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Abstract: Growing environmental concerns have prompted governments to make sustainable choices
in agricultural resource use. Evaluating the sustainability of agricultural systems is a key issue for
the implementation of policies and practices aimed at revealing sustainability. This study aimed to
evaluate the performance of Norwegian dairy farms, accounting for marginal effects of environmental
(exogenous) variables. We adopted the dynamic parametric approach within the input distance
function framework to estimate the performance of Norwegian dairy farms, focusing on the technical
efficiency and determinates. For comparison, we also estimated the static parametric model, which
was used by previous studies. We used unbalanced farm-level panel data for the period 2000–2018.
The result shows a mean technical efficiency score of 0.92 for the dynamic model and 0.87 for the
static models. The empirical result shows that the previous studies that focused on the static model
reported a biased result on the performance of dairy farms. The dynamic efficiency score suggests
that Norwegian dairy farms can reduce the input requirement of producing the average output by
8% if the operation becomes technically efficient. The environmental variables have a different effect
on the performance of the farmers; thus, policymakers need to place special focus on these variables
for the sustainable development of the dairy sector.

Keywords: productive efficiency; investment; farm management; and dairy farm

1. Introduction

Food insecurity, climate change, and biodiversity resource loss are the main challenges
to the sustainable development of mankind [1]. The primary objectives of the Norwegian
agricultural and food policies, as set out in White Paper No. 11 (2016–2017), are: (1)
long-term food security; (2) agriculture in all parts of the country; and (3) creating more
added value along with sustainable production with reduced greenhouse gas emissions. To
deliver a more resilient primary agriculture sector, national and regional governments are
identifying mechanisms to support family farms to adapt to agricultural policy demands.
Growing environmental concerns have prompted governments to make sustainable choices
and perform sustainable actions in the economy, aimed at preventing the deterioration of
the environment whilst also maintaining long-term food security and optimal utilization
of production resources [2].

The concept of sustainable agriculture has become increasingly vital in agricultural
policy debates and has led farmers to pay attention to the questions of the monitoring
and evaluation of agricultural practices [3]. Improving the productivity and efficiency
of agricultural input use is the first step in tackling the challenge of sustainable use of
natural resources. Moreover, the environmental impacts of agricultural production can
be reduced by efficient use of production resources or reducing losses of production
resources. Consequently, measuring and evaluating farm performance accounting for
environmental differences is an important task for researchers in order to make the best use
of resources and to identify the best-performing farms [4]. Evaluating the sustainability of
agricultural systems is a key issue for the implementation of policies and practices aimed at
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revealing sustainable forms of land use [5] and a key step in supporting the development
of sustainable farming systems [6].

In the economics literature, there are several approaches to measuring and evaluating
the performance of an agricultural system, including the Bayesian stochastic frontier ap-
proach [7], the semi-parametric approach [8], and the stochastic data envelopment analysis
(DEA) approach [9], although these are not commonly used in empirical studies. There
are two main approaches to measuring and evaluating the performance of an agricultural
system in empirical studies: a parametric approach, such as the stochastic frontier approach
(SFA), and a non-parametric approach, such as data envelopment analysis (DEA) [10]. In
both methods, the basis for performance measurement is the radial contraction or expan-
sion connecting inefficient observed points with the reference points on the production
frontier [4,11]. For a sample of producers, both approaches involve estimating the ‘best-
practice’ frontier for a specific group of farms. If the actual production point of a farm
lies on the frontier, the farm is considered to have performed the best and used resources
efficiently; if it lies below the frontier, then it is inefficient. The choice of estimation method
has been an issue of debate and each approach has its advantages and disadvantages, see
for details [12,13]. The treatment of measurement error is the critical distinction between
parametric and non-parametric approaches. The SFA approach can accommodate noise,
such as measurement errors due to weather, disease, and pest infestation, which are likely
to be significant in farming. Moreover, the DEA approach is sensitive to outliers since
the measurement error is ignored [12–14]. Since the farms in our study are sensitive to
random external shocks, we chose the SFA approach to evaluate the efficiency scores and
determinants of inefficiency. An extensive literature has emerged over the past several
decades that addresses how to measure the best-performing farms and deviations from
optimal behavior using the SFA model (see, for example [13,14]).

The first debate in the literature is on the question of how to handle farm heterogeneity
in the SFA model, since the sustainable agricultural policy intervention might be different
for a different environment because of heterogeneity in farming. The common practice in
the literature, if the variables are observable, is to incorporate heterogeneous production
factors that affect the inefficiency level in the specification of the composed error terms.
Often, however, not all the factors that affect the performance of the farm are observable,
so we seldom have complete information about the production conditions. For instance,
data on soil type, latitude, altitude, precipitation, distance from the service center, etc. are
seldom available or are too complex to be measured by single indicators. In the recent
literature, such unobserved heterogeneity was separated from farm inefficiency using
econometric techniques (see, e.g., [15,16]). The other source of heterogeneity is differ-
ences in the technology used, i.e., technological heterogeneity. The fact that agricultural
producers face different production environments may lead to variations in production,
which might lead to differences in technology use. In the literature, we can find different
techniques by which to control technology heterogeneity. Examples include the cluster
algorithm technique [17]; the random parameter technique [18]; the latent class technique
(see e.g., [19]); and metafrontiers (see, e.g., [20,21]). Each approach has pros and cons
with respect to estimating the performance of a given sector, accounting for technology
heterogeneity or regional differences [20]. In this study, we control both heterogeneities,
accounting for dummies for each farm, and the estimated SFA model using Greene’s [16]
approach.

