provide staple food to 15% of the world’s
population [1]. The major issue for the sustainability of conventional RWCS in South Asia
is soil quality degradation associated with resource scarcity [2]. Other factors include
water scarcity, low soil organic matter, nutrient imbalances, labor/energy crises, complex
insect and weed flora, herbicide-resistant weeds, and greenhouse gas (GHG) emissions [3].
Moreover, conventional puddled transplanted rice (PTR) cultivation has over-exploited the
groundwater leading to an alarming fall in the water table in South Asia [4].

The conventional rice production systems are no longer suitable as they require large
amounts of water (3000–5000 L of water to produce one kg of rice) [5,6]. It has been
reported that 15–20 Mha of conventional rice production systems will face water shortages
by 2025 [7]. In some parts of Pakistan and India, groundwater tables are declining by
1.0–3.5 m and 6 m year−1, respectively [8].

Puddling, as practices in conventional rice-wheat system, increases the soil bulk
density, which causes soil compaction [9] and affects root development in post-rice crops [3].
Nitrogen uptake in puddled rice fields declines by 12–35% in the following wheat crop due
to subsoil compaction [10]. The evolution of herbicide resistant weeds and shift in weed
flora (a mixture of broadleaf and grassy weeds) have further exacerbated the scenario in
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RWCS to harvest optimum crop yields [11]. Little seed canary grass (Phalaris minor Retz.)
has been reported to decrease wheat yields by 10–65% with occasional crop failure [12],
while smartweed (Polygonum hydropiper L.) can reduce the rice and wheat yields by 15–25%
and 15–30%, respectively [13]. Furthermore, the rice and wheat monocultures in RCWS
have increased disease and pest problems [14] and has caused macro- and micro-nutrient
deficiencies [3,15,16].

In this scenario, resource conservation technologies, such as direct-seeded rice (DSR),
no-till wheat, and laser-assisted land leveling, can be used to improve the sustainability of
yields in RWCS [3]. Several studies reported that residue retention and no-tillage enhance
the nitrogen and carbon pools in soil [17,18].

This case study focuses on the problems of conventional RWCS (i.e., nutrient mining,
GHG emissions, and reduced profits) and alternative options such as DSR, use of advanced
rice harvesters for harvest, no-till wheat, precision agriculture, and crop rotation to improve
the yields, sustainability, and the conservation of scarce natural resources.

2. Review Methodology

We searched more than 180 articles, including 10 review and 170 research articles,
using four databases: Scopus, Web of Science, Google Scholar, and Center for Agriculture
and Bioscience International (CABI). These databases are large collections of mainstream
articles and are widely used for searching. The different keywords as (rice–wheat cropping
system, greenhouse gases emission, direct-seeded rice, zero tillage wheat, agricultural
innovation systems, profit margin in the conventional rice-wheat cropping system, crop
rotation, precision agriculture, nutrient mining, agricultural sustainability, and rice-specific
harvesters) were used to search the articles from these databases. To take additional
information from these articles, we used references from these articles as well. The articles
other than South Asia and published before the year 2000 were not included in this review.

3. Problems in Conventional Rice–Wheat Systems
3.1. Greenhouse Gas Emissions

In the Indo-Gangetic Plains (IGP), conventional RWCS is the major source of atmo-
spheric nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions due to
the use of intensive agricultural inputs [19], particularly the injudicious use of nitrogen
fertilizers Table 1 [20,21], aerobic and anaerobic soil cycling [22], and residue burning.
In northwest India, 2.5 M farmers burn 23 MMT of rice stubble each year (October to
November) to prepare field for wheat crop, causing massive air pollution affecting millions
of people across the IGP [23,24]. Annual residue burning emits GHGs, including CO2
(379 Tg), carbon monoxide (CO; 23 Tg), CH4 (0.68 Tg), NOx (0.96 Tg), and sulfur dioxide
(SO2) (0.10 Tg) [25]. The RWCS supplied with 75 kg N ha−1 had mean annual emissions of
N2O of 1.49 kg N ha−1, or 2.97–3.04 kg N ha−1 when supplied with >150 kg N ha−1 [26].

