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Abstract: The fourth industrial revolution (“Industry 4.0”) has caused an escalating need for smart 

technologies in manufacturing industries. Companies are examining various cutting-edge technol-

ogies to realize smart manufacturing and construct smart factories and are devoting efforts to im-

prove their maturity level. However, productivity improvement is rarely achieved because of the 

large variety of new technologies and their wide range of applications; thus, elaborately setting im-

provement goals and plans are seldom accomplished. Fortunately, many researchers have pre-

sented guidelines for diagnosing the smartness maturity level and systematic directions to improve 

it, for the eventual improvement of productivity. However, most research has focused on mass pro-

duction industries wherein the overall smartness maturity level is already high (e.g., high-level au-

tomation). These studies thus have limited applicability to the shipbuilding industry, which is ba-

sically a built-to-order industry. In this study, through a technical demand survey of the shipbuild-

ing industry and an investigation of existing smart manufacturing and smart factories, the key-

words of connectivity, automation, and intelligence were derived and based on these keywords, we 

developed a new diagnostic framework for smart shipyard maturity level assessment. The frame-

work was applied to eight shipyards in South Korea to diagnose their smartness maturity level, and 

a data envelopment analysis (DEA) was performed to confirm the usefulness of the diagnosis re-

sults. By comparing the DEA models, the results with the smart level as an input represents the 

actual efficiency of shipyards better than the results of conventional models. 

Keywords: smart shipyard; smartness maturity level; productivity diagnosis; assessment; data  

envelopment analysis; Industry 4.0 

 

1. Introduction 

Owing to changes in the global manufacturing environment, the shipbuilding indus-

try currently faces challenges of survival and sustainability [1]. The global economic re-

cession has induced shrinking international trade, while marine resource development 

projects are also decreasing or being canceled owing to declining oil prices, which are 

definitely unfavorable conditions for the shipbuilding and marine industry [2]. Analysts 

predict that it will be difficult to return to the early boom period of orders for ships and 

offshore plants, such as around 2010, which is referred to as the “super cycle” in the ship-

building industry. Under these circumstances, shipyards worldwide are devoting various 
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efforts to establish corporate strategies for the future. One such strategy is the active adop-

tion of smart manufacturing technology, which numerous shipbuilding companies are 

considering [3,4]. 

Global manufacturing companies are expressing great interest in smart manufactur-

ing and smart factories, with the goal of unmanned production through automation and 

connectivity among enterprise resources with the help of the IoT. The application of the 

smart factory concept is also accelerating with the adoption of Industry 4.0 in Germany. 

This concept is expanding with the combination of information and communications tech-

nology and automation solutions throughout the entire production process [5–7]. 

Although manufacturing companies seek to enhance the level of smart manufactur-

ing through surveys on the latest technologies related to smart factories, adopting smart 

technologies often does not lead to practical effects (e.g., improved productivity). In fact, 

inelegantly applying smart technologies without sufficient accurate and practical analysis 

may adversely affect the existing production system. To solve this problem, a multidi-

mensional and quantitative assessment of the smartness maturity level of manufacturing 

companies should be performed beforehand [8,9]. However, beyond simple products, it 

is necessary to consider both quantitative and qualitative criteria and interdependence in 

a complex manufacturing environment. Therefore, appropriate assessment of the manu-

facturing level of companies has long been an important issue. With rising interest in 

smart factories, researchers have proposed various definitions and criteria related to smart 

factories depending on the scale and type of the manufacturing company. Nevertheless, 

research on the assessment of smart factories is limited. 

This growing emphasis on the importance of smart factories has led scholars to re-

examine prior literature on the development of production systems and continuously 

publish new studies on the definition of a smart factory and the assessment of manufac-

turing systems. However, since most research has been focused on the general manufac-

turing industry, it has limited direct applicability to shipyards, which possess different 

industry characteristics. Basically, shipbuilding is a built-to-order industry. The products 

of the shipbuilding industry, i.e., ships—consists of several millions of similar but mostly 

unique intermediate products. At the early stages of production, the similarity among in-

termediate products is high enough to automate the processes, but the similarity plum-

mets as the production progresses. Therefore, mostly, the automation level of shipyards 

are relatively low and disproportionally biased to earlier stages [10]. 

To evaluate smart shipyard and maturity level (SSML) assessment methods, the lit-

erature has been extensively surveyed. First, several studies examined smart factories in 

the manufacturing industry [6,7,11] Furthermore, studies on maturity level assessment of 

the manufacturing system can be largely divided into studies on evaluation of the manu-

facturing system in its current state and those on the evaluation of future manufacturing 

systems aimed at smart factories. In this regard, there have been several case studies on 

the evaluation of the manufacturing system in its current state [12–16]. In addition, since 

the advent of smart manufacturing owing to the fourth industrial revolution (4IR), ma-

turity level assessment models for evaluating future manufacturing systems have been 

studied since 2013 [17–20]. Detailed descriptions of the literature on the definition of smart 

factories and on manufacturing system assessment are shown in Appendix A. 

In South Korea, the Korea Production System (KPS) was developed, which is suitable 

for the South Korean manufacturing environment across representative manufacturing 

sectors such as automotive and consumer goods. [21]. Furthermore, following the devel-

opment of KPS, to successfully promote the spread of smart factories, the Smart Manufac-

turing Innovation Planning Division of the Bureau of small and medium-sized enterprises 

(SMEs) developed a diagnostic tool that can represent plans for smart factory construc-

tion, with the goal of objectively diagnosing and assessing the smart maturity level of the 

manufacturing industry [22]. In this study, they derived the criteria and modules for smart 

factory assessment from the framework for the smart factory operation system (vision, 
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goal, enterprise, factory, machine, and control). In addition, a questionnaire for the assess-

ment items comprising each module was defined according to the maturity level defini-

tions. Detailed configurations of KPS and smart factory assessment modules are shown in 

Appendix B. 

The smart factory assessment module is a diagnostic tool suitable for the general ma-

chinery sector and is actively used by South Korean manufacturing companies [22]. Ac-

cordingly, this study also attempted to assess South Korea’s large and medium-sized ship-

building companies using this smart factory assessment tool in the initial stage. However, 

the composition and contents of the assessment items defined in the existing model did 

not reflect the characteristics of the shipbuilding industry and differed from the shipbuild-

ing production system, thus, degrading the reliability of the assessment results. 

Concerning multivariate analysis, mathematical analysis techniques such as analytic 

hierarchy process (AHP), data envelopment analysis (DEA), and multivariate regression 

analysis are widely used for the assessment of multiple targets derived from various input 

variables. A meaningful productivity predictor was proposed based on a regression anal-

ysis of various indicators related to shipyard productivity [23]. The competitiveness of 

shipyards was analyzed through DEA, using capacity, technology level, and the industrial 

environment of various shipyards as input and productivity and building times as output 

[24]. Their studies extended beyond a qualitative analysis; through DEA, they expressed 

the relative levels of the most advanced shipyards and those lagging behind them, thereby 

presenting directions for improvement and quantitative improvement levels. A shipyard 

efficiency analysis using DEA was also introduced [25]. Turnover/cost values were de-

rived by combining various shipyard production indicators to compare the actual com-

petitiveness of shipyards [26]. Moreover, an assessment methodology for the shipyard 

block assembly process was developed using process mining and DEA, and they de-

scribed a practical case applying the methodology to shipyards [27]. In addition, shipyard 

production plans were assessed using the AHP method considering sales, dock turnover, 

and quay load [28]. Most recently, a comparative analysis was performed for assessing 

the productivity of 21 shipyards in South Korea, China, and Japan using DEA and the 

metafrontier framework [29]. As such, researchers have performed a variety of studies on 

shipyard competitiveness and productivity, with DEA being applied the most. 

In this study, we propose a SSML assessment framework that considers ship produc-

tion characteristics and diverse production environments. To this end, we devised a mod-

ified assessment framework appropriate for the SSML assessment based on the categories 

of the smart factory assessment framework proposed by Lee et al. [22]. For this purpose, 

the SSML assessment framework was defined through expert surveys on South Korean 

shipbuilders of various sizes and technology levels and reflected in the composition of the 

detailed assessment items. Furthermore, we applied the developed SSML assessment 

framework to real shipyards and their subcontractors. To apply the proposed framework, 

this study adopted DEA techniques [24,30] to analyze productivity in the shipyard indus-

try. Using DEA, we built a model that set the maturity level of the shipyard and its sub-

contractors as input, and sales and order quantity as output. The model confirmed that 

the smartness maturity level can serve as useful information for assessing the capabilities 

of companies and deriving quantitative improvement indicators. 

The remainder of this study is structured as follows. In Section 2, we present how to 

develop the SSML and, in Section 3, we provide the results and analysis of the assessment 

from the interview. In Section 4, we introduce DEA and describe the method of quantita-

tive analysis using DEA. In Section 5, we present the results and discuss the practical con-

tributions of this study. In Section 6, we draw conclusions and suggest future research. 
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2. Development of Smart Shipyard Maturity Levels 

While these previous maturity models present meaningful diagnostic criteria, they 

either lack specificity or are difficult to apply to diagnosing the SSML. As incorrect assess-

ment criteria lead to incorrect assessment results, smartness maturity levels that reflect 

the characteristics of shipbuilding production systems must be defined. 

