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Abstract: The optimization of blank design is the key to the implementation of a green innovation
strategy. The process of blank design determines more than 80% of resource consumption and
environmental emissions during the blank processing. Unfortunately, the traditional blank design
method based on function and quality is not suitable for today’s sustainable development concept. In
order to solve this problem, a research method of blank design optimization based on a low-carbon
and low-cost process route optimization is proposed. Aiming at the processing characteristics of
complex box type blank parts, the concept of the workstep element is proposed to represent the
characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is
established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a
working step chain is proposed, and combined with a particle swarm optimization algorithm to solve
the optimization model. Finally, the feasibility and practicability of the method are verified by taking
the processing of the blank of an emulsion box as an example. The data comparison shows that the
comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best,
which meets the requirements of low-carbon processing, low-cost, and sustainable production.

Keywords: blank optimization design; workstep element; process route; low-carbon emission;
combinatorial optimization algorithm

1. Introduction

With the rapid development of the national economy, the manufacturing industry
consumes a lot of resources and causes serious pollution to the environment [1,2]. Blanks
are the basis of machining in the manufacturing industry, which is mainly composed of
two parts, one part refers to the raw materials that have not been processed, the other refers
to the part before the finished product is completed. In the manufacturing industry, the
traditional blank production process consumes a lot of energy and causes serious envi-
ronmental pollution [3]. Therefore, the traditional blank design method does not conform
to the concept of sustainable development. The design process of the blank determines
more than 80% of the resource consumption and environmental emissions during the blank
processing [4,5]. Therefore, the optimization of the blank design should be based on the
optimization of the process route of the blank processing [6]. At present, the Chinese
manufacturing industry mainly depends on the high input of energy and resources at the
expense of the environment. With the further development of the economy and society,
the above-mentioned development mode leads to the increasingly serious contradiction
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between humans and thel environment, which significantly affects the sustainable de-
velopment of the Chinese economy. There is an urgent need to reduce environmental
pollution. Low-carbon manufacturing emphasizes the reduction and control of carbon
emissions from the whole process of raw materials and energy acquisition, product design,
use, dismantling, and recycling [7], which is one of the main ways to solve environmental
problems. In the blank machining process, implementing low-carbon manufacturing is
one of the essential ways to optimize the low-carbon manufacturing process. The process
route dominates the whole process from blank to parts and has a significant impact on
environmental and economic indicators [8].

CNC machine tools are the basic processing equipment in the manufacturing process.
CNC machine tools require a large amount of energy consumption and generate carbon
dioxide emissions. It is of great significance to select reasonable processing parameters to
ensure product quality, extend tool life, and reduce production costs [9]. However, in the
actual machining process, the three goals of reducing production cost, reducing carbon
emissions, and improving production efficiency are usually contradictory. Therefore, it is
necessary to provide various optimal target combinations through reasonable optimiza-
tion decision-making methods, so decision-makers can make choices according to their
situations to achieve demand balance. The process route specifies the entire processing
process of turning blanks into product parts, which significantly affects the enterprise’s
processing efficiency, environmental impact, processing quality, and processing cost of
product parts [10].

2. Literature Review
2.1. The Application of a Low-Carbon Emission Model

Research on the construction of a corresponding decision model based on low-carbon
emissions has attracted wide attention all over the world. Stefano et al. [11] established
a low-carbon urban and rural ecosystem planning optimization framework through the
construction of a low-carbon model and used an example to verify the carbon emission
factors in Italy. Avinash et al. [12] established the relationship model between energy
consumption and low-carbon emissions and proposed a method of reducing energy carbon
emissions. Nora et al. [13] aimed at the problem of carbon emissions in the cement industry
and proposed a decision-making model to balance carbon emissions in the cement supply
chain, which aimed to provide an effective trade-off strategy between economic indicators
and carbon emissions. Gaurav et al. [14] aimed at the serious problem of the carbon
emissions of traditional combustion energy and studied sustainable technology and fuel
with a smaller carbon footprint, putting forward the life cycle assessment of the eco-friendly
sintering method. Yoshiyuki et al. [15] proposed a process method based on life cycle
carbon circulation and low-carbon consumption. The method is based on a low-carbon
emission model and uses an intelligent algorithm. Song et al. [16] combined the whole
life cycle to estimate greenhouse gas emissions, establishing a BOM structure to form a
G-BOM estimated greenhouse gas emission product. Xiu et al. [17] proposed a new method
for identifying high greenhouse gas emission link units. Through life cycle analysis, the
greenhouse gas emission flow was studied. Xu et al. [18] proposed a new low-carbon
innovation design strategy model. This method used the analysis network process to
evaluate each design element.