Table 1. Greenhouse gas emissions from different rice production systems.

Greenhouse Gas Quantity Emitted from DSR Quantity Emitted from Transplanted Rice Reference

Methane (CH4) 0.49 mg m−2 day−1 3.10 mg m−2 day−1 [27]
Nitrous oxide (N2O) 0.97 mg m−2 day−1 1.03 mg m−2 day−1

Carbon dioxide (CO2) 600 mg m−2 day−1 1800 mg m−2 day−1

Nitrous oxide (N2O) 0.90 kg ha−1 0.56 kg ha−1 [28]
Methane (CH4) 23.3 kg ha−1 32.8 kg ha−1

Methane (CH4) 18.9 kg ha−1 28.4 kg ha−1 [29]
Nitrous oxide (N2O) 0.95 kg ha−1 0.65 kg ha−1

Nitrous oxide (N2O) 25 kg ha−1 48 kg ha−1 [30]
Nitrous oxide (N2O) 0.12 kg ha−1 0.11 kg ha−1

Methane (CH4) 0.2 kg ha−1 1.1 kg ha−1 [31]
Carbon dioxide (CO2) 1.2 kg ha−1 1.3 kg ha−1

Nitrous oxide (N2O) 0.6 kg ha−1 0.4 kg ha−1
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Table 1. Cont.

Greenhouse Gas Quantity Emitted from DSR Quantity Emitted from Transplanted Rice Reference

Methane (CH4) 6.98 kg ha−1 18.49 kg ha−1 [32]
Nitrous oxide (N2O) 3.35 kg ha−1 3.71 kg ha−1

Methane (CH4) 25 kg ha−1 60 kg ha−1 [33]
Methane (CH4) 220 kg ha−1 315 kg ha−1 [34]
Methane (CH4) 25 kg ha−1 60 kg ha−1 [35]

Nitrous oxide (N2O) 0.12 kg ha−1 0.10 kg ha−1

Methane (CH4) 129 kg ha−1 271 kg ha−1 [36]
Methane (CH4) 269 kg ha−1 229 kg ha−1 [37]
Methane (CH4) 75 kg ha−1 89 kg ha−1 [38]

The flooding conditions in rice cause the anaerobic decomposition of organic matter,
which produces methane (CH4) in the soil [39]. Globally, rice contributes ~20% of the total
CH4 emissions [40]. The warming potential of CH4 is 25–30 times greater than CO2 [40,41].
In 2005, the concentration of atmospheric CH4 reached 1774 ppb [40]. Several studies
reported that PTR produces more CH4 emissions than DSR, while DSR produces more N2O
than PTR [3]. In one study, DSR and PTR produced N2O emissions of 1.2 t CO2eq ha−1

and 0.4 t CO2eq ha−1, respectively and CH4 emissions of 0.1 t CO2eq ha−1 and 0.6 t CO2eq
ha−1, respectively [42]. In conclusion, the adoption of monocultures in RWCS contributes
to global GHG emissions due to intensive agricultural inputs use and residue burning.

3.2. Nutrient Mining and Unwise Nutrient Use

Continuous monoculture cropping has threatened the long-term sustainability and
has caused macro- and micro-nutrient imbalances in RWCS [3]. In the IGP, the mining
of major nutrients, including nitrogen (N), phosphorus (P), potassium (K), and sulfur (S),
has created a major nutrient imbalance in RWCS. The production of 1 t of rice/wheat
depletes 20.1/24.5 kg N, 4.9/3.8 kg P, and 25.0/27.3 kg K, respectively, from the soil [43],
which decreases the soil productivity [44] if these nutrients are not replenished. In the
IGP, the removal of crop residues removes five times more K than that supplied through
fertilizers [45].