With few studies on the assessment of shipyards, this study is the first step for devel-

oping a smart maturity level assessment system for shipyards. Technical demand surveys 

were conducted with large and medium-sized shipyards in South Korea, module manu-

facturing subcontractors, and related research institutes. The surveys were conducted by 

e-mail on May 2018, with the shipbuilding industry partners in South Korea including 

large shipyards, subcontractors, and research institutes. Through these online and offline 

demand surveys, we identified approximately 450 technology demand surveys from 

smart shipyards, which were categorized into five areas, as shown in Figure 1. Next, an 

industry-academia-research expert group was formed to devise a technical roadmap for 

realizing smart shipyards, see Figure 2, based on the technical demand survey results. 

This roadmap comprised a bottom-up process for selecting four major fields from the 

technology demands of the 450 candidates, and a top-down process for classifying the 

detailed tasks through the expert group. The technical roadmap was largely classified into 

infrastructure technology, including IoT, big data, process automation for unmanned pro-

duction and logistics activities, intelligent technology for an array of production manage-

ment tasks, and production design automation technology. 

 

Figure 1. Technology demand survey for the smart shipyard realization. (a) Online survey; (b) 

Offline survey. 
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Figure 2. Technical roadmap for smart shipyard realization. 

Next, to prepare the standard for the SSML from the technical roadmap, we used the 

concept revealed from the existing research focusing on the automation concept It is dif-

ficult to define the levels for complex production systems such as shipyards because ex-

isting level definitions for smart factories are defined on a single-level scale. The concept 

of automation was examined from a human-centered perspective rather than a physical 

device [31]. Accordingly, we defined the types of automation as follows: 

1. Control automation assists humans in the guiding process of executing the task and 

the machine movement through dangerous tasks. Control automation plays the role 

of an observer of the whole subsystem. 

2. Management automation allows humans to exercise demands oriented to technolog-

ical actions and activities, and also a strategic point of the automation process. 

3. Information automation, a type of system that is changing very rapidly, provides the 

system with information about the progress and the execution of certain tasks. 

We used these three types of automation, i.e., physical, intellectual, and information 

transaction, as keywords for smart shipyards (see Table 1). First, physical automation cor-

responds to control automation and automation of human physical labor. Next, intellec-

tual automation refers to automation of human knowledge labor and corresponds to the 

management automation. Finally, connectivity refers to automation of information trans-

fer, and corresponds to information automation [31]. Additionally, the assessment criteria 

for each maturity factor and level, together with the specific integrated form of smart ship-

yard concerning each level, are shown in Appendix C. 

Table 1. Definition of smart shipyard maturity level. 

Level Connectivity Physical Automation Intellectual Automation 

Level 5 Hyper connection Unmanned Hyper intelligence 

Level 4 IoT connection Fully automatic Artificial intelligence 

Level 3 Wireless connection Partially automatic Information and knowledge 

Level 2 Wire connection Mechanized Data 

Level 1 Face-to-face connection Manual Experience 

On the basis of this definition of SSML and on the smart factory assessment frame-

work [22], an assessment framework for SSML was developed. In this process, the number 

of inquiry items in the existing model increased from 46 (from [22]) to 61 (assessment 

framework for SSML) to reflect the characteristics of the shipbuilding industry. In partic-

ular, assessment items for the logistics operation and information system modules were 

added and modified (Table 2). Furthermore, Figure 3 shows the structure of the criteria, 
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modules, and assessment items of the proposed assessment framework. This diagnosis 

framework was divided into the following four criteria groups: leadership and strategy, 

process, system and automation, and performance. In addition, each criteria group con-

sisted of submodules; in particular, the process criteria group included product develop-

ment, production planning, process management, quality management, facility manage-

ment, and logistics operation modules in consideration of the shipbuilding process. Each 

module included assessment items, and based on those, the smart shipyard maturity level 

was diagnosed. 

Table 2. Example of changed assessment items (partially selected). 

Smart Factory Assessment  Smart Shipyard Assessment 

Module 3 (Pro-

duction plan-

ning): Inquiry 4 

Short-term production planning 

→

Module 3 

(Production 

planning): 

Inquiry 4 

Mid-term planning (quarter/month) and short-term 

planning 

 Level of collaboration between sales and produc-

tion and operational procedures levels 

 Rolling planning system process operation status 

(weekly/daily) 

 Whether to conduct what-if simulation to validate 

the production planning 

 Level of collaboration with upper planning de-

partments and business and operational proce-

dures levels 

 Rolling planning system process operation status 

(weekly/daily) 

 Whether to operate an evaluation and optimiza-

tion system (simulation, operations research, etc.) 

to establish production planning 

 Information sharing level of production planning 

information (manual, intranet, web, etc.) 

Module 7 (Logis-

tics): Inquiry 4 

Warehousing 

→

Module 7 

(Logistics): 

Inquiry 4 

Stockyards 

 Whether to use a rack system to increase storage ef-

ficiency 

 Rack address system 

 Analysis of warehouse operation productivity indi-

cators such as location management, warehouse 

space utilization, and inventory level 

 Storage productivity level such as rack, transport 

tool, picking tool, and display 

 Whether to use various types of stock area to in-

crease storage efficiency 

 Lot numbering system for stockyards 

 Analysis of storage-related efficiency indicators 

such as area management, area utilization, and 

level of materials and blocks 

 Area efficiency level 

 N/A  

Module 8 

(Info. System): 

Inquiry 8 

Advanced planning and scheduling system 

 Level definition using aggregate production 

scheduling 

 The composition of a comprehensive system for 

production planning and service levels concern-

ing information systems 

 

Figure 3. Diagnosis framework for the assessment of smart shipyard maturity level. 
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3. Assessment of Smart Shipyard Maturity Level 

3.1. Methodology for Assessment of Smart Shipyard and Maturity Level (SSML) 

We conducted an assessment of shipyards to verify the developed assessment frame-

work. Regarding the assessment procedure, first, the assessment material was delivered 

to 15 companies, including large (L1~L5), mid-sized shipyards (M1~M3), as well as sub-

contractors such as hull block assembly (B1 and B2), outfitting material manufacturers (O1 

and O2), and steel fabrication companies (P1 and P2), and the person-in-charge of the re-

spective module at each company completed the assessment material through a self-as-

sessment. As shown in Figure 3, since there were 10 evaluation modules, 10 employees of 

each company participated in the assessment. In order to eliminate personal bias, two or 

three consulting experts who had over 10 years of experience in shipbuilding production 

area visited each company afterwards and corrected those self-assessment scores through 

in-depth interviews with the person-in-charge of the respective module and site inspec-

tions. Then, reports were written on the interview, site inspection results, and corrected 

diagnoses and delivered to each company, after which feedback was received. The assess-

ment results were converted into a score of 5 points and Table 3 shows the results of SSML 

of each assessment module. 

Table 3. Results of the smart shipyard and maturity level (SSML) of each assessment module. 

 Shipyard Subcontractor 
 Large Shipyard Mid-Sized Shipyard Block Outfitting Processing 
 L1 L2 L3 L4 L5 M1 M2 M3 M4 B1 B2 O1 O2 P1 P2 

1. Leadership strategy 3.8 4.1 3.0 3.4 3.3 3.0 2.9 2.8 2.5 1.8 1.5 3.3 1.5 3.5 3.8 

2. Product development 3.6 3.8 3.4 3.4 3.8 2.0 3.1 2.6 2.5 2.4 1.3 2.6 1.3 3.0 2.8 

3. Production planning 2.9 3.4 3.0 3.3 3.0 2.3 3.1 2.9 2.4 2.0 2.3 2.4 2.1 3.0 2.0 

4. Process management 2.6 3.4 3.0 3.0 2.7 2.3 2.8 2.9 2.6 2.2 2.4 2.2 2.3 3.2 2.8 

5. Quality management 2.7 2.7 3.0 2.7 2.7 2.1 2.8 2.8 2.0 2.4 2.3 2.6 2.2 2.3 2.0 

6. Facility management 2.5 3.5 2.9 2.8 2.5 2.2 2.3 2.8 1.9 2.4 2.1 1.7 2.1 2.5 2.2 

7. Logistics operation 2.9 3.1 2.6 2.5 3.1 2.1 2.6 2.5 2.0 2.4 2.1 1.9 1.8 3.0 2.4 

8. Information system 3.4 3.8 3.6 3.2 3.2 2.1 3.3 3.0 2.5 2.0 1.9 1.4 1.8 3.0 1.6 

9. Production automation 2.5 2.6 3.1 2.2 2.4 1.3 1.7 2.6 1.2 1.2 1.4 1.5 1.2 1.2 2.4 

10. Performance 3.3 3.7 3.4 3.4 3.4 2.7 2.9 3.0 2.6 3.2 3.0 2.3 2.6 3.0 2.0 

Smartness level 3.0 3.4 3.1 3.0 3.0 2.2 2.7 2.8 2.2 2.2 2.0 2.2 1.9 2.8 2.4 

3.2. SSML Assessment Results and Discussion 

In contrast to general business consulting, the assessment results were expressed as 

scores from a sophisticated assessment that reflects the widely known scale and qualita-

tive level of companies. Furthermore, they are meaningful as much as this is the first as-

sessment of detailed production factors in the field of shipbuilding production. 