2.2. The Solutions of Carbon Emission Reduction

Creating and seeking optimization algorithms with higher accuracy and faster solution
speed is crucial to solving the optimal solutions of models. The earliest researchers in
this field were scholars Rad-Tolouei et al. [19] and Eskicioglu et al. [20], who applied
the graphic method, Lagrangian multiplication, and geometric programming method to
analyze processing parameter optimization. However, due to the limitation of computing
power, the implementation of these algorithms was mostly at the theoretical level, and
the calculation results ended in failure. Since the 21st century, with the development of
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computer technology and the emergence and improvement of intelligent algorithms, the
optimization calculation and solution of carbon emissions model has been well solved and
developed. Zainal et al. [21] analyzed the firefly swarm optimization (GSO) algorithm and
applied the GSO algorithm to solve the carbon emission optimization model for the first
time. Zarei et al. [22] studied the optimization problem of milling parameters under multi-
stroke, established an optimization model, and proposed a harmonious search algorithm to
deal with the optimization problem. The milling parameters mainly included cutting depth,
speed, feed, and the relevant constraints were quantified, such as allowable speed and
feed, etc. Esmaeil et al. [23] proposed an improved particle swarm optimization algorithm,
which changed the search space of parameters according to the parameter value of each
particle. The method has proven to be a new intelligent algorithm, which can monitor
carbon emission in real-time. Xiao et al. [24] firstly proposed a combinatorial optimization
algorithm that combines an improved genetic algorithm (GA) with an intelligent generation
algorithm. This method can effectively perform initial screening and re-screening of the
optimal solution set to ensure that the solution set has high-precision and effectiveness.

2.3. Research Gaps

Based on the above-mentioned literature, from the perspective of blank process design,
research on environmental indicators while considering economic indicators has not at-
tracted widespread attention. Under the severe situation of resource shortage, it is of great
significance to study environmental indicators and economic indicators in depth. However,
in the machining process, balancing the two objectives is usually contradictory. Therefore,
it is necessary to provide various process route combinations for decision-makers to choose
according to their situation. In this paper, a process route optimization method with
low-carbon and low-cost as the goal is proposed. Considering the actual performance of
processing equipment and the constraints of related processing quality, a multi-objective
optimization model with minimal carbon emissions and minimum processing cost is estab-
lished. The combinatorial intelligent optimization algorithm is used to solve the model,
and the optimal blank processing route is obtained.

3. Establishment of Multi-Objective Optimization Model
3.1. Low-Carbon Objective Function

The machining process of blanks includes turning, milling, planing, grinding, etc., as
shown in Figure 1. In the machining process, the input flow includes the blank, cutting
fluid, electric energy driving the machine tool, tools, and fixtures, and the output flow
consists of the loss of chips, cutting fluid, and cutting tools [25–32].

The carbon emissions caused by the output stream are mainly carbon emissions of
materials in the machining process and carbon emissions from energy consumption, which
can be expressed by Equation (1);

Gp =
n

∑
i=1

(GMi + GEi) (1)

where GMi and GEi are the carbon emission of materials and carbon emissions from energy
consumption of the working step i.

3.1.1. Carbon Emission of Materials in the Machining Process

For typical machining processes, the carbon emission of materials mainly includes
chips, cutting fluid, and tool loss. Carbon emission of materials in the machining process
can be expressed by Equation (2);

GMi = Gc
Mi + G f

Mi + Gt
Mi (2)
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where Gc
Mi, G f

Mi, and Gt
Mi are respectively carbon emission caused by chip treatment,

cutting fluid consumption, and tool loss in the working step i.
(a) Cutting. In the process of machining, most of the metal chips can be recovered and

reused. Since the materials’ performance will be reduced after recycling, carbon emission
revenue generated by chip recovery is not considered. Thus, carbon emission caused by
chip recovery can be expressed by Equation (3).

Gc
Mi = ρiViµFc

i (3)

where ρi, Vi and Fc
i are the density (Kg/m3), volume (m3), and carbon emission factor

(CO2 − Eq, CO2 equivalent) of the chip in the first processing step respectively; µ is the
recovery rate of the chip, where Fc

i is taken as 1.0 (see Table 1).

Figure 1. Carbon footprint model of the blank machining process.

Table 1. Values used for carbon emission factors.