Among the micro-nutrients, Zn deficiency is more common in rice, while manganese
(Mn) deficiency is more prevalent in wheat [46]. In India, 49% of soil samples were Zn
deficient, followed by 33% deficient in B, 12% in Fe, 5% in Mn, and 3% in Cu [47]. In the
IGP, most rice and wheat farmers apply N fertilizers following blanket recommendations
based on crop response data, leading to under- or over-fertilization as there is wide spatial
variability in the indigenous nutrient supply capacity of soils in different agro-ecologies [26].
Diagnostic surveys of the IGP showed that farmers apply more N and P fertilizers than
recommended while under/overlooking the supply of K, other secondary macronutrients,
and micro-nutrients [48]. The inadequate and imbalanced use of nutrients reduces nutrient
use efficiencies and profitability and increases environmental hazards [49]. In conclusion,
the continuous growing of rice and wheat has resulted in the mining of major (N, P, K, and
S) and trace (Zn, B, and Fe) nutrients due to over- or under-fertilization.

3.3. Reduced Profit Margins

The PTR has smaller profit margins than DSR due to the high labor costs Table 2 [50].
With industrialization, the migration of people to cities reduced labor availability for agri-
cultural activities, which increased labor costs. Labor shortages delay the transplantation
of rice seedlings into puddled fields [51], delaying maturation, and decrease yields [3].
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Table 2. Profit margins in different rice production systems.

Name of Input Type of Soil Unit Cost in
DSR ha−1 ($)

Unit Cost in Transplanted
Rice ha−1 ($) Reference

Farmyard manure Sandy loam clay 18.40 13.26 [52]
Fertilizer Sandy loam clay 97.56 80.88

Plant protection measures (weeds, insect
pests and disease control) Sandy loam clay 54.63 42.09

Land preparation Sandy loam clay 59.01 69.49
Human labor charges Reclaimed alkali soils 163.01 174.56 [53]
Machine use charges Reclaimed alkali soils 60.62 103.34

Cost of seeds Reclaimed alkali soils 15.86 7.49
Cost of plant protection chemicals Reclaimed alkali soils 31.03 38.21

Irrigation charges Reclaimed alkali soils 36.57 47.15
Micronutrients Sandy loam clay 14.25 12.49 [52]

Irrigation Sandy loam clay 84.07 152.13
Nursery and transplanting/seed and sowing Sandy loam clay 21.53 65.11

Cost of weedicides Reclaimed alkali soils 33.61 26.78 [54]
Preparatory Tillage Reclaimed alkali soils 61.74 97.21

Pre-Sowing Irrigation Reclaimed alkali soils 12.80 15.70
Harvesting/threshing Reclaimed alkali soils 49.06 49.06

Plant protection Reclaimed alkali soils 76.52 80.23
Hoeing and weeding Reclaimed alkali soils 37.04 18.92

Irrigation Reclaimed alkali soils 76.50 125.82
Fertilizer application Reclaimed alkali soils 6.12 6.60

Nitrogen Reclaimed alkali soils 17.21 19.48
Phosphate Reclaimed alkali soils 15.20 20.04

Zinc sulphate Reclaimed alkali soils 7.96 8.47
TYM Reclaimed alkali soils 56.30 56.30
Seed Reclaimed alkali soils 13.76 7.26

Cost of fertilizers Reclaimed alkali soils 49.41 48.50 [53]

All the values in $ are converted according to rate of 10 January 2021; 1 Pakistani rupee = 0.0062$; 1 Indian Rupee = 0.014$.

Late transplantation of rice due to labor shortage causes heat stress during the repro-
ductive stage; temperatures >33.7 ◦C at anthesis causes panicle sterility due to poor anther
dehiscence [55] and >34 ◦C during grain formation substantially reduce grain yield [56].
Temperatures >35 ◦C (above optimal) during reproductive development affect flowering
and grain formation in rice [57].