Figure 4 shows the average score for each module of the companies investigated. 

Production automation, the most noteworthy module, showed the lowest assessment at 

1.9 (approximately 40 points based on 100 points) owing to the high dependence on work-

force in the shipbuilding industry. Most shipyard and subcontractor processes are manual 

processes. All construction can be performed manually, excluding processing and some 

assembly processes in large and mid-sized shipyards. Considering the weight of the num-

ber of hours by process, large shipyards also have very low automation rates, at approxi-

mately 30% for processing and 10% for assembly. 



Sustainability 2021, 13, 1964 8 of 27 
 

 

Figure 4. Average maturity level of each assessment module. 

Next, the levels of quality management, facility management, and logistics opera-

tions were diagnosed as low. Concerning quality management, although domestic ship-

yards are somewhat competitive internationally [32], this module was assessed to be low 

because the assessment focused on the computerization aspect of data collection, pro-

cessing, and sharing, rather than the level of quality itself. However, the numerous com-

plaints in the on-site interviews from quality management employees about the inade-

quate data management systems suggests that, in addition to the quality management 

capabilities of domestic shipyards, the informatization systems that support quality man-

agement must be improved. The facility management assessment signifies inadequate 

management concerning smart maturity of large transport equipment (gantry cranes, 

transporters, etc.) and production equipment (cutting, welding, painting equipment, etc.). 

Advanced technologies such as connectivity and predictive maintenance, which are pur-

sued in smart production, were not adopted, and most maintenance procedures consisted 

of responding to problems after they occurred. Hence, there is a need for advanced facility 

management by applying predictive maintenance and IoT connectivity technologies, 

which automatically collect equipment information in real time. As one of the main targets 

of shipyard management, logistics was recognized as a component of production that en-

ables the smooth flow of production activities by connecting processes, rather than as a 

simple transport activity. Nevertheless, shipyards remain in the process of adopting lo-

gistics technology for tracking work in process (steel plate, hull block, outfitting module, 

etc.) items; therefore, from the perspective of smart production that pursues connectivity 

and automation in transport, the low score for this module is reasonable. Aside from these 

modules, the scores for product planning, production planning, process management, 

and the information system (approximately 2.7–2.8) were higher than the overall average 

smart maturity level. 

Management’s proactiveness concerning smart technology, in terms of leadership 

and strategy and performance measurement, was scored relatively high at 2.9 and 3.0, 

respectively. However, as these two modules are considerably closer to qualitative assess-

ment than other modules that can be quantitatively diagnosed (systems, facilities, in-

formatization, etc.), they can be regarded as assessment items not supported by concrete 

evidence. Therefore, since the weights among the modules must be considered, future 

studies must apply the AHP technique to derive more reliable assessment results. 

Next, we conducted a clustering analysis of each company based on the maturity 

level scores. Excluding leadership and strategy and performance measurement, which di-

rectly impact the production level, the average scores of the “process” and “system and 

automation” groups based on the criteria were set as the x- and y-axes, respectively, and 
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the position of each company is shown in Figure 5. In Figure 5, the size of each circle 

indicates a company’s relative sales in 2019. As the low tide of the international shipbuild-

ing market continued in 2019, the relative sales of each company indicated in the graph 

are not proportional to their production capacity. Therefore, although M2/M3 and M1/M4 

are classified as mid-sized shipyards, the difference in actual production capacity is very 

large. Nevertheless, the scale of sales shown in Figure 5 are similar owing to the influence 

of market conditions; therefore, they should be considered only for the purpose of classi-

fying company type. This is shown to classify large and mid-sized enterprises/SMEs. 

 

Figure 5. Bubble chart for the comparison of smart shipyard maturity level concerning process 

and system and automation. 

The large L1–L5 enterprises formed a relatively higher cluster, while the level of M2 

and M3 companies among the mid-sized enterprises was similar to that of large shipyards. 

Although M1 and M4 are also classified as mid-sized shipyards along with M2 and M3 

because the sizes of M2 and M3 are close to large, the difference in size is also reflected in 

the production level. The outfitting manufacturers (O1, O2) and block manufacturers (B1, 

B2), as well as mid-sized shipyards M1 and M4, formed a cluster separate from the large 

enterprise cluster. P1 and P2 located between these two clusters reflect the characteristics 

of companies that form curved hull plates, which showed rather exceptional results. These 

results suggest that, as basic research on the automation of curved hull plate forming has 

recently matured to some degree, curved hull plate forming companies have also at-

tempted to replace operator-dependent tasks with automated machines, thus, resulting in 

a movement toward automation reflected in the smart maturity level. 

By analyzing the company type and SSML score as above, we could quantitatively 

analyze the smart maturity level of large- and mid-sized companies in the South Korean 

shipbuilding industry. We confirmed that the developed assessment framework for the 

SSML can reasonably quantify the types and levels of shipbuilding companies. 

4. Data Envelopment Analysis 

4.1. Data Envelopment Analysis (DEA) Method 

The proposed DEA method measures efficiency based on linear programming in the 

decision-making process [33]. This method is mainly applied when it is difficult to identify 

and compare direct relationships among multiple inputs and outputs and can be used to 

develop a more suitable decision-making model than AHP in environments with insuffi-

cient information. AHP and DEA methods have been applied to manufacturing supply 
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chain companies and their performances have been compared to verify the practical ef-

fectiveness of each technique [34]. According to the findings, the AHP technique can pro-

vide detailed and gradual decision-making results through pairwise comparison in cases 

with large amounts of information, whereas the DEA method can provide effective deci-

sion-making strategies for situations with insufficient decision-making factors in a new 

environment. Accordingly, this study focused on a situation with a lack of specific 

grounds and information for smart shipyard technology and directions and noted very 

fast and uncertain technological change in the shipyard industry, unlike existing manu-

facturing technologies. Therefore, rather than AHP, which is time-consuming in the de-

velopment process, DEA was applied using the assessment results of the SSML as input, 

with the goal of verifying whether it could be useful for calculating the efficiency of ship-

yards and deriving quantitative improvement indicators. 

This method calculates the relative efficiency of assessment targets, where multiple 

inputs and outputs are considered. It derives the most efficient DMUs from all DMUs to 

be assessed; consequently, the relative efficiency of each DMU is calculated using linear 

programming. DEA models are largely categorized into models that assume constant re-

turns to scale (CRS) and those that assume variable returns to scale (VRS). The CRS model 

assumes that the relationship between input and output is the same at a constant rate, 

regardless of scale, and was used when the DEA methodology was first proposed. The 

CRS model is also referred to as the Charnes–Cooper–Rhodes (CCR) model, after the first 

proposed model. The VRS model [30] relaxes the assumption of CRS in the CCR model 

and is also referred to as the Banker–Charnes–Cooper (BCC) model. 

DEA models can also be categorized into input-oriented and output-oriented models 

according to their orientation to input or output. The input-oriented model seeks to min-

imize input with a fixed output, whereas the output-oriented model seeks to maximize 

output with a fixed input. 

DEA models are based on linear programming and can be explained by the following 

equations: First, assume that n DMUs exist. If ����(k = 1, …, n) means that m inputs ���  

(i = 1, …, m; j = 1, …, n) are input to output s outputs ���  (r = 1, …, s; j = 1, …, n), then, the 

efficiency of the �th observation ���� is obtained through the linear programming so-

lution of Equations (1) and (2) assuming an output-oriented CCR model. In the equation, 

� is the efficiency value, and �� and �� are slack variables for the input and output, re-

spectively. If the value of �∗ obtained as the solution to this equation is 1 and both slack 

variables are 0, then the DMU is an efficient (efficiency 100%) DMU. Equations (1) and (2) 

are as follows: 

���{�� +  �(∑ ��
��

��� +  ∑ ��
��

��� )}  (1)

�. �. �

∑ �����
�
��� + ��

�  =  ���, � = 1, ⋯ , �

∑ ∑ �����
�
���

�
��� − ��

� =  �����, � = 1, ⋯ , �

��, ��
�, ��

�  ≥ 0, ∀�, �, �

�  (2)

As the BCC model assumes VRS, a constraint is added such that the sum of � is 1. 