Name kgCO2/kWh Name kgCO2/kWh

Fc
i 1.0000 F f

i
0.4690

Ft
i 30.1530

(b) Cutting fluid. In the machining process, different cutting fluids are used in various
machining processes, and the carbon emission factor and replacement period of varying
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cutting fluids are also different. For simple systems, carbon emissions caused by cutting
fluid consumption can be expressed by Equation (4);

G f
Mi = ρ

f
i qvt f

i F f
i (4)

where, ρ
f
i , t f

i , and F f
i are respectively the density (Kg/m3), processing time (s) and carbon

emission factor (CO2 − Eq) of the cutting fluid in the first machining step; qv is the flow
rate of cutting fluid (mm3/s ), where F f

i is set at 0.4690 (see Table 1).
(c) Tool. The carbon emissions caused by tool loss refers to the carbon emission caused

by the tool used in the cutting process during its manufacturing process in each workstep,
the carbon emission caused by tool loss can be expressed by Equation (5).

G f
Mi =

tt
i

Tt
i

mt
i F

t
i (5)

where tt
i , Tt

i , mt
i and Ft

i are respectively the processing time, tool life, tool quality, and tool
carbon emission factor in the ith machining step. Ft

i is set at 30.1530 (see Table 1). The value
of the carbon emission factor of materials in the above correlation function is shown in
Table 1 [26,33].

3.1.2. Carbon Emission of Energy Consumption

The machining process of the machine tool can be divided into no-load state, load
state, accessory state, and tool changing state.

(1) The no-load state is when the machine tool runs without load, it is composed of the
no-load power of the transmission system and the loss power of the motor;

(2) The load state is when the machine tool is in load processing state;
(3) The accessory state is when the machine tool is in a load processing state, so there

will be additional load power. The power of the additional load is composed of the
power increased by the total power loss of the machine drive system and motor on
the original no-load loss;

(4) The tool changing state is when the machine tool is in the tool replacement stage.

In the operation state of each functional part, the energy consumption of the machin-
ing process can be divided into no-load energy consumption, load energy consumption,
accessory energy consumption, and tool changing energy consumption. The approxi-
mate equilibrium equation of the energy of the machine tool in dynamic operation can be
expressed by Equation (6).

Ee =
∫ T

0
P(t)dt =

∫ tp

o
Pu(t)dt +

∫ te

0
Pe(t)dt +

∫ tm

0
(Pu(t) + Pa(t) + Pc(t))dt (6)

where, Pu, Pc, Pa and Pe are respectively no-load power, load power, accessory power, and
tool changing power. T is the total time, tp, te, and tm are the empty stroke time, tool
changing time, and processing time, respectively.

For the same machine tool, when running steady-state at a fixed speed, the rate
fluctuations of its no-load power, load power, accessory power, and tool change power, are
very small and can be considered as a constant value.

Ee = tpPu + tePe + tm(Pu + Pc + Pa) (7)

Carbon emission of energy consumption can be expressed by Equation (8),

GEi = FeleEe (8)

where Fele is the carbon emission factor. The value of the carbon emission factor of electric
energy in the above correlation function is shown in Table 2 [26,33,34].
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Table 2. Carbon emission factor table of electric energy.

Regional/Name Fele/(kgCO2/kWh) Regional/Name Fele/(kgCO2/kWh)

North China 1.0580 Central China 0.9724
Northeast China 1.1280 Southern China 0.9183

East China 0.8095 Northwest China 0.9578

Based on the above analysis, the low-carbon objective function can be expressed by
Equation (9)

Gp =
n
∑

i=1
(GMi + GEi) =

n
∑

i=1
(Gc

Mi + G f
Mi + Gt

Mi + GEi)

=
n
∑

i=1
(ρiViµFc

i + ρ
f
i qvt f

i F f
i +

tt
i

Tt
i
mt

i F
t
i + FeleEe)

(9)

3.2. Cost Function

From the perspective of the negative impact in the manufacturing process, the envi-
ronmental impact accounts for a large proportion, and the space for optimization is large.
If we only consider environmental factors in the manufacturing process, this will inevitably
increase the processing cost, so we should consider the environment, cost, and other factors
in the process design. The machining cost of machine tools mainly includes the cutting
tool replacement cost, processing cost, and other auxiliary costs [24,27,28].