4. Agricultural Innovations for Sustainable Development of Rice–Wheat Systems

Adaptation of innovative agricultural practices, such as conservation agriculture (CA),
improves and sustains the productivity of RWCS and preserves scarce natural resources,
such as water, energy, environmental quality, time, and labor [58]. The adaptation of
CA-based systems is most beneficial in extreme climatic conditions, mitigating the negative
impact of climatic stresses, such as water and heat stress, and increasing crop yields
(0.4–0.8 t ha−1 per season), when compared with the conventional system [59].

The CA improves energy efficiency and carbon sequestration and reduces GHG
emissions [2,60–62]. The incorporation of crop residues favors N immobilization (biotic
and abiotic), which conserves active soil N by, (i) decomposing crop residues for a source
of C for microorganisms and as an energy source to strengthen their metabolism which
results in N immobilization in biomass, and (ii) incorporating N into the soil organic
matter through ammonium fixation by clay minerals, nitrosation of nitrite with phenolic
compounds, and condensation of ammonia with phenol [63].

Immobilized N can serve as temporary N sink [63]. Residue retention increases total
organic C and available nutrients, mainly available P (16%), available K (12%), available
sulfur (6%), and DTPA-extractable Zn (11%), relative to no-residue retention [64]. The
adoption of resource-conserving technologies, such as DSR, harvesting rice with advanced
rice harvesters, no-till wheat, crop rotation, and precision agriculture for better nutrient
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management, can mitigate climate change, reduce environmental pollution, and conserve
natural resources.

4.1. Direct-Seeded Rice

In the IGP, increasing shortages of energy, water, and labor force farmers to switch
from conventional PTR to a smart seeding system, i.e., DSR. In many studies, DSR produced
higher yields, maximum profitability, and water-saving (25%) than PTR [62,65,66] with
improved soil health (Table 3). DSR is an economically feasible alternative as it reduces
production costs by 11–17% (with 25–30% irrigation water saving) and saves INR 5000 (on
fuel and labor) [67] for the same yields as PTR [62]. In a study, DSR used 7–13.9% less water
than the conventional PTR system [68]. Other studies in South Asia have reported that
DSR uses 20–57% less water than PTR [69,70]. Rice produced through DSR also matures
earlier than PTR, requires less water, and enables the timely sowing of following wheat
and other crops [51].

Table 3. Soil quality in different rice production systems.

Soil Property Unit Soil Type Value in DSR Value in
Transplanted Rice Reference

Total organic carbon g kg−1 Silt clay 7.24 7.25 [64]
Aggregate associated carbon g kg−1 Silt clay 12.56 11.94

Aggregate size class (0.25–2 mm) % Silt clay 48 48.9
Mean weight diameter mm Silt clay 1.61 1.61

Aggregate ratio Silt clay 5.06 5.58
Water stable macro-aggregates Silt clay 83.2 83.8

Water-holding capacity Loam 0.346 0.331 [71]
Available water cm3 cm−3 Loam 0.170 0.164

Geometric mean diameter mm Loam 0.86 0.80
Soil moisture potential (75 kPa) Loam 0.166 0.170

Crack depth (60 kPa) cm Loam 13 23

Bulk density (6–10 cm) Mg m−3 Clay, silt,
sand 1.60 1.61 [72]

WSA (>0.25 mm) Clay, silt,
sand 67.24 64.44

Steady-state infiltration rate Clay, silt,
sand 0.33 0.29

Water stable micro-aggregates Silt clay 16.8 16.2 [64]
pH Silt clay 7.39 7.41

Electrical conductivity dS m−1 Silt clay 0.79 0.75
Available N kg ha−1 Silt clay 195.5 185.0
Available P kg ha−1 Silt clay 28.4 27.5
Available K kg ha−1 Silt clay 264.3 222.4

Crack width (60 kPa) cm Loam 3 7 [71]
Crack length (60 kPa) cm Loam 300 420 [71]

Total nitrogen g kg−1 Sandy loam 0.29 0.27 [73]
Total soil organic carbon g kg−1 Sandy loam 3.40 3.14

Soil microbial biomass carbon µg g−1 Sandy loam 155.6 150.28
Soil microbial biomass nitrogen µg g−1 Sandy loam 586.3 551.78

Soil aggregates (>0.25 mm) Silt loam 60 51 [69]
MWD of soil aggregates mm Silt loam 1.56 1.33

Bulk density (0–7 cm) Mg m−3 Silt loam 1.60 1.50
Penetration resistance (5–10 cm) MPa Silt loam 1.2 0.75

WSA, water stable aggregates; MWD, mean weight diameter.

