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Abstract: The fourth industrial revolution (“Industry 4.0”) has caused an escalating need for smart
technologies in manufacturing industries. Companies are examining various cutting-edge technolo-
gies to realize smart manufacturing and construct smart factories and are devoting efforts to improve
their maturity level. However, productivity improvement is rarely achieved because of the large vari-
ety of new technologies and their wide range of applications; thus, elaborately setting improvement
goals and plans are seldom accomplished. Fortunately, many researchers have presented guidelines
for diagnosing the smartness maturity level and systematic directions to improve it, for the eventual
improvement of productivity. However, most research has focused on mass production industries
wherein the overall smartness maturity level is already high (e.g., high-level automation). These
studies thus have limited applicability to the shipbuilding industry, which is basically a built-to-order
industry. In this study, through a technical demand survey of the shipbuilding industry and an
investigation of existing smart manufacturing and smart factories, the keywords of connectivity,
automation, and intelligence were derived and based on these keywords, we developed a new
diagnostic framework for smart shipyard maturity level assessment. The framework was applied to
eight shipyards in South Korea to diagnose their smartness maturity level, and a data envelopment
analysis (DEA) was performed to confirm the usefulness of the diagnosis results. By comparing the
DEA models, the results with the smart level as an input represents the actual efficiency of shipyards
better than the results of conventional models.

Keywords: smart shipyard; smartness maturity level; productivity diagnosis; assessment; data
envelopment analysis; Industry 4.0

1. Introduction

Owing to changes in the global manufacturing environment, the shipbuilding industry
currently faces challenges of survival and sustainability [1]. The global economic recession
has induced shrinking international trade, while marine resource development projects
are also decreasing or being canceled owing to declining oil prices, which are definitely
unfavorable conditions for the shipbuilding and marine industry [2]. Analysts predict that
it will be difficult to return to the early boom period of orders for ships and offshore plants,
such as around 2010, which is referred to as the “super cycle” in the shipbuilding industry.
Under these circumstances, shipyards worldwide are devoting various efforts to establish
corporate strategies for the future. One such strategy is the active adoption of smart
manufacturing technology, which numerous shipbuilding companies are considering [3,4].
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Global manufacturing companies are expressing great interest in smart manufacturing
and smart factories, with the goal of unmanned production through automation and
connectivity among enterprise resources with the help of the IoT. The application of the
smart factory concept is also accelerating with the adoption of Industry 4.0 in Germany.
This concept is expanding with the combination of information and communications
technology and automation solutions throughout the entire production process [5–7].

Although manufacturing companies seek to enhance the level of smart manufactur-
ing through surveys on the latest technologies related to smart factories, adopting smart
technologies often does not lead to practical effects (e.g., improved productivity). In fact,
inelegantly applying smart technologies without sufficient accurate and practical analysis
may adversely affect the existing production system. To solve this problem, a multidi-
mensional and quantitative assessment of the smartness maturity level of manufacturing
companies should be performed beforehand [8,9]. However, beyond simple products, it
is necessary to consider both quantitative and qualitative criteria and interdependence in
a complex manufacturing environment. Therefore, appropriate assessment of the man-
ufacturing level of companies has long been an important issue. With rising interest in
smart factories, researchers have proposed various definitions and criteria related to smart
factories depending on the scale and type of the manufacturing company. Nevertheless,
research on the assessment of smart factories is limited.

This growing emphasis on the importance of smart factories has led scholars to re-
examine prior literature on the development of production systems and continuously
publish new studies on the definition of a smart factory and the assessment of manufactur-
ing systems. However, since most research has been focused on the general manufacturing
industry, it has limited direct applicability to shipyards, which possess different industry
characteristics. Basically, shipbuilding is a built-to-order industry. The products of the
shipbuilding industry, i.e., ships—consists of several millions of similar but mostly unique
intermediate products. At the early stages of production, the similarity among intermediate
products is high enough to automate the processes, but the similarity plummets as the
production progresses. Therefore, mostly, the automation level of shipyards are relatively
low and disproportionally biased to earlier stages [10].

To evaluate smart shipyard and maturity level (SSML) assessment methods, the lit-
erature has been extensively surveyed. First, several studies examined smart factories in
the manufacturing industry [6,7,11] Furthermore, studies on maturity level assessment of
the manufacturing system can be largely divided into studies on evaluation of the manu-
facturing system in its current state and those on the evaluation of future manufacturing
systems aimed at smart factories. In this regard, there have been several case studies on the
evaluation of the manufacturing system in its current state [12–16]. In addition, since the
advent of smart manufacturing owing to the fourth industrial revolution (4IR), maturity
level assessment models for evaluating future manufacturing systems have been studied
since 2013 [17–20]. Detailed descriptions of the literature on the definition of smart factories
and on manufacturing system assessment are shown in Appendix A.

In South Korea, the Korea Production System (KPS) was developed, which is suit-
able for the South Korean manufacturing environment across representative manufactur-
ing sectors such as automotive and consumer goods. [21]. Furthermore, following the
development of KPS, to successfully promote the spread of smart factories, the Smart
Manufacturing Innovation Planning Division of the Bureau of small and medium-sized
enterprises (SMEs) developed a diagnostic tool that can represent plans for smart factory
construction, with the goal of objectively diagnosing and assessing the smart maturity level
of the manufacturing industry [22]. In this study, they derived the criteria and modules
for smart factory assessment from the framework for the smart factory operation system
(vision, goal, enterprise, factory, machine, and control). In addition, a questionnaire for the
assessment items comprising each module was defined according to the maturity level
definitions. Detailed configurations of KPS and smart factory assessment modules are
shown in Appendix B.
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The smart factory assessment module is a diagnostic tool suitable for the general
machinery sector and is actively used by South Korean manufacturing companies [22].
Accordingly, this study also attempted to assess South Korea’s large and medium-sized
shipbuilding companies using this smart factory assessment tool in the initial stage. How-
ever, the composition and contents of the assessment items defined in the existing model
did not reflect the characteristics of the shipbuilding industry and differed from the ship-
building production system, thus, degrading the reliability of the assessment results.

Concerning multivariate analysis, mathematical analysis techniques such as analytic
hierarchy process (AHP), data envelopment analysis (DEA), and multivariate regression
analysis are widely used for the assessment of multiple targets derived from various in-
put variables. A meaningful productivity predictor was proposed based on a regression
analysis of various indicators related to shipyard productivity [23]. The competitiveness
of shipyards was analyzed through DEA, using capacity, technology level, and the in-
dustrial environment of various shipyards as input and productivity and building times
as output [24]. Their studies extended beyond a qualitative analysis; through DEA, they
expressed the relative levels of the most advanced shipyards and those lagging behind
them, thereby presenting directions for improvement and quantitative improvement lev-
els. A shipyard efficiency analysis using DEA was also introduced [25]. Turnover/cost
values were derived by combining various shipyard production indicators to compare
the actual competitiveness of shipyards [26]. Moreover, an assessment methodology for
the shipyard block assembly process was developed using process mining and DEA, and
they described a practical case applying the methodology to shipyards [27]. In addition,
shipyard production plans were assessed using the AHP method considering sales, dock
turnover, and quay load [28]. Most recently, a comparative analysis was performed for
assessing the productivity of 21 shipyards in South Korea, China, and Japan using DEA
and the metafrontier framework [29]. As such, researchers have performed a variety of
studies on shipyard competitiveness and productivity, with DEA being applied the most.

In this study, we propose a SSML assessment framework that considers ship pro-
duction characteristics and diverse production environments. To this end, we devised
a modified assessment framework appropriate for the SSML assessment based on the
categories of the smart factory assessment framework proposed by Lee et al. [22]. For
this purpose, the SSML assessment framework was defined through expert surveys on
South Korean shipbuilders of various sizes and technology levels and reflected in the
composition of the detailed assessment items. Furthermore, we applied the developed
SSML assessment framework to real shipyards and their subcontractors. To apply the
proposed framework, this study adopted DEA techniques [24,30] to analyze productivity
in the shipyard industry. Using DEA, we built a model that set the maturity level of the
shipyard and its subcontractors as input, and sales and order quantity as output. The
model confirmed that the smartness maturity level can serve as useful information for
assessing the capabilities of companies and deriving quantitative improvement indicators.