Cp = α(To + Tm + Tr
Tc

T
) (10)

In Equation (10), Tr, Tc, n, T can be express as follows:

Tr = Td +
β

α
(11)

Tc =
L

n fzz
(12)

n =
1000vc

πD
(13)

T =

(
CvDo

vc f k
z (ae/D)qau

p HBg

)1/m

(14)

In Equations (10)–(14), Cp is the processing cost of blank; To is the extra machining
time; Tm is the machining time; β is the cost of the tool; α is the labor processing cost;
Tc is the effective machining time; Td is the time required for tool replacement; L is the
machining length required for the parts; vc is the machining speed. Based on the above,
the cost objective function is as follows.

Cp = α

To +
πDL

1000vc fzz

1 +
(

Td +
β

α

)(
CvDo

vc f k
z (ae/D)qau

p HBg

)−1/m
 (15)

3.3. Constrains

The value of two objective functions is limited by the spindle speed, feed rate, maxi-
mum cutting power, and machining quality of the selected machine tool, which can only
be taken within the range [29,30].

Spindle speed constraint.
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A CNC machine tool has a specific spindle speed constraint. Cutting parameters
should meet the selection of spindle speed constraint, as shown in Equation (16).

g1(vc, fz) =
NminπD

1000
− vc ≤ 0 (16)

Feed constraints.
The feed is restricted by the model and type of the machine tool, as shown in

Equation (17).

g2(vc, fz) =
v f minπD
1000zvc

− fz ≤ 0 (17)

Power constraints.
The machine power shall be less than the maximum effective cutting power specified

Pmax, as shown in Equation (18).

g3(vc, fz) =
Fcvc

60× 1000
− ηPmax ≤ 0 (18)

Torque constraint, as shown in Equation (19).

g4(vc, fz) =
FcD

2× 103 −Mmax ≤ 0 (19)

where Mmax is the maximum torque.
Tool life constraint, as shown in Equation (20).

g5(vc, fz) = Tmin − T ≤ 0 (20)

3.4. Conversion of Multiple Objective Functions

According to the objective function constructed above, each objective function restricts
the other for the multi-objective optimization problem. To avoid the differences between
the dimensions of the carbon emission function and the cost function, we can first find the
maximum and minimum values of each independent objective function and then convert the
actual objective function to a dimension between [0, 1]. The processing method is as follows:

G∗P =
G|P −min(GP)

max(GP)−min(GP)
(21)

C∗p =
Cp −min(Cp)

max(Cp)−min(Cp)
(22)

where GP and G∗P are the objective function value of carbon emission and the dimension after
transformation, and Cp and C∗p are the objective function value of cost and the dimension
after transformation, respectively. The simplified single objective function is as follows.

S = min(µ1G∗P + µ2C∗p) (23)

For solving multi-objective optimization problems, it is often difficult to obtain the op-
timal solutions of multiple objective functions simultaneously. In order to solve the problem
conveniently, the multi-objective function is transformed into a single-objective function.
At present, there are three main methods to transform multi-objective optimization prob-
lems into single-objective optimization problems, which are the linear weighting method,
the principal component analysis method, and the comprehensive scoring method [35–37].

Among the three methods, the linear weighted method is the simplest to calculate,
and the weight can be assigned by subjective evaluation of the importance of each objective.
Therefore, the weighted summation method is introduced, the specific expression is as follows:

minS(vc, fz) = min(µ1G∗P + µ2C∗P) (24)
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Among them, µ1 + µ2 = 1; µ1 and µ2 are carbon emission weighting coefficient, and
processing cost weighting coefficient, respectively. In this study, for the two factors of
carbon emission and processing cost, they are considered to be equally important in the
optimization process. Therefore, the weight is set here as µ1 = 0.5 and µ2 = 0.5 [36]. Then
the new objective function can be used as the evaluation function.

4. Combinatorial Optimization Algorithm

To obtain the high-precision optimal solution of the multi-objective combinatorial
optimization problem, the local optimization problem which often occurs in the previous
algorithm solving process is abandoned. This research proposes a combinatorial optimiza-
tion algorithm [24,38,39]. First of all, we designed an intelligent generation algorithm,
which can perform preliminary intelligent screening among all feasible workstep sequence
chains that meet the constraints and then combine the Adaptive Particle Swarm Optimiza-
tion (APSO) [40,41] algorithm to further optimize the feasible workstep sequence chains,
which aims to achieve the purpose of the optimal solution.

4.1. Intelligent Generation Algorithm of Workstep Chains

The intelligent generation algorithm of the working step chain can effectively perform
preliminary screening among numerous feasible working step chainsets under constraints,
and obtain the working step chain combinations that basically meet the optimization
conditions, the flow chart of this algorithm is shown in Figure 2.