In DSR, the crop is directly sown into the field, avoiding transplantation injuries, thus
reducing exposure to terminal drought due to timely stand establishment [74]. Moreover,
DSR improves soil health for post-rice winter cereals [3] by enhancing total porosity and
decreasing soil bulk density [9], enabling deeper root penetration and facilitating nutrient
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and water uptake [3]. In RWCS, DSR has been reported to reduce methane emissions and
production costs, with increased profitability (Table 1; [51]).

Weeds are a major challenge in DSR; however, the application of weedicides can
control the issue. For example, pre-emergence application of pendimethalin (1.5 kg ha−1)
followed by bispyribac-Na (25 g ha−1) at post-emergence and hand weeding 35 days
after sowing provided better weed control and higher rice yields (123–130%), net returns
(327–806%) and net benefit: cost ratios than PTR [75]. However, diversification of weed
flora has been reported in DSR in Pakistan which are very difficult to control and many
farmers are afraid to plant rice in the DSR system. This needs the immediate attention of
the government agencies in the region.

In conclusion, switching from PTR to DSR in RWCS increases profitability reduces
production costs and GHG emissions, and is environmentally friendly, apart from the weed
management issue during early growth.

4.2. Zero-Tillage Wheat

Using zero tillage (ZT) wheat in RWCS benefits the timeliness of wheat sowing and
economics when compared with conventional tillage [59,76]. Zero tillage improves soil
health and enhances nutrient concentrations at the soil surface Table 4 [77,78].

Table 4. Soil quality in different wheat production systems.

Soil Property Units Soil Type Value in ZT Value in PT Reference

Bulk density Mg m−3 Siltic soils (Haplic Solonetz) 1.63 1.67 [2]
Soil pH Siltic soils (Haplic Solonetz) 7.84 8.06

EC dS m−1 Siltic soils (Haplic Solonetz) 0.25 0.21
Total N % Silty soils (Haplic Solonetz) 0.19 0.14

Bulk density Mg m−3 Sandy loam 1.54 1.50 [79]
Infiltration rate mm h−1 Sandy loam 1.5 0.3

MWD mm Sandy loam 1.9 1.7
WSA (>0.25 mm) % Sandy loam 73 57

Bulk density Mg m−3 Sandy loam 1.24 1.38 [80]
Soil temperature ◦C Sandy loam 33.15 35.29
PAWC (0–15 cm) mm Sandy loam 16.70 14.7
Infiltration rate mm h−1 Sandy loam 9.58 11.40

Bulk density Mg m−3 Sandy loam 1.52 1.48 [81]
Infiltration rate mm h−1 Sandy loam to loam 18.0 42.0 [66]

β-Glucosidase (p-NP) µg g−1 h−1 Loam 51.24 36.23 [82]
Bulk density Mg m−3 Sandy loam 1.44 1.46 [83]

Earthworm count ha−1 Sandy loam 380,000 60,000 [84]
Dehydrogenase activity µg g−1 d−1 Sandy loam 166.6 29.5

SOC g kg−1 Sandy loam 2.51 1.47
Bulk density Mg m−3 Sandy loam 1.60 1.56 [68]

SOC stock kg m−3 Sandy loam 6.88 5.91
Oxidizable organic C g kg−1 Fine loam (Typic Natrustalf) 8.1 4.9 [85]