The remainder of this study is structured as follows. In Section 2, we present how to
develop the SSML and, in Section 3, we provide the results and analysis of the assessment
from the interview. In Section 4, we introduce DEA and describe the method of quanti-
tative analysis using DEA. In Section 5, we present the results and discuss the practical
contributions of this study. In Section 6, we draw conclusions and suggest future research.

2. Development of Smart Shipyard Maturity Levels

While these previous maturity models present meaningful diagnostic criteria, they
either lack specificity or are difficult to apply to diagnosing the SSML. As incorrect assess-
ment criteria lead to incorrect assessment results, smartness maturity levels that reflect the
characteristics of shipbuilding production systems must be defined.

With few studies on the assessment of shipyards, this study is the first step for
developing a smart maturity level assessment system for shipyards. Technical demand
surveys were conducted with large and medium-sized shipyards in South Korea, module
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manufacturing subcontractors, and related research institutes. The surveys were conducted
by e-mail on May 2018, with the shipbuilding industry partners in South Korea including
large shipyards, subcontractors, and research institutes. Through these online and offline
demand surveys, we identified approximately 450 technology demand surveys from
smart shipyards, which were categorized into five areas, as shown in Figure 1. Next, an
industry-academia-research expert group was formed to devise a technical roadmap for
realizing smart shipyards, see Figure 2, based on the technical demand survey results. This
roadmap comprised a bottom-up process for selecting four major fields from the technology
demands of the 450 candidates, and a top-down process for classifying the detailed tasks
through the expert group. The technical roadmap was largely classified into infrastructure
technology, including IoT, big data, process automation for unmanned production and
logistics activities, intelligent technology for an array of production management tasks,
and production design automation technology.
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Next, to prepare the standard for the SSML from the technical roadmap, we used
the concept revealed from the existing research focusing on the automation concept It is
difficult to define the levels for complex production systems such as shipyards because
existing level definitions for smart factories are defined on a single-level scale. The concept
of automation was examined from a human-centered perspective rather than a physical
device [31]. Accordingly, we defined the types of automation as follows:

1. Control automation assists humans in the guiding process of executing the task and
the machine movement through dangerous tasks. Control automation plays the role
of an observer of the whole subsystem.

2. Management automation allows humans to exercise demands oriented to technologi-
cal actions and activities, and also a strategic point of the automation process.

3. Information automation, a type of system that is changing very rapidly, provides the
system with information about the progress and the execution of certain tasks.

We used these three types of automation, i.e., physical, intellectual, and information
transaction, as keywords for smart shipyards (see Table 1). First, physical automation
corresponds to control automation and automation of human physical labor. Next, intellec-
tual automation refers to automation of human knowledge labor and corresponds to the
management automation. Finally, connectivity refers to automation of information transfer,
and corresponds to information automation [31]. Additionally, the assessment criteria for
each maturity factor and level, together with the specific integrated form of smart shipyard
concerning each level, are shown in Appendix C.

Table 1. Definition of smart shipyard maturity level.

Level Connectivity Physical Automation Intellectual Automation

Level 5 Hyper connection Unmanned Hyper intelligence
Level 4 IoT connection Fully automatic Artificial intelligence
Level 3 Wireless connection Partially automatic Information and knowledge
Level 2 Wire connection Mechanized Data
Level 1 Face-to-face connection Manual Experience

On the basis of this definition of SSML and on the smart factory assessment frame-
work [22], an assessment framework for SSML was developed. In this process, the number
of inquiry items in the existing model increased from 46 (from [22]) to 61 (assessment frame-
work for SSML) to reflect the characteristics of the shipbuilding industry. In particular,
assessment items for the logistics operation and information system modules were added
and modified (Table 2). Furthermore, Figure 3 shows the structure of the criteria, modules,
and assessment items of the proposed assessment framework. This diagnosis framework
was divided into the following four criteria groups: leadership and strategy, process, system
and automation, and performance. In addition, each criteria group consisted of submod-
ules; in particular, the process criteria group included product development, production
planning, process management, quality management, facility management, and logistics
operation modules in consideration of the shipbuilding process. Each module included
assessment items, and based on those, the smart shipyard maturity level was diagnosed.
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Table 2. Example of changed assessment items (partially selected).

Smart Factory Assessment Smart Shipyard Assessment

Module 3 (Production
planning): Inquiry 4

Short-term production planning

→
Module 3

(Production planning):
Inquiry 4

Mid-term planning (quarter/month) and
short-term planning

• Level of collaboration between sales
and production and operational
procedures levels

• Rolling planning system process
operation status (weekly/daily)

• Whether to conduct what-if
simulation to validate the production
planning

• Level of collaboration with upper
planning departments and business
and operational procedures levels

• Rolling planning system process
operation status (weekly/daily)

• Whether to operate an evaluation
and optimization system (simulation,
operations research, etc.) to establish
production planning

• Information sharing level of
production planning information
(manual, intranet, web, etc.)

Module 7 (Logistics):
Inquiry 4

Warehousing

→
Module 7

(Logistics):
Inquiry 4

Stockyards

• Whether to use a rack system to
increase storage efficiency

• Rack address system
• Analysis of warehouse operation

productivity indicators such as
location management, warehouse
space utilization, and inventory level

• Storage productivity level such as
rack, transport tool, picking tool, and
display

• Whether to use various types of stock
area to increase storage efficiency

• Lot numbering system for stockyards
• Analysis of storage-related efficiency

indicators such as area management,
area utilization, and level of materials
and blocks

• Area efficiency level

N/A
Module 8

(Info. System):
Inquiry 8

Advanced planning and scheduling system

• Level definition using aggregate
production scheduling

• The composition of a comprehensive
system for production planning and
service levels concerning information
systems
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3. Assessment of Smart Shipyard Maturity Level
3.1. Methodology for Assessment of SSML

We conducted an assessment of shipyards to verify the developed assessment frame-
work. Regarding the assessment procedure, first, the assessment material was delivered to
15 companies, including large (L1~L5), mid-sized shipyards (M1~M3), as well as subcon-
tractors such as hull block assembly (B1 and B2), outfitting material manufacturers (O1 and
O2), and steel fabrication companies (P1 and P2), and the person-in-charge of the respective
module at each company completed the assessment material through a self-assessment. As
shown in Figure 3, since there were 10 evaluation modules, 10 employees of each company
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participated in the assessment. In order to eliminate personal bias, two or three consult-
ing experts who had over 10 years of experience in shipbuilding production area visited
each company afterwards and corrected those self-assessment scores through in-depth
interviews with the person-in-charge of the respective module and site inspections. Then,
reports were written on the interview, site inspection results, and corrected diagnoses and
delivered to each company, after which feedback was received. The assessment results
were converted into a score of 5 points and Table 3 shows the results of SSML of each
assessment module.

Table 3. Results of the SSML of each assessment module.

Shipyard Subcontractor

Large Shipyard Mid-Sized Shipyard Block Outfitting Processing

L1 L2 L3 L4 L5 M1 M2 M3 M4 B1 B2 O1 O2 P1 P2

1. Leadership strategy 3.8 4.1 3.0 3.4 3.3 3.0 2.9 2.8 2.5 1.8 1.5 3.3 1.5 3.5 3.8

2. Product development 3.6 3.8 3.4 3.4 3.8 2.0 3.1 2.6 2.5 2.4 1.3 2.6 1.3 3.0 2.8

3. Production planning 2.9 3.4 3.0 3.3 3.0 2.3 3.1 2.9 2.4 2.0 2.3 2.4 2.1 3.0 2.0

4. Process management 2.6 3.4 3.0 3.0 2.7 2.3 2.8 2.9 2.6 2.2 2.4 2.2 2.3 3.2 2.8

5. Quality management 2.7 2.7 3.0 2.7 2.7 2.1 2.8 2.8 2.0 2.4 2.3 2.6 2.2 2.3 2.0

6. Facility management 2.5 3.5 2.9 2.8 2.5 2.2 2.3 2.8 1.9 2.4 2.1 1.7 2.1 2.5 2.2

7. Logistics operation 2.9 3.1 2.6 2.5 3.1 2.1 2.6 2.5 2.0 2.4 2.1 1.9 1.8 3.0 2.4

8. Information system 3.4 3.8 3.6 3.2 3.2 2.1 3.3 3.0 2.5 2.0 1.9 1.4 1.8 3.0 1.6

9. Production automation 2.5 2.6 3.1 2.2 2.4 1.3 1.7 2.6 1.2 1.2 1.4 1.5 1.2 1.2 2.4

10. Performance 3.3 3.7 3.4 3.4 3.4 2.7 2.9 3.0 2.6 3.2 3.0 2.3 2.6 3.0 2.0

Smartness level 3.0 3.4 3.1 3.0 3.0 2.2 2.7 2.8 2.2 2.2 2.0 2.2 1.9 2.8 2.4

3.2. SSML Assessment Results and Discussion

In contrast to general business consulting, the assessment results were expressed as
scores from a sophisticated assessment that reflects the widely known scale and qualitative
level of companies. Furthermore, they are meaningful as much as this is the first assessment
of detailed production factors in the field of shipbuilding production.