Figure 2. Algorithm flow chart.
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4.2. Adaptive Particle Swarm Optimization (APSO)

The PSO algorithm is a swarm intelligence algorithm, which thinks that particles are
in dimensional space, passes information according to a specific rule, and changes the self-
organization behavior generated by their state according to the change of information [41–43].
The schematic diagram of information transmission between particles in the particle swarm
optimization algorithm is shown in Figure 3.

Figure 3. Schematic diagram of particle information transfer.

First, the particle swarm optimization algorithm with a certain scale is initialized
artificially, when the particle swarm is initialized, each particle has three attributes: fitness
P, speed V, and position X.

Second, the fitness value of the current position of each particle pid is compared with
its historical best fitness value. The best value obtained by comparison will be regarded as
the current best position; otherwise, it will not change.

Third, the velocity and position of particles are updated according to Equations (25)
and (26), until the set termination condition is reached.

vid
(t+1) = wvid

(t) + c1r1d[pid
(t) − xid

(t)] + c2r2d[pgd
(t) − xid(t)] (25)

xid
(t+1) = xid

(t) + vid
(t+1) (26)

In the above Equations (25) and (26), w is the inertia weight factor, vid is the velocity of
the particle, vid ∈ [−vmax,vmax], c1 and c2 are the learning factors. The larger the learning
factor is, the better the convergence of the algorithm, and the local search ability will be
increased. In addition, the smaller the learning factor is, the better the global search will
be and the algorithm will not fall into the local optimum. To improve the efficiency of the
optimization algorithm, it is necessary to improve the local search ability and global search
ability of the algorithm. Therefore, it is taken as the synchronous learning factor c1 = c2.
Considering the learning factor such that c = c1 + c2, c ≥ 4, here we take c1 = c2 = 2 [40,41],
r1d, r2d are mutually independent random numbers uniformly distributed on [0, 1], xid is
the current particle position [43].
(1) Mathematical representation and solution steps of APSO

In the standard PSO algorithm, because the flight time of each generation of particles
is fixed, the oscillation phenomenon occurs, which makes the algorithm slow convergence
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speed, weaken heuristic search direction, and easily fall into the local extremum [44,45].
Therefore, the APSO algorithm is introduced. The inertia weight and the flight time of
particles can be adjusted adaptively according to the global optimal value information. The
adjustment formula has been defined in Equations (27) and (28).

wt = exp(−
Ft

b

Ft−1
b

) (27)

xid
(t+1) = xid

(t) + vid
(t+1) × Tst ×

(
1− kot

Imax

)
(28)

where wt is the inertia weight of the particle of generation t, Ft
b, Ft−1

b is the global optimal
value of the particles of generation t and generation t− 1, Tst is the initial flight time, ko is
the adjustment parameter, and Imax is the largest evolutionary algebra. The optimization
process of the APSO algorithm is shown in Figure 4.

Figure 4. Flow chart of Adaptive Particle Swarm Optimization (APSO) algorithm.

5. Case Study

Taking the machining process of an emulsion pump box blank as an example, the
validity of the low-carbon and low-cost optimization model of the machining process route
is verified. The three-dimensional model and three views of the emulsion pump box blank
are shown in Figure 5.
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Figure 5. Features analysis of an emulsion pump box blank.

5.1. Analysis of Processing Characteristics

The structure of the emulsion pump box is composed of 12 machining features such
as end face, hole, and thread. The feature information of each side corresponds to the
corresponding position; the specific information of the emulsion pump box is shown in
Table 3.

Table 3. Part feature information table.

Feature No. Feature Description Azimuth Plane Feature No. Feature Description Azimuth Plane

F1 End face 1 F7 End face 3

F2 M16 × 1.5
Threaded hole 1 F8 M16 × 1.5

Threaded hole 3

F3 End face 2 F9 End face 4
F4 Φ45Through hole 2 F10 Φ45Through hole 4
F5 Φ35Through hole 2 F11 Φ35Through hole 4
F6 Φ45Through hole 2 F12 Φ45Through hole 4

The processing equipment and tools available for processing the blank of the box body
can be seen in Tables 4 and 5 [17,46].

Table 4. Equipment list.

Equipment Serial No. Equipment Name Equipment Power/kW

M01 Ordinary lathe 10
M02 CNC lathe 22
M03 CNC vertical milling machine 15
M04 Vertical milling machine 11
M05 Radial drilling machine 4
M06 Radial drilling machine 3
M07 machining center 18.5
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Table 5. Tool list.