Accordingly, the output-oriented BCC model can be expressed as in Equations (3) and (4) 

as follows: 

max{�� +  �(∑ ��
��

��� +  ∑ ��
��

��� )}  (3)
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∑ ∑ �����
�
���

�
��� −  ��

� =  �����, � = 1, ⋯ , �

∑ ��
�
��� = 1

��, ��
�, ��

�  ≥ 0, ∀�, �, � ⎭
⎪
⎬

⎪
⎫

  (4)

If the efficiency value of the CCR model is ����
∗  and that of the BCC model is ����

∗ , 

then, the constant relationship ����
∗ ≤ ����

∗  is established, and the difference in efficiency 
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between the two models originates from whether the scale is optimal. This difference is 

the SE, and the following relationship is established: 

�� =  ����
∗ ÷ ����

∗  

If SE is 1, then, it is in a CRS state and there is no inefficiency owing to scale; if SE is 

less than 1, then, it is in an increasing or decreasing returns to scale state, signifying that 

there is inefficiency owing to scale. The efficiency of the CCR model (����
∗ ) is referred to 

as the technical efficiency, while the efficiency of the BCC model (����
∗ ) is referred to as 

pure technical efficiency to emphasize that inefficiency owing to scale is excluded. 

4.2. Quantitative Analysis Using DEA 

Next, using the DEA method, we conducted a quantitative analysis, compared the 

companies, and presented target levels of quantitative improvement for relatively low-

level companies. DEA is an analysis method that measures the relative efficiency of com-

panies with multiple input and output factors. It measures the relative efficiency between 

the same groups and provides information on benchmarking targets to improve efficiency 

for those that appear inefficient. The DEA technique is useful for the following problems. 

1. It is useful when there are many inputs and outputs, but it is difficult to integrate 

them into the single index in an appropriate way. 

2. DEA provides a basis for benchmarking target that should be investigated to improve 

efficiency. 

3. DEA can simultaneously consider various input and output factors with different 

units of measurement. 

To measure efficiency using DEA, decision-making units (DMUs) must be set. DEA 

presupposes the homogeneity of the analysis target, requiring individual DMUs to per-

form similar activities to produce products that can be compared [35]. Furthermore, sim-

ilar resources or capital must be input in all DMUs, and performance must not be influ-

enced by external factors. Accordingly, the DMUs in this study, consisted of shipyards 

focusing on new shipbuilding. However, shipyards for which output variable data (new 

ship construction) could not be secured were excluded from the analysis. 

The selection of the input and output variables is important for ensuring the reliabil-

ity of the DEA results. That is, it is necessary to select input and output variables that can 

accurately reflect the objectives, targets, and production environment of the shipyard. Our 

objective was to verify whether the SSML assessment result is an indicator of shipyard 

efficiency. As such, a DEA model was built using the number of employees and docks as 

inputs and the new ship construction as the output. 

Furthermore, as described above, the DEA model was categorized into a CCR model 

(for Charnes, Cooper, and Rhodes [33]) and BCC model (for Banker, Charnes, and Cooper 

[30]) based on the assumption of the effect of scale, and also categorized into an input-

oriented (minimum input) model and output-oriented (maximum output) model, de-

pending on the purpose of measuring efficiency. Regarding the selection of the model, 

since new ship construction is greatly affected by external factors, the input-oriented (min-

imum input) model was selected, which minimizes the input for a fixed output. The com-

mercial software Frontier Analyst was used for the DEA. 

Next, two models were defined as shown in Table 4, to perform the DEA. However, 

as the input and output of the DEA model are proportionally correlated, for the SSML 

score (the input variable), the proposed model uses the value of the perfect score (5.0) 

minus the score of each factor. This was a given correlation as an input factor of the DEA 

model, in which the lower the maturity level score, the closer it is to the advanced level. 

That is, a high maturity level indicates a relatively small input factor value, meaning that 

the output can be achieved with less effort. Thus, the maturity level was analyzed by sub-

tracting the projection value derived via DEA from the perfect score (5.0). 
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Table 4. Input and output variables definition of each target data envelopment analysis (DEA) 

model. 

Model Category Items Remark 

Traditional 

model 

Input var-

iables 

 X1: Employee number 

 X2: Number of dock and berth 
 

Output 

variables 
 Y1: New shipbuilding volume (CGT)  

Proposed 

model 

Input var-

iables 

 X3: Process 

 X4: System and automation 

Smart shipyard maturity 

level assessment 

Output 

variables 
 Y1: New shipbuilding volume (CGT)  

Owing to insufficient data, DMUs could not be performed for all companies in Table 

3. However, a DEA was conducted for shipyards with available data on output Y1 (L1–

L5, M2, M3, and M4) common to the two models and X1 and X2 of the traditional model 

in Table 4. 

There are considerations concerning the timing of the input and output data. As ship-

yard construction volume greatly varies with the time period, large gaps in the potential 

production volume of a shipyard may arise when using the proposed model’s input data 

X1–X2 and Y1 of when the maturity level assessment was performed in 2009. Moreover, 

data on the shipyard’s production capacity are not explicitly disclosed or available. Ac-

cordingly, for the data of X1–X2 and Y1, we considered the largest volume of new ship 

construction during the last 10 years and the number of employees and docks/berths in 

that year. Consequently, the 2019 data were selected. Although applying these conditions 

will lead to mismatched timing in the output and input data, we ignored it because our 

objective was to compare the results of DEA, which uses physical conditions (workforce, 

resources, etc.) as input, with the results of the proposed method, which uses the maturity 

level as input, rather than present quantitative information on each shipyard through pre-

cise assessment results. Furthermore, as the speed of change in shipyards is slow, it was 

judged that the level assessed in 2019 had not dramatically changed over the last 10 years. 

Before describing the analysis, the following assumptions were made: If the objective 

reliability of the relationship between the input and outputs considered in Table 4 and the 

DEA method is secured, then the level (or efficiency) of each shipyard will be determined 

by the DEA results. However, we aimed to identify which input/output and DEA model 

best expressed the phenomenon (shipyard level); the judgment criteria for the suitability 

of the analysis results were defined as the shipyard level, which were generally known as 

follows. For the assumptions of the relative levels of L1–L5 and M2–M4, they are classified 

based on the global ranking of each shipyard. First, L1–L3 are within the top five ship-

yards worldwide, with little change in ranking over the past 20 years. Thus, their scale, as 

indicated by sales and orders, and also their overall production level is among the best 

worldwide. Next, L4 and L5 are within the top 10 shipyards worldwide; although, the 

scale is somewhat smaller than L1–L3, this does not necessarily indicate a larger difference 

in production level. Next, M2 and M3 are shipyards in the top 10–50 worldwide, with 

relatively high-ranking volatility. Finally, M4 corresponds to shipyards ranked 50–100. 

However, as the difference in order and construction volume decreases at lower ranks, 

the difference in SSML does not increase as much as the difference in rank. Accordingly, 

L1–L3 is defined as the large group, L4 and L5 as the mid-sized-large group, M2 and M3 

as the mid-sized group, and M4 as the small group, which are assumed to be the guide-

lines for analyzing the DEA results. According to the previous study, if the skill level of a 

large shipyard is set to 100, the level of a medium-sized shipyard is 75–85, and that of a 

small shipyard is approximately 50 [36]. Therefore, this quantitative guideline is used as 

comparative data to examine the efficiency feasibility of each shipyard through DEA anal-

ysis. 
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5. Results of the Data Envelopment Analysis 

DEA was performed for Case 1 of a single model consisting of L1–L5 and M2–M4 as 

DMUs and Case 2 of split models with L1–L5 and M2–M4 separated. 

5.1. Case 1 

In Case 1, L1–L5 and M2–M4 were configured as one model. Figure 6 shows the effi-

ciency and the scale efficiency (SE) results derived by applying the CCR and BCC analysis 

methods concerning the traditional model and proposed model. In Figure 6 (raw data is 

Table A8), SE values below 1 were derived. If the SE is less than 1, the DMUs are in a state 

of increasing or decreasing returns to scale states, signifying that there is inefficiency ow-

ing to scale. Next, the results were derived from the CCR and BCC methods using the 

traditional and proposed models. 

 

Figure 6. Efficiency and scaled efficiency of (a) traditional model and (b) proposed model (Case 1). 

Figure 6 shows the analysis results of the BCC and CCR methods, under traditional 

analysis conditions using the number of employees and docks as input variables. First, 

concerning the BCC method, the efficiencies of all shipyards, excluding M2 in BCC and 

M2 and M4 in CCR, were 100% or close to 100%, confirming that there was no discrimi-

natory power between the shipyards. Furthermore, concerning both BCC and CCR, L1 

and M2 was lower than M3 and M4, although it ranked higher than both in reality; hence, 

they did not meet the guidelines assumed in Section 4. 

Next, Figure 6b shows the analysis results from BCC and CCR, under the analysis 

condition using two previously analyzed SSML categories as the input variables; specifi-

cally, the average of the perfect score (5.0) of each module minus the score of each factor. 

In Figure 6b, the CCR analysis results under the proposed model show efficiencies of 

21.56%, 7.95%, and 4.57% for M2–M4, respectively, thus exhibiting differentiation with 

L1–L5. However, the difference became excessively large, resulting in practically impos-

sible values for the projections of process and system and automation, which are inputs. 