Figure 4 shows the average score for each module of the companies investigated.
Production automation, the most noteworthy module, showed the lowest assessment
at 1.9 (approximately 40 points based on 100 points) owing to the high dependence on
workforce in the shipbuilding industry. Most shipyard and subcontractor processes are
manual processes. All construction can be performed manually, excluding processing and
some assembly processes in large and mid-sized shipyards. Considering the weight of
the number of hours by process, large shipyards also have very low automation rates, at
approximately 30% for processing and 10% for assembly.

Next, the levels of quality management, facility management, and logistics operations
were diagnosed as low. Concerning quality management, although domestic shipyards are
somewhat competitive internationally [32], this module was assessed to be low because
the assessment focused on the computerization aspect of data collection, processing, and
sharing, rather than the level of quality itself. However, the numerous complaints in
the on-site interviews from quality management employees about the inadequate data
management systems suggests that, in addition to the quality management capabilities
of domestic shipyards, the informatization systems that support quality management
must be improved. The facility management assessment signifies inadequate management
concerning smart maturity of large transport equipment (gantry cranes, transporters,
etc.) and production equipment (cutting, welding, painting equipment, etc.). Advanced
technologies such as connectivity and predictive maintenance, which are pursued in
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smart production, were not adopted, and most maintenance procedures consisted of
responding to problems after they occurred. Hence, there is a need for advanced facility
management by applying predictive maintenance and IoT connectivity technologies, which
automatically collect equipment information in real time. As one of the main targets of
shipyard management, logistics was recognized as a component of production that enables
the smooth flow of production activities by connecting processes, rather than as a simple
transport activity. Nevertheless, shipyards remain in the process of adopting logistics
technology for tracking work in process (steel plate, hull block, outfitting module, etc.)
items; therefore, from the perspective of smart production that pursues connectivity and
automation in transport, the low score for this module is reasonable. Aside from these
modules, the scores for product planning, production planning, process management, and
the information system (approximately 2.7–2.8) were higher than the overall average smart
maturity level.
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Figure 4. Average maturity level of each assessment module.

Management’s proactiveness concerning smart technology, in terms of leadership
and strategy and performance measurement, was scored relatively high at 2.9 and 3.0,
respectively. However, as these two modules are considerably closer to qualitative as-
sessment than other modules that can be quantitatively diagnosed (systems, facilities,
informatization, etc.), they can be regarded as assessment items not supported by concrete
evidence. Therefore, since the weights among the modules must be considered, future
studies must apply the AHP technique to derive more reliable assessment results.

Next, we conducted a clustering analysis of each company based on the maturity
level scores. Excluding leadership and strategy and performance measurement, which
directly impact the production level, the average scores of the “process” and “system
and automation” groups based on the criteria were set as the x- and y-axes, respectively,
and the position of each company is shown in Figure 5. In Figure 5, the size of each
circle indicates a company’s relative sales in 2019. As the low tide of the international
shipbuilding market continued in 2019, the relative sales of each company indicated in the
graph are not proportional to their production capacity. Therefore, although M2/M3 and
M1/M4 are classified as mid-sized shipyards, the difference in actual production capacity
is very large. Nevertheless, the scale of sales shown in Figure 5 are similar owing to the
influence of market conditions; therefore, they should be considered only for the purpose of
classifying company type. This is shown to classify large and mid-sized enterprises/SMEs.
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Figure 5. Bubble chart for the comparison of smart shipyard maturity level concerning process and system and automation.

The large L1–L5 enterprises formed a relatively higher cluster, while the level of M2
and M3 companies among the mid-sized enterprises was similar to that of large shipyards.
Although M1 and M4 are also classified as mid-sized shipyards along with M2 and M3
because the sizes of M2 and M3 are close to large, the difference in size is also reflected in
the production level. The outfitting manufacturers (O1, O2) and block manufacturers (B1,
B2), as well as mid-sized shipyards M1 and M4, formed a cluster separate from the large
enterprise cluster. P1 and P2 located between these two clusters reflect the characteristics
of companies that form curved hull plates, which showed rather exceptional results. These
results suggest that, as basic research on the automation of curved hull plate forming
has recently matured to some degree, curved hull plate forming companies have also
attempted to replace operator-dependent tasks with automated machines, thus, resulting
in a movement toward automation reflected in the smart maturity level.

By analyzing the company type and SSML score as above, we could quantitatively
analyze the smart maturity level of large- and mid-sized companies in the South Korean
shipbuilding industry. We confirmed that the developed assessment framework for the
SSML can reasonably quantify the types and levels of shipbuilding companies.

4. Data Envelopment Analysis
4.1. DEA Method

The proposed DEA method measures efficiency based on linear programming in
the decision-making process [33]. This method is mainly applied when it is difficult to
identify and compare direct relationships among multiple inputs and outputs and can be
used to develop a more suitable decision-making model than AHP in environments with
insufficient information. AHP and DEA methods have been applied to manufacturing
supply chain companies and their performances have been compared to verify the practical
effectiveness of each technique [34]. According to the findings, the AHP technique can
provide detailed and gradual decision-making results through pairwise comparison in
cases with large amounts of information, whereas the DEA method can provide effective
decision-making strategies for situations with insufficient decision-making factors in a new
environment. Accordingly, this study focused on a situation with a lack of specific grounds
and information for smart shipyard technology and directions and noted very fast and
uncertain technological change in the shipyard industry, unlike existing manufacturing
technologies. Therefore, rather than AHP, which is time-consuming in the development
process, DEA was applied using the assessment results of the SSML as input, with the
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goal of verifying whether it could be useful for calculating the efficiency of shipyards and
deriving quantitative improvement indicators.

This method calculates the relative efficiency of assessment targets, where multiple
inputs and outputs are considered. It derives the most efficient decision-making units
(DMUs) from all DMUs to be assessed; consequently, the relative efficiency of each DMU is
calculated using linear programming. DEA models are largely categorized into models
that assume constant returns to scale (CRS) and those that assume variable returns to scale
(VRS). The CRS model assumes that the relationship between input and output is the same
at a constant rate, regardless of scale, and was used when the DEA methodology was first
proposed. The CRS model is also referred to as the Charnes–Cooper–Rhodes (CCR) model,
after the first proposed model. The VRS model [30] relaxes the assumption of CRS in the
CCR model and is also referred to as the Banker–Charnes–Cooper (BCC) model.

DEA models can also be categorized into input-oriented and output-oriented models
according to their orientation to input or output. The input-oriented model seeks to
minimize input with a fixed output, whereas the output-oriented model seeks to maximize
output with a fixed input.

DEA models are based on linear programming and can be explained by the following
equations: First, assume that n DMUs exist. If DMUk (k = 1, . . . , n) means that m inputs
xij (i = 1, . . . , m; j = 1, . . . , n) are input to output s outputs yrj (r = 1, . . . , s; j = 1,
. . . , n), then, the efficiency of the kth observation DMUk is obtained through the linear
programming solution of Equations (1) and (2) assuming an output-oriented CCR model.
In the equation, θ is the efficiency value, and s− and s+ are slack variables for the input and
output, respectively. If the value of θ∗ obtained as the solution to this equation is 1 and both
slack variables are 0, then the DMU is an efficient (efficiency 100%) DMU. Equations (1)
and (2) are as follows:

max
{

θk + ε
(
∑m

i=1 s−i + ∑s
r=1 s+r

)}
(1)

s.t.