Cutting Tools Number Tool Name Life/min Quality/g The Main Purpose

T01 Turning tool 1 60 9.5 Turning
T02 Turning tool 2 100 10.0 Turning
T03 Turning tool 3 90 9.0 Turning
T04 Milling cutter 1 240 7.5 Milling
T05 Milling cutter 2 180 50.0 Milling
T06 Drill 1 60 375.0 Drilling
T07 Drill 2 75 475.0 Drilling
T08 Tap 75 275.0 Tapping

The carbon emission factor of the cutting tool is 30.153 kgCO2/kg, the carbon emission
factor of the cutting fluid is 0.469 kgCO2/kg, and the cutting fluid replacement cycle is two
months, the relevant parameters can be obtained by referring to the literature [47–50].

Based on the above Tables 3–5, the worksteps coding scheme of the emulsion pump
blank box machining process can be obtained, as shown in Table 6. The coding scheme
shows 12 typical machining features, which need 28 worksteps to complete. The process
route is an ordered set of 28 worksteps. As shown in the corresponding table for machining
an F1 end face feature, its machining steps are composed of machining step 01, rough
turning, machining step 02, semi-finish turning, and machining step 03, finish turning.
There are several processing options for each processing step.

Table 6. Available equipment tools and corresponding time for each process feature processing plan.

Feature No. Feature Info. Processing Worsteps Work Step Encoding Machine Tool Equipment Time/min

F1 End face

Rough turning 01

M01T01 2.0
M01T02 2.1
M02T02 2.1
M02T03 2.1
M01T01 2.0

Semi-finish turning 02
M01T02 2.1
M02T02 2.2
M02T03 2.1

Finish turning 03
M01T02 2.1
M02T02 2.2
M02T03 2.1

F2 M16 Thread

Rough turning 04

M01T01 2.0
M01T02 2.0
M02T02 2.0
M02T03 2.1
M01T01 2.0

Semi-finish turning 05
M01T02 2.1
M02T02 2.0
M02T03 2.2

Finish turning 06
M01T02 2.1
M02T02 2.0
M02T03 2.1

F3 End face

Rough turning 07
M01T01 2.2
M01T02 2.2
M02T02 2.0

Semi-finish turning 08
M01T02 2.0
M02T02 2.1
M02T03 2.0

Finish turning 09
M01T02 2.2
M02T02 2.0
M02T03 2.1
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Table 6. Available equipment tools and corresponding time for each process feature processing plan.

Feature No. Feature Info. Processing Worsteps Work Step Encoding Machine Tool Equipment Time/min

F4 Φ45 Through
hole

Rough turning 10
M01T01 2.2
M01T02 2.2
M02T02 2.0

Finish turning 11
M01T01 2.3
M01T02 2.25

F5 Φ35 Through
hole

Rough turning 12
M01T01 1.2
M01T02 1.2
M02T02 1.1

Finish turning 13
M01T01 1.2
M01T02 1.3
M02T02 1.15

F6 Φ45 Through
hole

Rough turning 14
M01T01 1.0
M01T02 1.2

Rough turning 15
M02T02 1.1
M02T03 1.1
M01T01 1.3

Finish turning 16
M01T02 1.3
M02T02 1.2
M02T03 1.1

F7 End face

Rough milling 17

M03T04 1.0
M04T05 1.0
M07T04 1.1
M07T05 1.2
M03T04 1.2

Finish milling 18
M04T05 1.1
M07T04 1.2
M07T05 1.3

F8 M16 Thread

Rough milling 19
M03T04 2.5
M04T05 2.6
M07T04 2.4

Finish milling 20

M07T05 2.5
M03T04 2.6
M04T05 2.6
M07T04 2.4
M07T05 2.4

F9 End face Finish turning 21

M01T01 3.2
M01T02 3.3
M02T02 3.1
M02T03 3.2

F10 Φ45 Through
hole

Drilling

22

M05T06 2.9
M06T07 2.8
M07T06 3.2
M07T07 3.0

23

M05T06 1.7
M05T07 1.8
M06T07 1.6
M07T06 1.8
M07T07 1.7
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Table 6. Available equipment tools and corresponding time for each process feature processing plan.