WSA (>0.25 mm) % Sandy loam 70 59 [69]
MWD mm Sandy loam 2.68 1.62

Infiltration rate mm h−1 Sandy loam 5.0 4.7
Bulk density Mg m−3 Sandy loam 1.52 1.57
Crack width cm Sandy loam (typic ustrochrept) 0.53 2.68 [86]

Least limiting water range % Sandy loam 6.2 3.3 [72]
WSA (>0.25 mm) % Sandy loam 67.24 52.66

Bulk density Mg m−3 Sandy loam 1.55 1.48
Infiltration rate mm h−1 Sandy loam 3.3 1.8

Penetration resistance MPa Sandy loam 1.4 1.0
Volume of crack (×10−4) m3 m−2 Clayey 77.21 55.57 [87]

Bulk density Mg m−3 Clay 1.5 1.5 [88]
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Table 4. Cont.

Soil Property Units Soil Type Value in ZT Value in PT Reference

Infiltration rate mm h−1 Clay 17.30 15.55
PAWC (0–15 cm) mm Clay 40 36

Bulk density Mg m−3 Clay 1.24 1.28 [89]
WSA (>0.25 mm) % Clay 60.47 51.36

Alkaline phosphatase
(p-nitrophenol) (0–10 cm) µg g−1 h−1 Silty clay 287.7 269.8 [90]

Carbon build up % Silty clay 14.56 5.44
Fluorescein diacetate activity mg kg−1 h−1 Silty clay 49.54 43.54

Bulk density Mg m−3 Illitic, Ustic Typic Calciorthent 1.46 1.55 [91]
Carbon input addition Mg h−1 Illitic, Ustic Typic Calciorthent 14.64 3.10

Fluorescein diacetate activity µg g−1 h−1 Mixed loamy sand 27.9 13.3 [92]
Total C g kg−1 Sandy clay loam 7.25 6.95 [93]

KMnO4 C g kg−1 Sandy clay loam 0.43 0.39
Soil water retention mm sandy clay loam 4.6 4.2 [94]

WSA (>0.25 mm) % Sandy loam (Typic Ustochrept) 77.3 68.4 [95]
MWD mm Sandy loam 0.74 0.71 [96]

Effective porosity % Sandy loam 18.7 17.4
Bulk density Mg m−3 Sandy loam 1.43 1.39

Active C g kg−1 Sandy loam (Typic Ustochrept) 4.09 2.92 [95]
MWD mm Sandy loam (Typic Ustochrept) 1.21 0.92

Total organic carbon g kg−1 Fluvisol (silty clay) 7.25 6.38 [64]
Saturated hydraulic

conductivity (×10−6) m s−1 Clay 7.32 2.13 [97]

MWD mm Clay 0.94 0.76
MWD mm Silty loam (Typic Ustocrept) 1.86 0.95 [17]

WSA (>0.25 mm) % Silty loam (Typic Ustocrept) 96 84
SOC g kg−1 Silty loam (Typic Ustocrept) 7.86 5.81

Bulk density Mg m−3 Sandy loam 1.60 1.56 [98]
MWD mm Sandy loam 0.95 0.79 [99]

Porosity % Clay loam 42.40 42.62 [60]
Bulk density Mg m−3 Clay loam 1.43 1.40

Soil moisture (%) Non-calcareous brown sandy
loam Haplaquept 18.6 7.4 [100]

EC, electrical conductivity; MWD, mean weight diameter; WSA, water stable aggregates; PAWC, plant available water capacity; BD, bulk
density; SOC, soil organic carbon; ZT, zero tillage; PT, plow tillage.

Sowing wheat with ZT ensures early sowing and suppresses the obnoxious weed
e.g., littleseed canarygrass (68–80% reduction in population) when compared with conven-
tional farmers’ practices [101]. Moreover, ZT facilitates the timeliness of wheat sowing [3],
improves soil structure, fertility, soil biological activities [102], and water-stable aggre-
gates [103], and reduces the costs of land preparation [73,104]. In ZT wheat, the activities
of soil microbial biomass carbon [73,105], soil enzymes [106], soil respiration [66], and soil
quality index [107] are higher than plow tillage. In no-till with permanent soil cover, water
infiltration is usually higher than plow tillage [108].