∑n

j=1 xijλj + s−i = xik, i = 1, . . . , m
∑n

j=1 ∑n
j=1 yrjλj − s+r = θkxik, r = 1, . . . , s

λj, s−i , s+r ≥ 0, ∀i, j, r

 (2)

As the BCC model assumes VRS, a constraint is added such that the sum of λ is 1.
Accordingly, the output-oriented BCC model can be expressed as in Equations (3) and (4)
as follows:

max
{

θk + ε
(
∑m

i=1 s−i + ∑s
r=1 s−r

)}
(3)

s.t.


∑n

j=1 xijλj + s−i = xik, i = 1, . . . , m
∑n

j=1 ∑n
j=1 yrjλj − s+r = θkxik, r = 1, . . . , s

∑n
j=1 λj = 1

λj, s−i , s+r ≥ 0, ∀i, j, r

 (4)

If the efficiency value of the CCR model is θ∗CCR and that of the BCC model is θ∗BCC,
then, the constant relationship θ∗CCR≤ θ∗BCC is established, and the difference in efficiency
between the two models originates from whether the scale is optimal. This difference is the
scale efficiency (SE), and the following relationship is established in Equation (5):

SE = θ∗CCR ÷ θ∗BCC (5)

If SE is 1, then, it is in a CRS state and there is no inefficiency owing to scale; if SE is
less than 1, then, it is in an increasing or decreasing returns to scale state, signifying that
there is inefficiency owing to scale. The efficiency of the CCR model (θ∗CCR) is referred to as
the technical efficiency, while the efficiency of the BCC model (θ∗BCC) is referred to as pure
technical efficiency to emphasize that inefficiency owing to scale is excluded.
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4.2. Quantitative Analysis Using DEA

Next, using the DEA method, we conducted a quantitative analysis, compared the
companies, and presented target levels of quantitative improvement for relatively low-level
companies. DEA is an analysis method that measures the relative efficiency of companies
with multiple input and output factors. It measures the relative efficiency between the
same groups and provides information on benchmarking targets to improve efficiency for
those that appear inefficient. The DEA technique is useful for the following problems.

1. It is useful when there are many inputs and outputs, but it is difficult to integrate
them into the single index in an appropriate way.

2. DEA provides a basis for benchmarking target that should be investigated to improve
efficiency.

3. DEA can simultaneously consider various input and output factors with different
units of measurement.

To measure efficiency using DEA, DMUs must be set. DEA presupposes the homo-
geneity of the analysis target, requiring individual DMUs to perform similar activities to
produce products that can be compared [35]. Furthermore, similar resources or capital
must be input in all DMUs, and performance must not be influenced by external factors.
Accordingly, the DMUs in this study, consisted of shipyards focusing on new shipbuilding.
However, shipyards for which output variable data (new ship construction) could not be
secured were excluded from the analysis.

The selection of the input and output variables is important for ensuring the reliability
of the DEA results. That is, it is necessary to select input and output variables that can
accurately reflect the objectives, targets, and production environment of the shipyard. Our
objective was to verify whether the SSML assessment result is an indicator of shipyard
efficiency. As such, a DEA model was built using the number of employees and docks as
inputs and the new ship construction as the output.

Furthermore, as described above, the DEA model was categorized into a CCR model
(for Charnes, Cooper, and Rhodes [33]) and BCC model (for Banker, Charnes, and
Cooper [30]) based on the assumption of the effect of scale, and also categorized into
an input-oriented (minimum input) model and output-oriented (maximum output) model,
depending on the purpose of measuring efficiency. Regarding the selection of the model,
since new ship construction is greatly affected by external factors, the input-oriented
(minimum input) model was selected, which minimizes the input for a fixed output. The
commercial software Frontier Analyst was used for the DEA.

Next, two models were defined as shown in Table 4, to perform the DEA. However, as
the input and output of the DEA model are proportionally correlated, for the SSML score
(the input variable), the proposed model uses the value of the perfect score (5.0) minus the
score of each factor. This was a given correlation as an input factor of the DEA model, in
which the lower the maturity level score, the closer it is to the advanced level. That is, a
high maturity level indicates a relatively small input factor value, meaning that the output
can be achieved with less effort. Thus, the maturity level was analyzed by subtracting the
projection value derived via DEA from the perfect score (5.0).

Owing to insufficient data, DMUs could not be performed for all companies in Table 3.
However, a DEA was conducted for shipyards with available data on output Y1 (L1–L5,
M2, M3, and M4) common to the two models and X1 and X2 of the traditional model in
Table 4.
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Table 4. Input and output variables definition of each target data envelopment analysis (DEA) model.

Model Category Items Remark

Traditional model
Input variables

• X1: Employee number
• X2: Number of dock and berth

Output variables • Y1: New shipbuilding volume (CGT)

Proposed model
Input variables

• X3: Process
• X4: System and automation

Smart shipyard maturity level
assessment

Output variables • Y1: New shipbuilding volume (CGT)

There are considerations concerning the timing of the input and output data. As
shipyard construction volume greatly varies with the time period, large gaps in the potential
production volume of a shipyard may arise when using the proposed model’s input data X1–
X2 and Y1 of when the maturity level assessment was performed in 2009. Moreover, data
on the shipyard’s production capacity are not explicitly disclosed or available. Accordingly,
for the data of X1–X2 and Y1, we considered the largest volume of new ship construction
during the last 10 years and the number of employees and docks/berths in that year.
Consequently, the 2019 data were selected. Although applying these conditions will lead to
mismatched timing in the output and input data, we ignored it because our objective was
to compare the results of DEA, which uses physical conditions (workforce, resources, etc.)
as input, with the results of the proposed method, which uses the maturity level as input,
rather than present quantitative information on each shipyard through precise assessment
results. Furthermore, as the speed of change in shipyards is slow, it was judged that the
level assessed in 2019 had not dramatically changed over the last 10 years.

Before describing the analysis, the following assumptions were made: If the objective
reliability of the relationship between the input and outputs considered in Table 4 and the
DEA method is secured, then the level (or efficiency) of each shipyard will be determined
by the DEA results. However, we aimed to identify which input/output and DEA model
best expressed the phenomenon (shipyard level); the judgment criteria for the suitability of
the analysis results were defined as the shipyard level, which were generally known as
follows. For the assumptions of the relative levels of L1–L5 and M2–M4, they are classified
based on the global ranking of each shipyard. First, L1–L3 are within the top five shipyards
worldwide, with little change in ranking over the past 20 years. Thus, their scale, as
indicated by sales and orders, and also their overall production level is among the best
worldwide. Next, L4 and L5 are within the top 10 shipyards worldwide; although, the
scale is somewhat smaller than L1–L3, this does not necessarily indicate a larger difference
in production level. Next, M2 and M3 are shipyards in the top 10–50 worldwide, with
relatively high-ranking volatility. Finally, M4 corresponds to shipyards ranked 50–100.
However, as the difference in order and construction volume decreases at lower ranks,
the difference in SSML does not increase as much as the difference in rank. Accordingly,
L1–L3 is defined as the large group, L4 and L5 as the mid-sized-large group, M2 and
M3 as the mid-sized group, and M4 as the small group, which are assumed to be the
guidelines for analyzing the DEA results. According to the previous study, if the skill
level of a large shipyard is set to 100, the level of a medium-sized shipyard is 75–85, and
that of a small shipyard is approximately 50 [36]. Therefore, this quantitative guideline is
used as comparative data to examine the efficiency feasibility of each shipyard through
DEA analysis.

5. Results of the Data Envelopment Analysis

DEA was performed for Case 1 of a single model consisting of L1–L5 and M2–M4 as
DMUs and Case 2 of split models with L1–L5 and M2–M4 separated.
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5.1. Case 1

In Case 1, L1–L5 and M2–M4 were configured as one model. Figure 6 shows the
efficiency and the (SE) results derived by applying the CCR and BCC analysis methods
concerning the traditional model and proposed model. In Figure 6 (raw data is Table A8),
SE values below 1 were derived. If the SE is less than 1, the DMUs are in a state of increasing
or decreasing returns to scale states, signifying that there is inefficiency owing to scale.
Next, the results were derived from the CCR and BCC methods using the traditional and
proposed models.
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Figure 6 shows the analysis results of the BCC and CCR methods, under traditional
analysis conditions using the number of employees and docks as input variables. First,
concerning the BCC method, the efficiencies of all shipyards, excluding M2 in BCC and M2
and M4 in CCR, were 100% or close to 100%, confirming that there was no discriminatory
power between the shipyards. Furthermore, concerning both BCC and CCR, L1 and M2
was lower than M3 and M4, although it ranked higher than both in reality; hence, they did
not meet the guidelines assumed in Section 4.