Therefore, the analysis results are unreasonable. On the contrary, the BCC results, in Fig-

ure 6b, show the analysis results from the BCC method under the proposed model. All 

shipyard efficiency results using the BCC method under the proposed model satisfied the 

assumed guidelines in Section 4. L1–L3 was at 100% and was located in the best practice 

line, followed by L4 and L5 at approximately 80%, showing a difference of approximately 

20% with the large group. Next, M2 and M3 showed values in the upper 70%, slightly less 

than the mid-sized and large groups; and M4, belonging to the small group, was approx-

imately 60%. Thus, in the proposed model, the BCC analysis presents appropriate effi-
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ciency and projection values considering the qualitative level of each shipyard. Concern-

ing the construction volume projections (as marked in red in Table A11), however, the 

values of M3 and M4 were unrealistically overestimated. This problem likely occurred 

because the difference in construction values from other shipyards was too large, despite 

being an input-oriented model. Accordingly, in the DEA analysis of Case 2, L1–L5 (large 

group) and M2–M4 (small and mid-sized group) were divided into separate models. 

5.2. Case 2 

Owing to the large difference in scale between the large-, small-, and mid-sized 

groups, the construction volume projections calculated for the small- and mid-sized ship-

yards were overestimated. Hence, in Case 2, L1–L5 (large group) and M2–M4 (small and 

mid-sized groups) were divided into separate models for the analysis. Since BCC showed 

more reasonable results than CCR in the analysis of Case 1, only the results under the 

proposed model were addressed in Case 2. For reference, Table A14 and Table A15 in 

Appendix D show the detailed results under the traditional model for Case 2. 

Figure 7 summarizes the efficiency and SE results. According to the results under the 

proposed model of Figure 7b,d, there was no change in L1–L5, which belongs to the large 

group, with only a change in M2–M4. That is, since the model for the small group was 

separated considering the difference in construction size, the large group showed no 

change from the existing results; and M2–M4, which were separated from the construction 

of large shipyards into a group of small shipyards, were calculated independently, thus 

adjusting the efficiency. 
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Figure 7. Efficiency and scaled efficiency of traditional model and proposed model (Case 2). 

Comparing the efficiency of CCR and BCC using the proposed model in the M2–M4 

analysis, BCC (100%, 100%, and 80.22%) better reflects the shipyard guidelines than CCR 

(100%, 40.55%, and 21.20%). In other words, since M2 and M3 correspond to mid-sized 

shipyards with similar scale and technology level and M4 corresponds to small shipyards, 

BCC exhibited more reasonable results than CCR. 

Additionally, Table A16 in Appendix D shows the DEA results of proposed approach 

and explains the detailed analysis results from the BCC methods. As shown in Table A16, 

the process and system and automation levels of L4 and L5 (large shipyards) must be 

improved by approximately 11–16% to reach the levels of L1–L3. As for M2–M4, whereas 

M2 and M3 are at 100% efficiency within that group, M4 shipyards must improve their 

process level by 20% and system and automation by 27%. 

As a result of DEA analysis with respect to various factors and cases as compared 

with the existing DEA technique which uses physical elements such as the number of em-

ployees and docks as input, the proposed method, which uses the SSML as input, derived 

more reasonable results for the efficiency and projection of actual shipyards. 

6. Conclusions 

To develop a framework for diagnosing the smart maturity level of the shipbuilding 

industry, this study analyzed existing research on smart manufacturing, smart factories, 

and maturity models. Technology demand surveys were also performed to reflect the 



Sustainability 2021, 13, 1964 16 of 27 
 

characteristics of the shipbuilding industry, and a technical roadmap for realizing smart 

shipyards that reflected the opinions of an expert group was proposed. The SSML assess-

ment framework developed through this process defined five maturity levels for each of 

the following keywords: connectivity, automation, and intelligence. Furthermore, based 

on the defined levels, a diagnostic tool comprising 61 items for four criteria and 10 mod-

ules was developed. While the structure presented in prior research was used for the cri-

teria and modules of the diagnostic tool, the 61 detailed inquiry items were reconfigured 

reflecting the characteristics of shipyards. This developed framework was used to diag-

nose large- and medium-sized shipyards and subcontractors in South Korea, after which 

the results were analyzed. Automation was assessed the lowest in the maturity level of 

shipbuilding-related companies, and it was confirmed that those companies could be di-

vided into groups through a bubble chart analysis using process and system/automation 

criteria as the two axes. 

Next, the assessment of SSML was used to conduct a DEA, which was capable of 

quantitative analysis. Using the SSML as the input variable, DEA can derive the efficiency 

levels of the subject companies and confirm the level of improvement required to reach 

100% efficiency for each module through quantitative indicators. In addition, for the same 

companies, we performed a comparative analysis between the traditional DEA model, 

which used the number of employees, scale of facilities, etc. as input variables; and the 

other DEA model, which used the SSML as the input variable. The results demonstrated 

that the model using the maturity level as the input variable derived more reliable results 

that were well matched with a previous survey [36]. 

However, for DEA to be more pertinent, the number of DMUs must be at least two 

to three times greater than the sum of the number of input and output variables [37]. As 

the assessment was based on a rather insufficient number of DMUs (companies to be di-

agnosed), further investigations with more DMUs are strongly recommended, including 

not only South Korean shipyards but also shipyards of similar scales in China, Japan, and 

Europe. 
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Abbreviations 

4IR Fourth industrial revolution 

BCC Model based on its authors (Banker, Charnes, and Cooper [30]) 

CCR Model based on its authors (Charnes, Cooper, and Rhodes [33]) 

CEMM Connected enterprise maturity model 

CGT Compensated gross tonnage 

DEA Data envelopment analysis 

IoT  Internet of Things 

MES  Manufacturing execution systems 
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NIST National Institute of Standards and Technology 

OA  Office automation 

RI4 Reifegradmodell Industrie 4.0 

SMEs Small- and medium-sized enterprises 

SSML Smart shipyard maturity level 

SMSRL Smart manufacturing system readiness level 

VRS Variable returns to scale 

AHP Analytic hierarchy process 

CRS Constant returns to scale 

DMU Decision-making units 

KPS Korea Production System 

PwC Price Waterhouse Coopers 

SE Scale efficiency 

Appendix A. Smart Factory Definition and Research on Manufacturing System As-

sessment 

To evaluate SSML assessment methods for the smart level definition, the literature 

on the smart factory definition required was extensively surveyed. First, for a smart fac-

tory, one of the biggest topics in the manufacturing industry, similar concepts were de-

fined in the following research cases: A smart factory was defined as a context-aware man-

ufacturing environment that can respond to disruptions in real-time production using dis-

tributed information and communication structures to optimally manage production pro-

cesses, and as the model of next-generation factories in an era of ubiquitous computing 

technology [6]. It was defined as a factory of the future and factory-of-things “composed 

of smart objects which interact based on semantic services,” and emphasized that, rather 

than a hierarchy in the traditional sense, the objects will self-organize to fulfill certain tasks 

[7]. SmartFactoryKL which is a demonstration and research test bed for smart factories 

was introduced in that study conducted by. The German Research Center for Artificial 

Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI). The United 

States National Institute of Standards and Technology (NIST) defines smart manufactur-

ing as a fully integrated cooperative manufacturing system that responds in real time to 

the changing demands and conditions of factories, supply chains, and customer needs, 

and emphasizes integration not only within the factory but also with supply chains and 

customers [11]. 

Studies on maturity level assessment of the manufacturing system can be largely di-

vided into studies on evaluation of the manufacturing system in the current state and 

those on the evaluation of future manufacturing systems aimed at smart factories. First, 

several case studies evaluated the manufacturing system in its current state. Existing man-

ufacturing system maturity level methodologies related to manufacturing SMEs was ex-

amined and an improved assessment tool was proposed [12]. In a project with the Me-

chanical Engineering Industry Association in Germany (Verband Deutscher Maschinen-

und Anlagenbau), the “Industry 4.0 Readiness” model was proposed [13]. This assess-

ment model comprised six dimensions and 18 fields; the six dimensions consist of four 

dimensions (smart factory, smart product, smart operation, and data-driven services) in 

addition to “strategy and organization” and “employees.” 

Maturity level assessment models provided by accredited institutions include the fol-

lowing: The Capability Maturity Model Integration (CMMI) model developed by the Soft-

ware Engineering Institute (SEI) starts from a five level maturity model of software devel-

opment and serves as the basis for various process maturity models, such as purchasing, 

products, and human resources [14]. Concerning manufacturing competitiveness, the 

Manufacturing Enterprise Systems (MES) Maturity Profile, developed by the MES Asso-

ciation, presents the maturity levels for MES, a system for optimizing production from 

product order to delivery [15]. The Business Process Maturity Model (BPMM) of the Ob-
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ject Management Group (OMG) presents an organization’s processes as a five-level ma-

turity model. The BPMM was developed as a diagnostic tool that substitutes critical suc-

cess factors (information technology and systems, culture, responsibility, methodology, 

performance, etc.) and the perspectives of connection, design, execution, control, and im-

provement in CMMI [16]. Table A1 shows the maturity levels of SEI, MES Association, 

and OMG. 