The Happy Seeder is a zero-tillage seeder that sows wheat into large amounts of crop
residue and saves $136 ha−1. Moreover, it facilitates timely wheat sowing, saves water,
reduces air pollution, and enhances the sustainability of agriculture [24]. The use of Happy
Seeder reduces the labor requirement for crop establishment by 80%, herbicide use by
50%, and irrigation by 20–25% [109]. Use of zero-tillage drill and Happy Seeder made
it easy to plant wheat 2.7 days earlier (with earlier stand establishment) than that in CT
wheat [24]. Many farmers in RWCS in South Asia are quickly shifting towards Happy
Seeder wheat sowing due to the short turnover time between rice harvest and wheat
sowing and imposition of huge penalties on the burning of rice residues. In conclusion,
switching wheat sowing from conventional tillage to ZT ensures timely wheat sowing,
saves production costs and improves soil health, yields, and yield sustainability.
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4.3. Promotion of Precision Agriculture Practices for Nutrient Management

In the IGP, fertilizer recommendations are based on crop response data without
considering the inherent nutrient supply capacity of the soil, causing over- or under-
fertilization [68]. Improved nutrient management under CA improves yields and nutrient
and water use efficiencies [110]. For RWCS in the IGP, a combination of macro- and micro-
fertilizers with green manure, crop residues, and organic manures is a practical option for
better nutrient management [111].

In maize–wheat–mungbean rotations, the adoption of ZT with site-specific nutrient
management improved the soil physical, chemical, and biological properties, i.e., water-
stable aggregates, saturated hydraulic conductivity, soil organic C, available N, P, and K,
microbial biomass C, and enzyme activities (dehydrogenase, alkaline phosphatase, and
β-glucosidase), relative to conventional and unfertilized treatments [112].

A recent study on N application rates in RWCS recommended N application rates
of 120–200 kg ha−1 for rice and 50–185 kg ha−1 for wheat [26]. Zinc (Zn) application at
25 kg ha−1 as ZnSO4 improved rice and wheat yields [113]. In another study, the application
of Zn improved the grain yields in both DSR and PTR systems [114]. Likewise, the boron
(B) application to soils deficient in B improved growth and grain yield of rice [115,116].

Leaf color charts and SPAD chlorophyll meters are good options for managing N
application, with a strong correlation (0.84–0.91) reported between these and various rice
and wheat genotypes. Moreover, net returns increased by 19–31% using a leaf color chart
for N management rather than a fixed N application rate [68].

In conclusion, integrated nutrient management, crop rotations incorporating legumes,
site-specific optimization of nutrients rates, and the use of SPAD chlorophyll meters and
leaf color charts are the best options for nutrient management and enhanced nutrient use
efficiencies in rice and wheat.

4.4. Planning Wise Crop Rotations

Continuous monocultures have caused nutrient imbalances and increased the risk
of pest and disease occurrence [59]. Diversifying the area sown to rice to incorporate
other remunerative crops sustains soil fertility and improves crop productivity and farmer
income [66]. Rotating cereals and pulses help to maintain soil quality and soil microflora
and fauna [66,107]. It has been reported that the inclusion of leguminous crops in the
cereal system increased system productivity by 18% and net returns by 15% [117]. In
another study, the CA-based rice–wheat–mungbean cropping system improved system
productivity by 11% and profitability by 24%, and reduced energy inputs by 25%, relative
to a conventional rice–wheat system [62].

Long-term crop rotations (2000–2004) in India revealed that the rice–potato–green
gram rotation had the highest net returns, system productivity, production efficiency,
benefit: cost ratio, and profitability. Moreover, the inclusion of summer grain/fodder
legumes improved soil organic matter [118]. The addition of short-duration summer
legumes (mungbean and cowpea) in RWCS enhanced system productivity and profitability
and nutritional security [119]. A rice–fallow cropping system with the intensification of
five winter crop rotations (chickpea, lentil, safflower, linseed, and mustard) resulted in
higher productivity for grain legumes (chickpea and lentil) than oilseed crops (safflower,
mustard, and linseed) [120].