Next, Figure 6b shows the analysis results from BCC and CCR, under the analysis con-
dition using two previously analyzed SSML categories as the input variables; specifically,
the average of the perfect score (5.0) of each module minus the score of each factor.

In Figure 6b, the CCR analysis results under the proposed model show efficiencies
of 21.56%, 7.95%, and 4.57% for M2–M4, respectively, thus exhibiting differentiation with
L1–L5. However, the difference became excessively large, resulting in practically impos-
sible values for the projections of process and system and automation, which are inputs.
Therefore, the analysis results are unreasonable. On the contrary, the BCC results, in
Figure 6b, show the analysis results from the BCC method under the proposed model. All
shipyard efficiency results using the BCC method under the proposed model satisfied the
assumed guidelines in Section 4. L1–L3 was at 100% and was located in the best practice
line, followed by L4 and L5 at approximately 80%, showing a difference of approximately
20% with the large group. Next, M2 and M3 showed values in the upper 70%, slightly less
than the mid-sized and large groups; and M4, belonging to the small group, was approxi-
mately 60%. Thus, in the proposed model, the BCC analysis presents appropriate efficiency
and projection values considering the qualitative level of each shipyard. Concerning the
construction volume projections (as marked in red in Table A11), however, the values of
M3 and M4 were unrealistically overestimated. This problem likely occurred because the
difference in construction values from other shipyards was too large, despite being an
input-oriented model. Accordingly, in the DEA analysis of Case 2, L1–L5 (large group) and
M2–M4 (small and mid-sized group) were divided into separate models.
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5.2. Case 2

Owing to the large difference in scale between the large-, small-, and mid-sized groups,
the construction volume projections calculated for the small- and mid-sized shipyards were
overestimated. Hence, in Case 2, L1–L5 (large group) and M2–M4 (small and mid-sized
groups) were divided into separate models for the analysis. Since BCC showed more
reasonable results than CCR in the analysis of Case 1, only the results under the proposed
model were addressed in Case 2. For reference, Tables A14 and A15 in Appendix D show
the detailed results under the traditional model for Case 2.

Figure 7 summarizes the efficiency and SE results. According to the results under
the proposed model of Figure 7b,d, there was no change in L1–L5, which belongs to the
large group, with only a change in M2–M4. That is, since the model for the small group
was separated considering the difference in construction size, the large group showed no
change from the existing results; and M2–M4, which were separated from the construction
of large shipyards into a group of small shipyards, were calculated independently, thus
adjusting the efficiency.
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Comparing the efficiency of CCR and BCC using the proposed model in the M2–M4
analysis, BCC (100%, 100%, and 80.22%) better reflects the shipyard guidelines than CCR
(100%, 40.55%, and 21.20%). In other words, since M2 and M3 correspond to mid-sized
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shipyards with similar scale and technology level and M4 corresponds to small shipyards,
BCC exhibited more reasonable results than CCR.

Additionally, Table A16 in Appendix D shows the DEA results of proposed approach
and explains the detailed analysis results from the BCC methods. As shown in Table A16,
the process and system and automation levels of L4 and L5 (large shipyards) must be
improved by approximately 11–16% to reach the levels of L1–L3. As for M2–M4, whereas
M2 and M3 are at 100% efficiency within that group, M4 shipyards must improve their
process level by 20% and system and automation by 27%.

As a result of DEA analysis with respect to various factors and cases as compared with
the existing DEA technique which uses physical elements such as the number of employees
and docks as input, the proposed method, which uses the SSML as input, derived more
reasonable results for the efficiency and projection of actual shipyards.

6. Conclusions

To develop a framework for diagnosing the smart maturity level of the shipbuilding
industry, this study analyzed existing research on smart manufacturing, smart factories,
and maturity models. Technology demand surveys were also performed to reflect the
characteristics of the shipbuilding industry, and a technical roadmap for realizing smart
shipyards that reflected the opinions of an expert group was proposed. The SSML assess-
ment framework developed through this process defined five maturity levels for each of
the following keywords: connectivity, automation, and intelligence. Furthermore, based
on the defined levels, a diagnostic tool comprising 61 items for four criteria and 10 mod-
ules was developed. While the structure presented in prior research was used for the
criteria and modules of the diagnostic tool, the 61 detailed inquiry items were reconfig-
ured reflecting the characteristics of shipyards. This developed framework was used to
diagnose large- and medium-sized shipyards and subcontractors in South Korea, after
which the results were analyzed. Automation was assessed the lowest in the maturity level
of shipbuilding-related companies, and it was confirmed that those companies could be
divided into groups through a bubble chart analysis using process and system/automation
criteria as the two axes.

Next, the assessment of SSML was used to conduct a DEA, which was capable of
quantitative analysis. Using the SSML as the input variable, DEA can derive the efficiency
levels of the subject companies and confirm the level of improvement required to reach
100% efficiency for each module through quantitative indicators. In addition, for the same
companies, we performed a comparative analysis between the traditional DEA model,
which used the number of employees, scale of facilities, etc. as input variables; and the
other DEA model, which used the SSML as the input variable. The results demonstrated
that the model using the maturity level as the input variable derived more reliable results
that were well matched with a previous survey [36].

However, for DEA to be more pertinent, the number of DMUs must be at least two
to three times greater than the sum of the number of input and output variables [37]. As
the assessment was based on a rather insufficient number of DMUs (companies to be
diagnosed), further investigations with more DMUs are strongly recommended, including
not only South Korean shipyards but also shipyards of similar scales in China, Japan, and
Europe.
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4IR Fourth industrial revolution
BCC Model based on its authors (Banker, Charnes, and Cooper [30])
CCR Model based on its authors (Charnes, Cooper, and Rhodes [33])
CEMM Connected enterprise maturity model
CGT Compensated gross tonnage
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NIST National Institute of Standards and Technology
OA Office automation
RI4 Reifegradmodell Industrie 4.0
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SMSRL Smart manufacturing system readiness level
VRS Variable returns to scale
AHP Analytic hierarchy process
CRS Constant returns to scale
DMU Decision-making units
KPS Korea Production System
PwC Price Waterhouse Coopers
SE Scale efficiency

Appendix A. Smart Factory Definition and Research on Manufacturing
System Assessment

To evaluate SSML assessment methods for the smart level definition, the literature
on the smart factory definition required was extensively surveyed. First, for a smart
factory, one of the biggest topics in the manufacturing industry, similar concepts were
defined in the following research cases: A smart factory was defined as a context-aware
manufacturing environment that can respond to disruptions in real-time production using
distributed information and communication structures to optimally manage production
processes, and as the model of next-generation factories in an era of ubiquitous computing
technology [6]. It was defined as a factory of the future and factory-of-things “composed
of smart objects which interact based on semantic services,” and emphasized that, rather
than a hierarchy in the traditional sense, the objects will self-organize to fulfill certain
tasks [7]. SmartFactoryKL which is a demonstration and research test bed for smart
factories was introduced in that study conducted by. The German Research Center for
Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI).
The United States National Institute of Standards and Technology (NIST) defines smart
manufacturing as a fully integrated cooperative manufacturing system that responds in
real time to the changing demands and conditions of factories, supply chains, and customer
needs, and emphasizes integration not only within the factory but also with supply chains
and customers [11].

Studies on maturity level assessment of the manufacturing system can be largely di-
vided into studies on evaluation of the manufacturing system in the current state and those
on the evaluation of future manufacturing systems aimed at smart factories. First, several
case studies evaluated the manufacturing system in its current state. Existing manufactur-
ing system maturity level methodologies related to manufacturing SMEs was examined
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and an improved assessment tool was proposed [12]. In a project with the Mechanical
Engineering Industry Association in Germany (Verband Deutscher Maschinen-und Anla-
genbau), the “Industry 4.0 Readiness” model was proposed [13]. This assessment model
comprised six dimensions and 18 fields; the six dimensions consist of four dimensions
(smart factory, smart product, smart operation, and data-driven services) in addition to
“strategy and organization” and “employees.”