Table A1. Maturity levels of several organizations/developers. 

Organization/De-

veloper 

Maturity 

Model 
Level 1 Level 2 Level 3 Level 4 Level 5 

SEI [14] CMMI model Initial Managed Defined 
Quantitatively 

managed 
Optimizing 

MES Association 

[15] 

MES maturity 

profile 
Poor Basic Effective Best Practice Emerging 

OMG [16] BPMM model 
Initial inconsistent 

mgmt. 

Managed work 

unit mgmt. 

Standardized pro-

cess mgmt. 

Predictable 

capability mgmt. 

Innovating change 

mgmt. 

Since the advent of smart manufacturing owing to 4IR, maturity level assessment 

models related to 4IR have been studied since 2013, as shown in Table A2. 

Table A2. Maturity evaluation models. 

Model Organization/Developer Year Maturity or Readiness Level 

CEMM [17] Rockwell Automation 2014 

 Assessment 

 Secure and upgraded network and  

 Defined and organized working data capital 

 Analytics 

 Collaboration 

RI4 [18] 
FH-Oberosterreich/Manuel 

Brunner et al. 
2015  10-step evaluation criteria 

The Industry 4.0 

Self Assessment [19] 
pwc 2016 

 Digital novice 

 Vertical integrator 

 Horizontal collaborator 

 Digital champion 

SMSRL [20] NIST/Jung et al. 2016 

 Not performed 

 Initial 

 Managed 

 Defined 

 Qualitative 

 Optimizing 

The Connected Enterprise Maturity Model developed by Rockwell Automation [17] 

presents enterprise maturity at five levels (assessment, secure and upgraded network and 

controls, defined and organized working data capital, analytics, and collaboration), but 

does not present detailed assessment items and a development process. The Reifegrad-

modell Industrie 4.0 (4IR), jointly developed by Mechatronics Cluster and Upper Austria 

University of Applied Sciences [18], presents three areas of data, intelligence, and digital 

transformation, 13 assessment items, and uses a 10-point-scale maturity level assessment 

method. However, the maturity model and detailed assessment content are inadequate. 

The Industry 4.0 Self Assessment model developed by pwc [19] derived six areas related 

to 4IR competencies (digital business models and customer access; digitization of product 

and service offerings; digitization and integration of vertical and horizontal value chains; 

data and analytics as core capability; agile IT architecture, compliance, security, legal, and 

tax; and organization, employees, and digital culture) and presented a four-level maturity 

model; however, only some evaluation items and no detailed development process were 
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presented. The smart manufacturing system readiness level model under development by 

researchers at NIST diagnoses the maturity level for four areas, i.e., organizational ma-

turity, IT maturity, performance management maturity, and information connectivity ma-

turity [20]. However, based on an improvement activity model and factory design using 

IDEF0 (Integration Definition 0 [38]), it assesses the readiness level and focuses on im-

provements in the information system sector, making it somewhat inadequate for com-

prehensive production system diagnoses. 

Appendix B. Korea Production System and Smart Factory Assessment Modules 

KPS, a part of the Korean government’s strategy for enhancing the productivity of 

manufacturing companies, is a tool that integrates various manufacturing innovation 

methodologies to establish a standard production system appropriate for the manufactur-

ing capabilities and industrial culture of Korean manufacturing companies and to im-

prove productivity. 

Following the development of KPS, to successfully promote the spread of smart fac-

tories, the Smart Manufacturing Innovation Planning Division of the Bureau of SMEs de-

veloped a diagnostic tool that can present plans for smart factory construction, with the 

goal of objectively diagnosing and assessing the manufacturing industry’s smart maturity 

level [25] (see Table A3). This diagnostic tool follows ISO 9001:2015 (management system), 

IEC 62264 (manufacturing operation system), ISO 22400, and SCOR (KPI); and was devel-

oped for certifying factory operation systems and designed to be linked with in-house 

enterprise certification systems, reflecting the culture and characteristics of the Korean 

manufacturing industry (Samsung Electronics, Hyundai Motor Company, POSCO, etc.). 

Moreover, as shown in Figure A1, a framework for smart factory operation was con-

structed, and smart factory assessment modules were derived. 

Table A3. Assessment configuration of the Korea Production System. 

Principles. Core Activities No. of Inquiries

1. Participation of stakeholders 

1.1. Healthy organization culture 5 

1.2. Human resource and competency development 4 

1.3. Safe working environment 4 

2. Standardization 

2.1. Prepared working place 5 

2.2. Visual management 3 

2.3. Work standard management 4 

2.4. Project management 5 

3. Continuous improvement 

3.1. Goal setting and deployment 5 

3.2. On-site abnormality detection and action 5 

3.3. Problem solving and team improvement activities 5 

4. Optimization of production system 

4.1. Logistic management 5 

4.2. Optimization of production set-up 5 

4.3. Multifunctional skill management 5 

5. Practicality of production information 

5.1. Master data management 5 

5.2. Business process information and integration 5 

5.3. Production informatization strategy 5 

6-1. Quotation/contract/design process 
6-1.1. Quotation and product design 5 

6-1.2. Process and work design 5 

6-2. Production operation and logistic process 

6-2.1. Order production plan management 5 

6-2.2. Procurement (purchase/outsourcing/material) management 5 

6-2.3. Production input and progress management 5 

6-2.4. Shipping and logistics management 5 

6-3. Facility/equipment management process 
6-3.1. Facility operation and maintenance 5 

6-3.2. Energy efficiency in manufacturing sites 5 

6-4. Quality and A/S process 
6-4.1. Inspection and quality management system 5 

6-4.2. Operation of quality assurance system 5 
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6-4.3. Quality improvement and failure cost management 5 

6-5. Cost calculation and management process 

6-5.1. Estimated cost calculation and budget management 4 

6-5.2. Analysis and utilization of cost information 4 

6-5.3. Cost improvement and performance management system 5 

 

Figure A1. Framework for smart factory operation system (courtesy of Korea Smart Manufacturing Office; 

https://www.smart-factory.kr/eng/index). 

The criteria and modules for smart factory assessment (Table A4) from the frame-

work for the smart factory operation system was derived, as shown in Figure A1 (vision, 

goal, enterprise, factory, and machine/control) [22]. In addition, a questionnaire for the 

assessment items comprising each module was defined according to the maturity level 

definitions in Table A5. 

Table A4. Modules for smart factory assessment from smart factory framework. 

Criteria Framework Modules Assessment Contents 

Leadership and 

strategy 

Vision & Strat-

egy 

1. Leadership and 

strategy  

 Leadership, operation strategy, organization and competency management, and perfor-

mance measurement  

Process 

Factory level 
2. Product devel-

opment 

 Standard procedure, product/process design and validation, and product and technol-

ogy information management  

Factory level 
3. Production plan-

ning 

 Master data management, demand and order management, and long- and short-term 

production planning  

Factory level 
4. Process manage-

ment  
 Job allocation, progress rate management, and abnormality management 

Factory level 
5. Quality manage-

ment 
 Prevention/correction, audit standard management, and inspection/test  

Factory level 
6. Facility manage-

ment  

 Facility operation, facility maintenance, mold and jig-fixture maintenance, and conserva-

tion materials 

Factory level 
7. Logistics opera-

tion  
 Procurement and purchasing, warehouse management, and shipment and delivery 

Vision and
Strategy

Future leadership and competitiveness
in manufacturing industries

Goal and
KPI

Connected and Real Time & Intelligent & Flexible & Sustainable
P-Q-C-D-S-E

Enterprise
Level

Factory
Level

Machine and
Control

Level

PLM ERP SCM

FEMS
R&D

Planning

Logistics
(Delivery)

Logistics
(Procurement)

Process
Control

MES

Quality
Control

Facility
Mgmt.

Material
Mgmt.

Control

Machine

Technology

Instrument, Controller, RFID, Barcode, etc.

Fabrication / Assembly / Inspection / Logistics

Unique technology

CPS

Cloud

3D Printing

Big data

Energy

AR/VR

Sensor

IoT

Function Technology

Category Functions

Realtime
Realtime data gathering

Realtime monitoring

Flexibility
Flexible product mix

Flexible facility mgmt.

Control

Tracking mgmt.

Condition Detection 

Environment monitoring

4M variation mgmt.

Load balance mgmt.

Intelligent 
system

Data mgmt.

Optimization/Simulation

Intelligent scheduling

Standard
Master data mgmt.

Process rule mgmt.



Sustainability 2021, 13, 1964 21 of 27 
 

System and au-

tomation 

Factory level 
8. Information sys-

tem  

 Enterprise resource planning/supply chain management/MES/product lifecycle manage-

ment/factory energy management system/security management  

Machine/Control 

level 

9. Production auto-

mation  

 Production/transportation/inspection automation, information network, and safety and 

environment  

Performance Goal & KPI 
10. Performance 

measurement 
 Productivity, quality, cost, delivery, safety, and environment  

Table A5. Definition of smart factory maturity level. 