The inclusion of legumes in the cereal system fixes atmospheric N and improves
soil fertility through nutrient recycling from deeper soil layers and mycorrhizal colo-
nization [86]. Legume residues contain 20–80 kg N ha−1 (70% derived from N fixation),
depending on the crop type [121,122]. A long-term study (2001–2004) showed that rice–
legume rotations improved rice yields more than a rice–fallow rotation. In conclusion, the
inclusion of short-duration grain or forage legumes in rotation in RWCS improves soil
fertility and the yield of succeeding crops.
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4.5. Rice Harvesting with Advanced Rice Harvesters

Rice harvesting is the most expensive rice production field activity, as the timing,
duration, and mode of conduct of the harvesting directly affect rice quality, efficiencies,
and farmer incomes [123]. In developing countries, rice is manually harvested with hand
tools (as sickles) and threshed by beating on a hard matter or durum. The harvesting of
rice with modern rice harvesters saves time, costs, and labor and reduces grain losses when
compared with conventional manual harvesting [124]. Modern crop-specific mechanical
harvesters, such as combine and mini-combine harvesters and reapers, can save time
and labor, reduce harvesting losses, and increase profit margins and rice quality [125]. A
reaper saved 37% and mini-combine harvesters saved 52% of harvesting costs over manual
harvesting [126]. On average, a mini-combine harvester saves 95.5% of the time, 61.5% of
costs, and 4.9% of grain losses compared with manual harvesting [127].

Combine harvesters (mini, medium, and large) are a time-saving technology, saving
20–30% of operation time than ordinary machines [128]. The use of a mini-combine
harvester or reaper saved 65% and 52% of the labor costs over manual harvesting [129]. A
combine harvester increased the net benefit by 30.3%, relative to manual harvesting and
threshing [130]. Likewise, a vertical conveyor reaper saved 44% of harvesting costs [131].
Mechanical harvesting can also save grain losses, which were 2.88–3.60% for a tractor-
mounted combine harvester [125], compared with 6.36% for manual harvesting [132].

However, in Pakistan and many other countries of South Asia, rice crop is harvested
through wheat combine harvesters through some modification in machines. The use
of wheat combine harvester in rice cause substantial grain losses which affect farmer
profitability. In a study, the use of rice specific harvester reduces harvest losses by 14%
and an extra premium of 5% on the paddy harvested from rice harvesters which increased
farmer profitability [133]. In conclusion, rice harvesting with specific rice harvesters
improves grain quality, reduces grain losses, and increases profit. However, the price of
advanced rice harvesters is not affordable for all farmers. But this problem can be solved
through the subsidy by the governments or and through cooperative investment, where
a group of farmers pool their resources to purchase such machinery. Provision of such
machinery by the service providers, on rental basis, can be another option. However, the
rental charges for rice harvesters are double than the old model combine wheat harvesters.
Therefore, private investors are interested to invest in the purchase and provision of
on-farm services to farmers in South Asia.

5. Conclusions

The RWCS is the major cereal-based cropping system in South Asia, providing food
to millions of people. However, the sustainability and productivity of this system are at
high risk due to climate change, deteriorating natural resources, yield stagnation, and
the negative impacts of this system on the environment. Major issues with this system
include GHG emissions, declining soil quality and health, and reduced profit margins.
However, the adoption of alternative innovative and sustainable approaches, including
smart seeding/DSR, ZT wheat, crop rotation, precision agriculture, and rice and wheat
harvesting using advanced harvesters such as the reaper, mini, and combine harvesters are
the best options for improving yield, grain quality, and soil health, reducing environmental
pollution, and preserving the ecosystem and natural resources (i.e., water, air, and soil).
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