Maturity level assessment models provided by accredited institutions include the
following: The Capability Maturity Model Integration (CMMI) model developed by the
Software Engineering Institute (SEI) starts from a five level maturity model of software
development and serves as the basis for various process maturity models, such as pur-
chasing, products, and human resources [14]. Concerning manufacturing competitiveness,
the Manufacturing Enterprise Systems (MES) Maturity Profile, developed by the MES
Association, presents the maturity levels for MES, a system for optimizing production
from product order to delivery [15]. The Business Process Maturity Model (BPMM) of
the Object Management Group (OMG) presents an organization’s processes as a five-level
maturity model. The BPMM was developed as a diagnostic tool that substitutes critical
success factors (information technology and systems, culture, responsibility, methodology,
performance, etc.) and the perspectives of connection, design, execution, control, and
improvement in CMMI [16]. Table A1 shows the maturity levels of SEI, MES Association,
and OMG.

Table A1. Maturity levels of several organizations/developers.

Organization/
Developer

Maturity
Model Level 1 Level 2 Level 3 Level 4 Level 5

SEI [14] CMMI model Initial Managed Defined Quantitatively
managed Optimizing

MES
Association [15]

MES maturity
profile Poor Basic Effective Best Practice Emerging

OMG [16] BPMM model
Initial

inconsistent
mgmt.

Managed work
unit mgmt.

Standardized
process mgmt.

Predictable
capability

mgmt.

Innovating
change mgmt.

Since the advent of smart manufacturing owing to 4IR, maturity level assessment
models related to 4IR have been studied since 2013, as shown in Table A2.

The Connected Enterprise Maturity Model developed by Rockwell Automation [17]
presents enterprise maturity at five levels (assessment, secure and upgraded network and
controls, defined and organized working data capital, analytics, and collaboration), but
does not present detailed assessment items and a development process. The Reifegrad-
modell Industrie 4.0 (4IR), jointly developed by Mechatronics Cluster and Upper Austria
University of Applied Sciences [18], presents three areas of data, intelligence, and digital
transformation, 13 assessment items, and uses a 10-point-scale maturity level assessment
method. However, the maturity model and detailed assessment content are inadequate.
The Industry 4.0 Self Assessment model developed by pwc [19] derived six areas related to
4IR competencies (digital business models and customer access; digitization of product
and service offerings; digitization and integration of vertical and horizontal value chains;
data and analytics as core capability; agile IT architecture, compliance, security, legal, and
tax; and organization, employees, and digital culture) and presented a four-level maturity
model; however, only some evaluation items and no detailed development process were
presented. The smart manufacturing system readiness level model under development
by researchers at NIST diagnoses the maturity level for four areas, i.e., organizational
maturity, IT maturity, performance management maturity, and information connectivity
maturity [20]. However, based on an improvement activity model and factory design
using IDEF0 (Integration Definition 0 [38]), it assesses the readiness level and focuses
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on improvements in the information system sector, making it somewhat inadequate for
comprehensive production system diagnoses.

Table A2. Maturity evaluation models.

Model Organization/Developer Year Maturity or Readiness Level

CEMM [17] Rockwell Automation 2014

• Assessment
• Secure and upgraded network and
• Defined and organized working data capital
• Analytics
• Collaboration

RI4 [18] FH-Oberosterreich/Manuel
Brunner et al. 2015 • 10-step evaluation criteria

The Industry 4.0
Self Assessment [19] pwc 2016

• Digital novice
• Vertical integrator
• Horizontal collaborator
• Digital champion

SMSRL [20] NIST/Jung et al. 2016

• Not performed
• Initial
• Managed
• Defined
• Qualitative
• Optimizing

Appendix B. Korea Production System and Smart Factory Assessment Modules

KPS, a part of the Korean government’s strategy for enhancing the productivity of
manufacturing companies, is a tool that integrates various manufacturing innovation
methodologies to establish a standard production system appropriate for the manufactur-
ing capabilities and industrial culture of Korean manufacturing companies and to improve
productivity.

Following the development of KPS, to successfully promote the spread of smart
factories, the Smart Manufacturing Innovation Planning Division of the Bureau of SMEs
developed a diagnostic tool that can present plans for smart factory construction, with
the goal of objectively diagnosing and assessing the manufacturing industry’s smart
maturity level [25] (see Table A3). This diagnostic tool follows ISO 9001:2015 (management
system), IEC 62264 (manufacturing operation system), ISO 22400, and SCOR (KPI); and
was developed for certifying factory operation systems and designed to be linked with
in-house enterprise certification systems, reflecting the culture and characteristics of the
Korean manufacturing industry (Samsung Electronics, Hyundai Motor Company, POSCO,
etc.). Moreover, as shown in Figure A1, a framework for smart factory operation was
constructed, and smart factory assessment modules were derived.

The criteria and modules for smart factory assessment (Table A4) from the framework
for the smart factory operation system was derived, as shown in Figure A1 (vision, goal, en-
terprise, factory, and machine/control) [22]. In addition, a questionnaire for the assessment
items comprising each module was defined according to the maturity level definitions in
Table A5.
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Table A3. Assessment configuration of the Korea Production System.

Principles. Core Activities No. of Inquiries

1. Participation of stakeholders

1.1. Healthy organization culture 5

1.2. Human resource and competency development 4

1.3. Safe working environment 4

2. Standardization

2.1. Prepared working place 5

2.2. Visual management 3

2.3. Work standard management 4

2.4. Project management 5

3. Continuous improvement

3.1. Goal setting and deployment 5

3.2. On-site abnormality detection and action 5

3.3. Problem solving and team improvement activities 5

4. Optimization of production system

4.1. Logistic management 5

4.2. Optimization of production set-up 5

4.3. Multifunctional skill management 5

5. Practicality of production information

5.1. Master data management 5

5.2. Business process information and integration 5

5.3. Production informatization strategy 5

6-1. Quotation/contract/design process
6-1.1. Quotation and product design 5

6-1.2. Process and work design 5

6-2. Production operation and logistic
process

6-2.1. Order production plan management 5

6-2.2. Procurement (purchase/outsourcing/material)
management 5

6-2.3. Production input and progress management 5

6-2.4. Shipping and logistics management 5

6-3. Facility/equipment management
process

6-3.1. Facility operation and maintenance 5

6-3.2. Energy efficiency in manufacturing sites 5

6-4. Quality and A/S process

6-4.1. Inspection and quality management system 5

6-4.2. Operation of quality assurance system 5

6-4.3. Quality improvement and failure cost management 5

6-5. Cost calculation and management
process

6-5.1. Estimated cost calculation and budget management 4

6-5.2. Analysis and utilization of cost information 4

6-5.3. Cost improvement and performance management system 5
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Intelligent 
system

Data mgmt.

Optimization/Simulation

Intelligent scheduling

Standard
Master data mgmt.

Process rule mgmt.

Figure A1. Framework for smart factory operation system (courtesy of Korea Smart Manufacturing Office; https://www.
smart-factory.kr/eng/index (accessed on 17 February 2021)).

Table A4. Modules for smart factory assessment from smart factory framework.

Criteria Framework Modules Assessment Contents

Leadership and
strategy Vision & Strategy 1. Leadership and strategy

• Leadership, operation strategy,
organization and competency management,
and performance measurement

Process

Factory level 2. Product development
• Standard procedure, product/process

design and validation, and product and
technology information management

Factory level 3. Production planning
• Master data management, demand and

order management, and long- and
short-term production planning

Factory level 4. Process management
• Job allocation, progress rate management,

and abnormality management

Factory level 5. Quality management
• Prevention/correction, audit standard

management, and inspection/test

Factory level 6. Facility management
• Facility operation, facility maintenance,

mold and jig-fixture maintenance, and
conservation materials

Factory level 7. Logistics operation
• Procurement and purchasing, warehouse

management, and shipment and delivery

https://www.smart-factory.kr/eng/index
https://www.smart-factory.kr/eng/index
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Table A4. Cont.