Level Description 

Checking  Simple detection of status (cannot be linked with external system) 

Monitoring 
 The detection result is displayed as data on an external monitoring sys-

tem 

Control 
 After analyzing the presence or absence of abnormality from the detec-

tion result, the abnormal function is controlled to normal sate 

Optimization 

 Information integration and comprehensive control from the perspec-

tive of overall system optimization through the connection of internal 

and external systems between upper and lower facilities and equipment 

Autonomy 
 Self-diagnosis and self-repair artificial intelligence and autonomous 

control 

Appendix C. Smart Shipyard Maturity Assessment Levels 

Table A6. Definition of level of each maturity factor. 

Level Connectivity Automation Intelligence 

Level 

5 

 The level at which things (ma-

chines/computers) are autono-

mously connected 

 In addition to the level of IoT con-

nection, the level of autonomous 

decision-making on receiv-

ing/storing/sending data and in-

formation in a decentralized IoT 

network environment 

 The level at which all produc-

tion and management activi-

ties are operated by machines 

and computers without hu-

man intervention. 

 Through embedded preemp-

tive prognostic health man-

agement, not only production 

activities but also maintenance 

to production stoppage factors 

such as failures are performed 

autonomously 

 Level of information generation by com-

puter intelligence superior to humans 

 In addition to the level of artificial intelli-

gence, AI design (environment, reward, ac-

tion, etc.)/learning performance/decision-

making is performed by computers 

Level 

4 

 The level at which things (ma-

chines/computers) are automati-

cally connected 

 The level of receiving and send-

ing necessary data and infor-

mation at the right time and at the 

right time by production re-

sources and IoT devices installed 

in the workplace without human 

intervention 

 The level of replacing human 

work by using automated 

equipment 

 The level at which all produc-

tion activities are performed 

by the connected automation 

equipment, excluding the re-

sponse to production stoppage 

factors such as machine fail-

ures 

 Information generation level by human 

level computer intelligence 

 Algorithms in the same way as human 

thinking are accelerated in a computer envi-

ronment to make fast and accurate deci-

sions 

Level 

3 

 The level at which humans use 

automated equipment or humans 

and machines are connected in an 

automated manner. 

 Data and information are ac-

quired in an automated way 

 A level of substituting part of 

human tasks using automated 

equipment 

 The level at which all produc-

tion activities are performed 

by independent automated 

 Level of information generation through 

analysis/inference by engineering algorithm 

 Definition of input and output and prepara-

tion of input data are performed by hu-

mans, and the input data are processed/ana-

lyzed/inferred by engineering algorithms 
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through wireless devices, but the 

receiving and sending of the ac-

quired information is performed 

by humans 

equipment, excluding the re-

sponse to production stoppage 

factors such as failure 

implemented in a computer to generate in-

formation for decision-making 

Level 

2 

 The level at which people are con-

nected through machines 

 The level at which data transfer is 

performed by wired devices (tele-

phone, fax, PC, etc.) 

 The level of substituting part 

of human work using ma-

chines 

 Production activities such as 

cutting and welding are per-

formed by mechanized de-

vices, but the start and end of 

work and management activi-

ties for abnormal conditions 

are performed by humans 

 Data management/retrieval/copy/modifica-

tion level using computer equipment 

 A level in which human experience data are 

manually stored through office automation 

(OA) devices, and data inquiry/copy/modi-

fication/distribution is performed using OA 

programs 

Level 

1 

 The level of direct human-to-hu-

man connection 

 The level at which data are deliv-

ered by direct human activities 

(conversation, paper document 

delivery, etc.) 

 The level at which work is per-

formed by humans 

 The level at which production 

activities are performed by di-

rect human hand activities 

 Level of data generation by tacit knowledge 

based on human experience 

Table A7. Description of each level of shipyard. 

Level Description 

Level 5 

shipyard 

 Artificial intelligence that transcends human thinking; that is, not only information generation, but also the design and execu-

tion of the information generating process itself is performed by a computer. Therefore, no human intervention is required for 

knowledge activities through information generation and information analysis. Data and information between human and 

objects are shared by IoT networks that are deployed across the enterprise. 

 In addition to the level of automation of Level 4, the production activity is also embedded in the production resource, and the 

occurrence of abnormal situations is autonomously managed by predictive preservation technology synchronized with pro-

duction activities. 

Level 4 

shipyard 

 Information is generated by artificial intelligence algorithms at the level of human thinking, and data and generated infor-

mation are automatically shared between computers and IoT devices according to a predefined work process without hu-

mans or devices.  

 Production is automatically performed by autonomous facilities. 

 In addition, product movement is also performed by automated transportation facilities. However, if a failure occurs in the 

facility or a work abnormality occurs, an abnormal signal is immediately transmitted to the work manager and the abnormal 

situation is managed. 

Level 3 

shipyard 

 When a person enters data in a computer equipped with an engineering algorithm, information is generated by the algo-

rithm, and the generated information is shared between departments by a person using a wireless device, and production 

data are processed through a wireless device. 

 Unit production work is performed by being delivered to an independent automation facility on-site. 

 However, the scope of automation is limited to the unit process (cutting, grain processing, welding of sub-assembly, etc.), and 

if a failure in the automation facility or a work abnormality occurs, the abnormal situation is managed by the waiting work 

manager. 

Level 2 

shipyard 

 Data produced by human experience and ability is stored in a wired OA device, and the stored data are transferred in a man-

ner of inquiry/copy/modification/distribution using wired OA devices and programs. 

 Data for production is delivered to the operator through the OA device, and the data received by the operator is loaded onto 

the machine or the machine is operated according to the received work instruction to perform production activities. 

Level 1 

shipyard 

 A shipyard where production data are created based on human experience and ability, and the generated data are delivered 

through direct human conversation instructions and paper documents without separate storage, and production activities are 

performed by direct human manual work. 

Appendix D. DEA Results 
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Table A8. Efficiency and scale efficiency of traditional model and new model (Case 1). 

 
Traditional Model Proposed Model 

Efficiency 
SE (CCR/BCC) 

Efficiency 
SE (CCR/BCC) 

CCR BCC CCR BCC 

L1 60.82% 100.00% 0.61 100.00% 100.00% 1.00 

L2 100.00% 100.00% 1.00 100.00% 100.00% 1.00 

L3 82.22% 100.00% 0.82 100.00% 100.00% 1.00 

L4 90.56% 94.21% 0.96 41.32% 82.52% 0.50 

L5 100.00% 100.00% 1.00 51.28% 82.52% 0.62 

M2 67.51% 69.44% 0.97 21.56% 76.23% 0.28 

M3 88.96% 100.00% 0.89 7.95% 79.42% 0.10 

M4 65.62% 100.00% 0.66 4.57% 61.15% 0.07 

Table A9. DEA results with the Banker–Charnes–Cooper (BCC) of traditional model (Case 1). 

 
DMU L1 L2 L3 L4 L5 M2 M3 M4 

Efficiency 100.00% 100.00% 100.00% 94.21% 100.00% 69.44% 100.00% 100.00% 

Employee 

Data 54,808 34,353 30,181 10,479 11,777 7941 2142 2159 

Projection 54,808 34,353 30,181 9545 11,777 5514 2142 2142 

Diff. 0.00% 0.00% 0.00% −8.90% 0.0% −30.60% 0.00% −0.80% 

Dock 

Data 11 5 7 4 4 5 3 3 

Projection 11 5 7 3.77 4 3.35 3 3 

Diff. 0.00% 0.00% 0.00% −5.80% 0.00% −33.00% 0.00% 0.00% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877 

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 244,624 

Diff. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 34.50% 

Table A10. DEA results with the Charnes–Cooper–Rhodes (CCR) of traditional model (Case 1). 

. 
DMU L1 L2 L3 L4 L5 M2 M3 M4 

Efficiency 100.00% 100.00% 100.00 90.84% 100.00% 68.32% 100% 74.35% 

Employee 

Data 54,808 34,353 30,181 10,479 11,777 7941 2142 2159 

Projection 54,808 34,353 30,181 10,479 11,777 7941 2142 2142 

Diff. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% −0.80% 

Dock 

Data 11 5 7 4 4 5 3 3 

Projection 11 5 7 3.87 4 3.6 3 3 

Diff. 0.00% 0.00% 0.00% −3.40% 0.00% −28.00% 0.00% 0.00% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877 

Projection 2,906,250 2,433,277 2,393,300 1,341,193 1,511,919 1,007,369 244,624 244,624 

Diff. 0.00% 0.00% 0.00% 10.10% 0.00% 46.40% 0.00% 34.50% 

In Tables A11 and A12, the “data,” “projection,” and difference rows for “process” 

and “system and automation” indicate the input data, quantitative value to reach 100% 

efficiency, and ratio of the projection and data, respectively. Two values are shown for 

each data, projection, and difference by the DMU in the proposed model. The value on 

the left is the perfect SSML score of the perfect score, which is 5.0 minus assessment value 

and the projected value, and the value on the right is converted from the perfect score 

again. 