Feature No. Feature Info. Processing Worsteps Work Step Encoding Machine Tool Equipment Time/min

F11 Φ35 Through
hole

Rough turning 24
M01T01 2.2
M01T02 2.2

Semi-finish turning 25

M02T02 2.0
M01T02 2.0
M02T02 2.1
M02T03 2.0
M01T02 2.2
M02T03 2.1

Finish turning 26

M01T02 2.2
M01T01 1.2
M01T01 1.0
M01T02 1.2
M02T02 1.1

F12 Φ45 Through
hole

Rough turning 27

M01T01 2.2
M01T02 2.2
M02T02 2.0
M01T02 2.0

Finish turning 28

M02T02 2.1
M02T03 2.0
M01T02 2.2
M02T02 2.0

For instance, there are five processing options for processing step 01, rough turning,
each processing option corresponds to different processing equipment and processing time.
Based on this, we can know all the processing schemes of 12 typical machining features.
The purpose of this study is to select the optimal process route via using the combinatorial
optimization algorithm based on all the workstep coding schemes.

5.2. Process Route Optimization Based on Combinatorial Optimization Algorithm

The Matlab program was used to realize the combinatorial optimization algorithm.
The relevant parameters can be obtained according to the actual setting requirements and
references [40,41]:

(1) number of machines, w = 10, number of jobs, i = 6
(2) number of processes, j = 6, particle length, i× j× 2 = 72,
(3) the population size is 10, evolution times sets 50 times.

The results are compared with the single objective optimization results, as shown in
Table 7.

Table 7. Comparison of optimization results.

Optimization Results Low-Carbon as the Goal Low-Cost as the Goal Low-Carbon and Low-Cost as the Goal

Carbon emissions/kg 5.68 6.87 6.15
Cost/CNY 35.84 33.42 34.06

The algorithm convergence diagram of low-carbon and low-cost process route is
shown in Figure 6.
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Figure 6. Iterative convergence graph of the algorithm.

Based on the combinatorial optimization algorithm used in this study, the low-carbon
and low-cost optimization model is solved, and the optimal process route is generated, as
shown in Table 8.

Table 8. Optimal process route.

Processing Worsteps Machine Tool Equipment Feature Info. Tool Feature Info.

Milling M07
F8 M16 Thread T05

Rough milling F8
Rough milling F7

F7 End face T04
Rough milling F7
Rough milling F8

Turning M01
F1 End face

T01
Rough turning F1

F2 M16 Thread face Rough turning F2
F6 Φ45 Through hole face Rough turning F6

Turning M01
F3 End face

T01
Rough turning F3

F4 Φ45 Through hole Rough turning F4
F5 Φ35 Through hole Rough turning F5

Turning M01

F3 End face

T02

Semi-finish turning F3
F3 End face Finish turning F3

F4 Φ45 Through hole Finish turning F4
F5 Φ35 Through hole Finish turning F5

Turning M01

F1 End face

T03

Semi-finish turning F1
F1 M16 Thread Semi-finish turning F1

F1 End face Finish turning F1
F2 M16 Thread Finish turning F2

F9 End face Finish turning F9
F6 Φ45 Through hole Finish turning F6

Drilling M06
F10 Φ45 Through hole

T07
Drill F10

F11 Φ35 Through hole Drill F11

Tapping M06 F12 Φ45 Through hole T08 Tapping F12

5.3. Analysis of Optimization Results and Discussion
5.3.1. Comparison of Optimization Results

Compared with the optimization results under the three conditions, it can be con-
cluded that the carbon emission value reaches 5.68 and the processing cost is 35.84 when
the process route is optimized with low-carbon as the goal. The selection of tools and
equipment is more scattered, and the replacement is more frequent, which leads to a longer
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processing time and higher processing cost. When the process route is optimized with
low-cost as the goal, the carbon emission value reaches 6.87, and the processing cost is
33.42. The obtained process route has a small number of tool and equipment replacement
times, which leads to reduced processing time and lowered processing costs.

However, the selection of tools and equipment with a few kinds of concentration
results in higher carbon emissions. When the two objectives of low-carbon and low-cost
are optimized simultaneously, the carbon emission value reaches 6.15, the processing cost
is 34.06, and the comprehensive performance is the best. The process route with acceptable
carbon emission value and processing cost can be obtained, which is in accordance with
the optimization effect of low-carbon and low-cost.

5.3.2. Discussion

In this case, the numerical control machining process of the emulsion pump box
blank is taken as an example. The emulsion pump box blank is composed of 12 kinds of
processing features. Based on the requirements of processing characteristics, the list of
processing equipment and tools that can be used is provided. According to the selection and
analysis of the processing equipment and tool list, the specific work steps corresponding to
the technical characteristics of the emulsion pump box blank, the available equipment, and
tools for each step, the corresponding steps are determined.