Criteria Framework Modules Assessment Contents

System and
automation

Factory level 8. Information system

• Enterprise resource planning/supply chain
management/MES/product lifecycle
management/factory energy management
system/security management

Machine/Control
level 9. Production automation

• Production/transportation/inspection
automation, information network, and
safety and environment

Performance Goal & KPI 10. Performance measurement
• Productivity, quality, cost, delivery, safety,

and environment

Table A5. Definition of smart factory maturity level.

Level Description

Checking • Simple detection of status (cannot be linked with external system)

Monitoring • The detection result is displayed as data on an external monitoring system

Control
• After analyzing the presence or absence of abnormality from the detection result, the

abnormal function is controlled to normal sate

Optimization
• Information integration and comprehensive control from the perspective of overall

system optimization through the connection of internal and external systems between
upper and lower facilities and equipment

Autonomy • Self-diagnosis and self-repair artificial intelligence and autonomous control

Appendix C. Smart Shipyard Maturity Assessment Levels

Table A6. Definition of level of each maturity factor.

Level Connectivity Automation Intelligence

Level 5

• The level at which things
(machines/computers) are
autonomously connected

• In addition to the level of IoT
connection, the level of
autonomous decision-making
on receiving/storing/sending
data and information in a
decentralized IoT network
environment

• The level at which all
production and management
activities are operated by
machines and computers
without human intervention.

• Through embedded preemptive
prognostic health management,
not only production activities
but also maintenance to
production stoppage factors
such as failures are performed
autonomously

• Level of information generation
by computer intelligence
superior to humans

• In addition to the level of
artificial intelligence, AI design
(environment, reward, action,
etc.)/learning
performance/decision-making
is performed by computers

Level 4

• The level at which things
(machines/computers) are
automatically connected

• The level of receiving and
sending necessary data and
information at the right time
and at the right time by
production resources and IoT
devices installed in the
workplace without human
intervention

• The level of replacing human
work by using automated
equipment

• The level at which all
production activities are
performed by the connected
automation equipment,
excluding the response to
production stoppage factors
such as machine failures

• Information generation level by
human level computer
intelligence

• Algorithms in the same way as
human thinking are accelerated
in a computer environment to
make fast and accurate decisions
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Table A6. Cont.

Level Connectivity Automation Intelligence

Level 3

• The level at which humans use
automated equipment or
humans and machines are
connected in an automated
manner.

• Data and information are
acquired in an automated way
through wireless devices, but
the receiving and sending of the
acquired information is
performed by humans

• A level of substituting part of
human tasks using automated
equipment

• The level at which all
production activities are
performed by independent
automated equipment,
excluding the response to
production stoppage factors
such as failure

• Level of information generation
through analysis/inference by
engineering algorithm

• Definition of input and output
and preparation of input data
are performed by humans, and
the input data are
processed/analyzed/inferred by
engineering algorithms
implemented in a computer to
generate information for
decision-making

Level 2

• The level at which people are
connected through machines

• The level at which data transfer
is performed by wired devices
(telephone, fax, PC, etc.)

• The level of substituting part of
human work using machines

• Production activities such as
cutting and welding are
performed by mechanized
devices, but the start and end of
work and management activities
for abnormal conditions are
performed by humans

• Data manage-
ment/retrieval/copy/modification
level using computer equipment

• A level in which human
experience data are manually
stored through office
automation (OA) devices, and
data in-
quiry/copy/modification/distribution
is performed using OA
programs

Level 1

• The level of direct
human-to-human connection

• The level at which data are
delivered by direct human
activities (conversation, paper
document delivery, etc.)

• The level at which work is
performed by humans

• The level at which production
activities are performed by
direct human hand activities

• Level of data generation by tacit
knowledge based on human
experience

Table A7. Description of each level of shipyard.

Level Description

Level 5
shipyard

• Artificial intelligence that transcends human thinking; that is, not only information generation, but also
the design and execution of the information generating process itself is performed by a computer.
Therefore, no human intervention is required for knowledge activities through information generation
and information analysis. Data and information between human and objects are shared by IoT networks
that are deployed across the enterprise.

• In addition to the level of automation of Level 4, the production activity is also embedded in the
production resource, and the occurrence of abnormal situations is autonomously managed by predictive
preservation technology synchronized with production activities.

Level 4
shipyard

• Information is generated by artificial intelligence algorithms at the level of human thinking, and data and
generated information are automatically shared between computers and IoT devices according to a
predefined work process without humans or devices.

• Production is automatically performed by autonomous facilities.
• In addition, product movement is also performed by automated transportation facilities. However, if a

failure occurs in the facility or a work abnormality occurs, an abnormal signal is immediately transmitted
to the work manager and the abnormal situation is managed.

Level 3
shipyard

• When a person enters data in a computer equipped with an engineering algorithm, information is
generated by the algorithm, and the generated information is shared between departments by a person
using a wireless device, and production data are processed through a wireless device.

• Unit production work is performed by being delivered to an independent automation facility on-site.
• However, the scope of automation is limited to the unit process (cutting, grain processing, welding of

sub-assembly, etc.), and if a failure in the automation facility or a work abnormality occurs, the abnormal
situation is managed by the waiting work manager.
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Table A7. Cont.

Level Description

Level 2
shipyard

• Data produced by human experience and ability is stored in a wired OA device, and the stored data are
transferred in a manner of inquiry/copy/modification/distribution using wired OA devices and
programs.

• Data for production is delivered to the operator through the OA device, and the data received by the
operator is loaded onto the machine or the machine is operated according to the received work
instruction to perform production activities.

Level 1
shipyard

• A shipyard where production data are created based on human experience and ability, and the generated
data are delivered through direct human conversation instructions and paper documents without
separate storage, and production activities are performed by direct human manual work.

Appendix D. DEA Results

Table A8. Efficiency and scale efficiency of traditional model and new model (Case 1).

Traditional Model Proposed Model

Efficiency SE
(CCR/BCC)

Efficiency SE
(CCR/BCC)CCR BCC CCR BCC

L1 60.82% 100.00% 0.61 100.00% 100.00% 1.00

L2 100.00% 100.00% 1.00 100.00% 100.00% 1.00

L3 82.22% 100.00% 0.82 100.00% 100.00% 1.00

L4 90.56% 94.21% 0.96 41.32% 82.52% 0.50

L5 100.00% 100.00% 1.00 51.28% 82.52% 0.62

M2 67.51% 69.44% 0.97 21.56% 76.23% 0.28

M3 88.96% 100.00% 0.89 7.95% 79.42% 0.10

M4 65.62% 100.00% 0.66 4.57% 61.15% 0.07

Table A9. DEA results with the Banker–Charnes–Cooper (BCC) of traditional model (Case 1).

DMU L1 L2 L3 L4 L5 M2 M3 M4

Efficiency 100.00% 100.00% 100.00% 94.21% 100.00% 69.44% 100.00% 100.00%

Employee

Data 54,808 34,353 30,181 10,479 11,777 7941 2142 2159

Projection 54,808 34,353 30,181 9545 11,777 5514 2142 2142

Diff. 0.00% 0.00% 0.00% −8.90% 0.0% −30.60% 0.00% −0.80%

Dock

Data 11 5 7 4 4 5 3 3

Projection 11 5 7 3.77 4 3.35 3 3

Diff. 0.00% 0.00% 0.00% −5.80% 0.00% −33.00% 0.00% 0.00%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 244,624

Diff. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 34.50%
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Table A10. DEA results with the Charnes–Cooper–Rhodes (CCR) of traditional model (Case 1).

DMU L1 L2 L3 L4 L5 M2 M3 M4

Efficiency 100.00% 100.00% 100.00 90.84% 100.00% 68.32% 100% 74.35%

Employee

Data 54,808 34,353 30,181 10,479 11,777 7941 2142 2159

Projection 54,808 34,353 30,181 10,479 11,777 7941 2142 2142

Diff. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% −0.80%

Dock

Data 11 5 7 4 4 5 3 3

Projection 11 5 7 3.87 4 3.6 3 3

Diff. 0.00% 0.00% 0.00% −3.40% 0.00% −28.00% 0.00% 0.00%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877

Projection 2,906,250 2,433,277 2,393,300 1,341,193 1,511,919 1,007,369 244,624 244,624

Diff. 0.00% 0.00% 0.00% 10.10% 0.00% 46.40% 0.00% 34.50%

In Tables A11 and A12, the “data,” “projection,” and difference rows for “process”
and “system and automation” indicate the input data, quantitative value to reach 100%
efficiency, and ratio of the projection and data, respectively. Two values are shown for each
data, projection, and difference by the DMU in the proposed model. The value on the left
is the perfect SSML score of the perfect score, which is 5.0 minus assessment value and the
projected value, and the value on the right is converted from the perfect score again.