  



Sustainability 2021, 13, 1964 24 of 27 
 

Table A11. DEA results with BCC of proposed model (Case 1). 

 DMU L1 L2 L3 L4 L5 M2 M3 M4 

Efficiency 100% 100% 100% 82.52% 82.52% 76.23% 79.42% 61.15% 

Process 

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94 2.23 2.77 2.26 2.74 2.78 2.22 

Projection 2.15 2.85 1.70 3.30 2.01 2.99 1.70 3.30 1.70 3.30 1.70 3.30 1.79 3.21 1.70 3.3 

Diff. 0% 0% 0% 0% 0% 0% −17.5% 11% −17.5% 11% −23.8% 16% −20.6% 15% −38.8% 33% 

System and auto-

mation 

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 2.51 2.49 2.2 2.8 3.17 1.83 

Projection 2.07 2.93 1.79 3.21 1.65 3.35 1.79 3.21 1.79 3.21 1.79 3.21 1.75 3.25 1.79 3.21 

Diff. 0% 0% 0% 0% 0% 0% −21.8% 16% −19% 13% −28.7% 22% −20.6% 14% −43.5% 43% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877 

Projection 2,906,250 2,433,277 2,393,300 2,433,277 2,433,277 2,433,277 2,421,048 2,433,277 

Diff. 0% 0% 0% 99.7% 60.9% 253.6% 889.7% 1237.9% 

Table A12. DEA results with CCR of proposed model (Case 1). 

CCR (min Input) 
DMU L1 L2 L3 L4 L5 M2 M3 M4 

Efficiency 100% 100% 100% 41.32% 51.28% 21.56% 7.95% 4.57% 

Process 

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94 2.23 2.77 2.26 2.74 2.78 2.22 

Projection 2.15 2.85 1.70 3.30 2.01 2.99 0.85 4.15 1.06 3.94 0.48 4.52 0.18 4.82 0.13 4.87 

Diff. 0% 0% 0% 0% 0% 0% −58.7% 29% −48.7% 25% −78.4% 39% −92% 43% −95.4% 54% 

System and automation 

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 2.51 2.49 2.20 2.8 3.17 1.83 

Projection 2.07 2.93 1.79 3.21 1.65 3.35 0.90 4.10 1.11 3.89 0.51 4.49 0.17 4.83 0.13 4.87 

Diff. 0% 0% 0% 0% 0% 0% −60.9% 34% −49.7% 28% −79.8% 45% −92% 42% −95.8% 62% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877 

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 688,199 244,624 181,877 

Diff. 0% 0% 0% 0% 0% 0% 0% 0% 

Table A13. Efficiency and scale efficiency of traditional and proposed model (Case 2). 

 Traditional Model Proposed Model 

CCR BCC SE CCR BCC SE 

L1 60.82% 100.00% 0.61 100.00% 100.00% 1.00 

L2 100.00% 100.00% 1 100.00% 100.00% 1.00 

L3 82.22% 100.00% 0.82 100.00% 100.00% 1.00 

L4 90.56% 90.84% 1 41.32% 82.52% 0.50 

L5 100.00% 100.00% 1 51.28% 82.52% 0.62 

M2 100.00% 100.00% 1.00 100.00% 100.00% 1.00 

M3 100.00% 100.00% 1.00 40.55% 100.00% 0.41 

M4 74.02% 100.00% 0.74 21.20% 80.22% 0.26 

Table A14. DEA result with BCC of traditional model (Case 2). 

 DMU L1 L2 L3 L4 L5 

Efficiency 100% 100% 100% 100% 100% 

Employee 

Data 54,808 34,353 30,181 10,479 11,777 

Projection 54,808 34,353 30,181 10,479 11,777 

Diff. 0.0% 0.0% 0.0% 0.0% 0.0% 

Dock and berth 

Data 11 5 7 4 4 

Projection 11 5 7 4 4 

Diff. 0.0% 0.0% 0.0% 0.0% 0.0% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Diff. 0.00% 0.00% 0.00% 0.00% 0.00% 
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 DMU M2 M3 M4   

Efficiency 100% 100% 100%   

Employee 

Data 7941 2142 2159   

Projection 7941 2142 2142   

Diff. 0% 0% −0.8%   

Dock and berth 

Data 5 3 3   

Projection 5 3 3   

Diff. 0% 0% 0%   

Construction 

Data 688,199 244,624 181,877   

Projection 688,199 244,624 244,624   

Diff. 0% 0% 34.5%   

Table A15. DEA result with CCR of traditional model (Case 2). 

. 
DMU L1 L2 L3 L4 L5 

Efficiency 60.82% 100% 82.22% 90.56% 100% 

Employee 

Data 54,808 34,353 30,181 10,479 11,777 

Projection 33,334.78 34,353 24,815.44 9489.77 11,777 

Diff. −39.2% 0% −17.8% −9.4% 0% 

Dock and berth 

Data 11 5 7 4 4 

Projection 6.69 5 5.76 3.22 4 

Diff. −39.2% 0% −17.8% −19.4% 0% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Diff. 0% 0% 0% 0% 0% 

 DMU M2 M3 M4   

Efficiency 100% 100% 74.02%   

Employee 

Data 7941 2142 2159   

Projection 7941 2142 1598.08   

Diff. 0% 0% −26%   

Dock and berth 

Data 5 3 3   

Projection 5 3 2.22   

Diff. 0% 0% −26%   

Construction 

Data 688,199 244,624 181,877   

Projection 688,199 244,624 181,877   

Diff. 0% 0% 0%   

Table A16. DEA results with BCC of proposed model (Case 2). 

 DMU L1 L2 L3 L4 L5 

Efficiency 100% 100% 100% 82.52% 82.52% 

Process 

Data 2.15 2.85 1.70 3.30 2.01 2.99 2.06 2.94 2.06 2.94 

Projection 2.15 2.85 1.70 3.30 2.01 2.99 1.70 3.3 1.70 3.3 

Diff. 0% 0% 0% 0% 0% 0% −17.5% 11% −17.5% 11% 

System and automation 

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 

Projection 2.07 2.93 1.79 3.21 1.65 3.35 1.79 3.21 1.79 3.21 

Diff. 0% 0% 0% 0% 0% 0% −21.8% 16% −19% 13% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Projection 2,906,250 2,433,277 2,393,300 2,433,277 2,433,277 

Diff. 0% 0% 0% 99.7% 60.9% 

 DMU M2 M3 M4     

Efficiency 100% 100% 80.22%     

Process 

Data 2.23 2.77 2.26 2.74 2.78 2.22     

Projection 2.23 2.77 2.26 2.74 2.23 2.77     

Diff. 0% 0% 0% 0% −19.8% 20%     
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System and automation 

Data 2.51 2.49 2.2 2.8 3.17 1.83     

Projection 2.51 2.49 2.2 2.8 2.51 2.49     

Diff. 0% 0% 0% 0% −20.8% 27%     

Construction 

Data 688,199 244,624 181,877     

Projection 688,199 244,624 688,199     

Diff. 0% 0% 278.4%     

Table A17. DEA results with CCR of proposed model (Case 2). 

 DMU L1 L2 L3 L4 L5 

Efficiency 100% 100% 100% 41.32% 51.28% 

Process 

Data 2.15 2.85 1.7 3.3 2.01 2.99 2.06 2.94 2.06 2.94 

Projection 2.15 2.85 1.7 3.3 2.01 2.99 0.85 4.15 1.06 3.94 

Diff. 0% 0% 0% 0% 0% 0% −58.7% 29% −48.7% 25% 

System and automation 

Data 2.07 2.93 1.79 3.21 1.65 3.35 2.29 2.71 2.21 2.79 

Projection 2.07 2.93 1.79 3.21 1.65 3.35 0.90 4.10 1.11 3.89 

Diff. 0% 0% 0% 0% 0% 0% −60.9% 34% −49.7% 28% 

Construction 

Data 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Projection 2,906,250 2,433,277 2,393,300 1,218,287 1,511,919 

Diff. 0% 0% 0% 0% 0% 

 DMU M2 M3 M4     

Efficiency 100% 40.55% 21.2%     

Process 

Data 2.23 2.77 2.26 2.74 2.78 2.22     

Projection 2.23 2.77 0.79 4.21 0.59 4.41     

Diff. 0% 0% −64.9% 35% −78.8% 50%     

System and automation 

Data 2.51 2.49 2.20 2.8 3.17 1.83     

Projection 2.51 2.49 0.89 4.11 0.66 4.34     

Diff. 0% 0% −59.4% 32% −79.1% 58%     

Construction 

Data 688,199 244,624 181,877     

Projection 688,199 244,624 181,877     

Diff. 0% 0% 0%     
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