The combinatorial optimization algorithm based on the combination of APSO and
workstep chain intelligent generation algorithm is applied. Considering that the box
blank processing process includes 12 typical machining features, 28 machining processes
are required to complete it. The Matlab algorithm is used to compile the program of
combinatorial algorithm and set the relevant parameters. Firstly, the intelligent generation
algorithm of the workstep chain is used to preliminarily optimize all the satisfied process
chains under the feasibility constraints, and then the APSO algorithm is used for accurate
optimization to ensure the generated optimal process route.

The combinatorial optimization algorithm is used for optimization iteration. Through
the iterative convergence diagram, it can be found that the average carbon emission of each
generation converges at 250 iterations, and the average processing cost of each generation
converges at 350 iterations. By comparing the optimal solutions generated under the
combined objective conditions with the optimal solutions generated under the single
objective conditions, the carbon emission of each generation reaches the convergence. The
results show that the process route optimization model with low-carbon and low-cost is
effective, and the combinatorial optimization algorithm selected in this study can achieve
high efficiency and high-precision.

Compared with the research results in the literature review, in the field of building
low-carbon emission models, the current optimization objectives for low-carbon emis-
sions are generally only considered from the environmental indicators, and rarely take
into account the economic indicators simultaneously, which will lead to large costs while
reducing carbon emissions and environmental pollution. This study starts from the per-
spective of blank process design under the severe situation of resource shortage, so the
environmental indicators and economic indicators are deeply studied. In the process of
building the model, the low-carbon objective function and low-cost objective function are
created simultaneously. Finally, the optimal process route with both carbon emission and
processing cost is obtained. Compared with the commonly used research results with
low-carbon emission as a single objective, the processing cost is significantly reduced.

Compared with the research methods of seeking model solutions in the literature
review, an intelligent optimization algorithm is generally used to find the optimal solution
of the obtained model. In this study, an intelligent generation algorithm of the workstep
chain is innovatively designed based on the actual processing constraints, and the algorithm
is combined with the APSO algorithm to find the optimal solution. Firstly, the intelligent
generation algorithm of the workstep chain is used to optimize all the workstep chains
preliminarily, then the APSO algorithm is used to set the relevant parameters for accurate
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optimization. Compared with the solution methods used in the literature review, the
traditional approach is easy to achieve local optimization because it is limited to one
optimization algorithm, while the combinatorial algorithm used in this study is superior in
the accuracy and efficiency, which can reduce the optimization time, ensure the accuracy of
the model and reduce the error.

6. Conclusions

Blanks are the basis of manufacturing processing and the traditional blank production
process consumes a lot of energy. The blank process design determines the blank machining
process of resource consumption and more than 80% of environmental emissions, therefore,
in order to achieve emission reduction, cost reduction, and sustainable development,
a blank optimization design method of low-carbon and low-cost blank process route
optimization model is proposed. The low-carbon objective function and low-cost objective
function of the blank machining process are established.

Then, considering the actual performance of processing equipment and the constraints
of related processing quality, a multi-objective optimization model with minimal carbon
emissions and minimal processing costs is established. The concept of the workstep element
is proposed, and an intelligent generation algorithm of the workstep chain is proposed
based on the workstep element. The algorithm is combined with the APSO algorithm to
solve the low-carbon and low-cost model.

A specific case is designed to verify the validity of the model. Taking the processing of
an emulsion pump box blank as an example, 12 typical processing characteristics of the box
body blank are analyzed. Matlab is used to compile the combinatorial algorithm related
program, and the relevant parameters are set. The actual data show that when the two
objectives of low-carbon and low-cost are optimized simultaneously, the carbon emission
value reaches 6.15, the processing cost is 34.06, and the comprehensive performance is
optimal. The process route with acceptable carbon emission value and processing cost can
be obtained, which conforms to the optimization effect of low-carbon and low-cost.

There are also some limitations in this paper. For the blank processing process route
optimization problem, due to the complexity of different processing equipment, the main
purpose of this paper is to select a reasonable blank processing route. However, in the actual
processing process, it is often necessary to consider the influence of multi-objective factors,
and the production requirements of each project. Therefore, how to comprehensively consider
the impact of multi-objective factors and achieve the goal of low-carbon emissions and other
objectives of unified coordination and optimization will be the focus of the next step.
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