Table A11. DEA results with BCC of proposed model (Case 1).

DMU L1 L2 L3 L4 L5 M2 M3 M4

Efficiency 100% 100% 100% 82.52% 82.52% 76.23% 79.42% 61.15%

Process

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94 2.23 2.77 2.26 2.74 2.78 2.22

Projection 2.15 2.85 1.70 3.30 2.01 2.99 1.70 3.30 1.70 3.30 1.70 3.30 1.79 3.21 1.70 3.3

Diff. 0% 0% 0% 0% 0% 0% −17.5% 11% −17.5% 11% −23.8% 16% −20.6% 15% −38.8% 33%

System and automation

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 2.51 2.49 2.2 2.8 3.17 1.83

Projection 2.07 2.93 1.79 3.21 1.65 3.35 1.79 3.21 1.79 3.21 1.79 3.21 1.75 3.25 1.79 3.21

Diff. 0% 0% 0% 0% 0% 0% −21.8% 16% −19% 13% −28.7% 22% −20.6% 14% −43.5% 43%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877

Projection 2,906,250 2,433,277 2,393,300 2,433,277 2,433,277 2,433,277 2,421,048 2,433,277

Diff. 0% 0% 0% 99.7% 60.9% 253.6% 889.7% 1237.9%

Table A12. DEA results with CCR of proposed model (Case 1).

CCR (min Input)
DMU L1 L2 L3 L4 L5 M2 M3 M4

Efficiency 100% 100% 100% 41.32% 51.28% 21.56% 7.95% 4.57%

Process

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94 2.23 2.77 2.26 2.74 2.78 2.22

Projection 2.15 2.85 1.70 3.30 2.01 2.99 0.85 4.15 1.06 3.94 0.48 4.52 0.18 4.82 0.13 4.87

Diff. 0% 0% 0% 0% 0% 0% −58.7% 29% −48.7% 25% −78.4% 39% −92% 43% −95.4% 54%

System and automation

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 2.51 2.49 2.20 2.8 3.17 1.83

Projection 2.07 2.93 1.79 3.21 1.65 3.35 0.90 4.10 1.11 3.89 0.51 4.49 0.17 4.83 0.13 4.87

Diff. 0% 0% 0% 0% 0% 0% −60.9% 34% −49.7% 28% −79.8% 45% −92% 42% −95.8% 62%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877

Diff. 0% 0% 0% 0% 0% 0% 0% 0%
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Table A13. Efficiency and scale efficiency of traditional and proposed model (Case 2).

Traditional Model Proposed Model

CCR BCC SE CCR BCC SE

L1 60.82% 100.00% 0.61 100.00% 100.00% 1.00

L2 100.00% 100.00% 1 100.00% 100.00% 1.00

L3 82.22% 100.00% 0.82 100.00% 100.00% 1.00

L4 90.56% 90.84% 1 41.32% 82.52% 0.50

L5 100.00% 100.00% 1 51.28% 82.52% 0.62

M2 100.00% 100.00% 1.00 100.00% 100.00% 1.00

M3 100.00% 100.00% 1.00 40.55% 100.00% 0.41

M4 74.02% 100.00% 0.74 21.20% 80.22% 0.26

Table A14. DEA result with BCC of traditional model (Case 2).

DMU L1 L2 L3 L4 L5

Efficiency 100% 100% 100% 100% 100%

Employee
Data 54,808 34,353 30,181 10,479 11,777

Projection 54,808 34,353 30,181 10,479 11,777

Diff. 0.0% 0.0% 0.0% 0.0% 0.0%

Dock and berth

Data 11 5 7 4 4

Projection 11 5 7 4 4

Diff. 0.0% 0.0% 0.0% 0.0% 0.0%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Diff. 0.00% 0.00% 0.00% 0.00% 0.00%

DMU M2 M3 M4

Efficiency 100% 100% 100%

Employee

Data 7941 2142 2159

Projection 7941 2142 2142

Diff. 0% 0% −0.8%

Dock and berth

Data 5 3 3

Projection 5 3 3

Diff. 0% 0% 0%

Construction

Data 688,199 244,624 181,877

Projection 688,199 244,624 244,624

Diff. 0% 0% 34.5%
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Table A15. DEA result with CCR of traditional model (Case 2).

DMU L1 L2 L3 L4 L5

Efficiency 60.82% 100% 82.22% 90.56% 100%

Employee

Data 54,808 34,353 30,181 10,479 11,777

Projection 33,334.78 34,353 24,815.44 9489.77 11,777

Diff. −39.2% 0% −17.8% −9.4% 0%

Dock and berth

Data 11 5 7 4 4

Projection 6.69 5 5.76 3.22 4

Diff. −39.2% 0% −17.8% −19.4% 0%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Diff. 0% 0% 0% 0% 0%

DMU M2 M3 M4

Efficiency 100% 100% 74.02%

Employee

Data 7941 2142 2159

Projection 7941 2142 1598.08

Diff. 0% 0% −26%

Dock and berth

Data 5 3 3

Projection 5 3 2.22

Diff. 0% 0% −26%

Construction

Data 688,199 244,624 181,877

Projection 688,199 244,624 181,877

Diff. 0% 0% 0%

Table A16. DEA results with BCC of proposed model (Case 2).

DMU L1 L2 L3 L4 L5

Efficiency 100% 100% 100% 82.52% 82.52%

Process

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94

Projection 2.15 2.85 1.70 3.30 2.01 2.99 1.70 3.3 1.70 3.3

Diff. 0% 0% 0% 0% 0% 0% −17.5% 11% −17.5% 11%

System and
automation

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79

Projection 2.07 2.93 1.79 3.21 1.65 3.35 1.79 3.21 1.79 3.21

Diff. 0% 0% 0% 0% 0% 0% −21.8% 16% −19% 13%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Projection 2,906,250 2,433,277 2,393,300 2,433,277 2,433,277

Diff. 0% 0% 0% 99.7% 60.9%
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Table A16. Cont.

DMU M2 M3 M4

Efficiency 100% 100% 80.22%

Process

Data 2.23 2.77 2.26 2.74 2.78 2.22

Projection 2.23 2.77 2.26 2.74 2.23 2.77

Diff. 0% 0% 0% 0% −19.8% 20%

System and
automation

Data 2.51 2.49 2.2 2.8 3.17 1.83

Projection 2.51 2.49 2.2 2.8 2.51 2.49

Diff. 0% 0% 0% 0% −20.8% 27%

Construction

Data 688,199 244,624 181,877

Projection 688,199 244,624 688,199

Diff. 0% 0% 278.4%

Table A17. DEA results with CCR of proposed model (Case 2).

DMU L1 L2 L3 L4 L5

Efficiency 100% 100% 100% 41.32% 51.28%

Process

Data 2.15 2.85 1.7 3.3 2.01 2.99 2.06 2.94 2.06 2.94

Projection 2.15 2.85 1.7 3.3 2.01 2.99 0.85 4.15 1.06 3.94

Diff. 0% 0% 0% 0% 0% 0% −58.7% 29% −48.7% 25%

System and
automation

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79

Projection 2.07 2.93 1.79 3.21 1.65 3.35 0.90 4.10 1.11 3.89

Diff. 0% 0% 0% 0% 0% 0% −60.9% 34% −49.7% 28%

Construction

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919

Diff. 0% 0% 0% 0% 0%

DMU M2 M3 M4

Efficiency 100% 40.55% 21.2%

Process

Data 2.23 2.77 2.26 2.74 2.78 2.22

Projection 2.23 2.77 0.79 4.21 0.59 4.41

Diff. 0% 0% −64.9% 35% −78.8% 50%

System and
automation

Data 2.51 2.49 2.20 2.8 3.17 1.83

Projection 2.51 2.49 0.89 4.11 0.66 4.34

Diff. 0% 0% −59.4% 32% −79.1% 58%

Construction

Data 688,199 244,624 181,877

Projection 688,199 244,624 181,877

Diff. 0% 0% 0%
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