In the empirical application of the SFA model, the dairy sector has received much
attention and performance analysis has been conducted (see, for instance, [20–23]). All
these studies used a static model. The static model does not account for the contribution
of investment, which allows farm managers to adjust their production decisions. The
dynamic model accounts for the adjustment of quasi-fixed inputs through investment [24].
We can find in the literature both parametric and non-parametric dynamic approaches.
Both kinds of approaches have pros and cons with respect to conducting dynamic effi-
ciency measurement (see for a detailed review [4,25]). This study focuses on the parametric
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dynamic approach. The parametric dynamic model can be estimated in a reduced or a
structural approach, which allows for firm-specific technical inefficiency levels to follow
a simple autoregressive process, namely the AR (1) process (see [26,27]). The reduced
form captures the dynamic aspects of a firm’s behavior, but the model does not model
explicitly the dynamic structure of the decision-making process [4]. The dynamic structural
approach, which is mainly based on [28], provides a complete characterization of produc-
tion technology. The reduced form assumes that the farm’s decision on farm investment
depends on the farmer’s ability to make an efficient decision over time. As such, we used
the dynamic distance function model to analyze the performance of Norwegian dairy
farms. The purpose of this study is to evaluate the role of technical efficiency, accounting
for the environmental variables that achieve the sustainable development of Norwegian
dairy farms, using a dynamic stochastic approach.

This article contributes to the economics literature in the following ways. First, in
contrast to [28], since farms often face differences in the soil quality, intensity of sunlight,
temperature, and rainfall, we account for these farm-level heterogeneities and unobserved
heterogeneities using [16], true fixed-effect model approach. Second, in this study, we
account for determinants (environmental variables) of performance differences from a
dynamic perspective, unlike previous studies e.g., [4].

The rest of the article is organized as follows. Section 2 addresses the conceptual
framework for dynamic performance measurement. Section 3 discusses the specification of
the empirical model. Section 4 discusses the data used. Section 5 discusses the estimation
and results. Finally, Section 6 provides a discussion and policy implications.

2. Conceptual Framework

We can represent production technology using the production possibilities set, distance
function, and production function. Following [28], the dynamic production technology set
(Ψ) for time t represents an input requirement set as:

Ψ = {(yt|Kt : xt, It, ) : x, I can produce yt given Kt} (1)

where xt ∈ <K
+ denotes a 1× K vector of variable inputs, yt ∈ <M

+ stands for a 1×M vector
of output, I ∈ <H

+ represents a 1 × H vector of gross investment, and K ∈ <P
+ represents a

1 × P vector of quasi-fixed inputs. The producers transform the inputs into outputs using
some production technology (Ψ).

Production technology can be represented by either an input or an output possibility
set [29]. To characterize the production technology set (Ψ) in multiple input–output
contexts, one can choose from among many appropriate functions. These alternatives can
be classified as either primal or dual functional forms. The general primal representation
of production technology is given by the directional distance function approach.

Figure 1 illustrates how an inefficient observation at (xt, It) is anticipated by the
efficiency frontier by reducing the input quantities (X) and increasing the investment (I) at
the point (xt +

.
βgx, It +

.
βgI). β shows the value of the dynamic directional input distance

function (DIDF); that is, the level of inefficiency in resource use. The directional vector g is
in the fourth quadrant, indicating that the inputs are to be contracted and the investment
stimulated. In this study, we extended the [28] model as follows.
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Figure 1. Illustration of the dynamic directional input distance function (DIDF).

The DIDF at any period t is defined as the maximum possible reduction of the input
vector x while producing the same level of output y and farm characteristics z:

DI(yt, xt, It, kt; Z, t,ω) = max
{(
λ :

xt

λ

)
∈ L(yt, xt, It, kt; Z, t,ω)} (2)

where yt is the output vector at time t in a given vector of investment It, capital stocks
kt, and variable inputs xt. L(yt, xt, It, kt; Z, t,ω) represents the input set while λ denotes a
scalar (λ ≥ 1). The value of λmeasures the possible reductions in inputs, whose minimum
value λ = 1 indicates that farm managers are using the inputs efficiently. The value of Z is
a vector of firm characteristics, such as experience, age, size, education, etc. t is the time
trend and ω denotes unobserved heterogeneity, such as individual effects. The dynamic
input distance function (DIDF) in (2) must fulfil the following properties.

(a) It is non-decreasing in outputs: DI(λyt, xt, It, kt; Z, t,ω) ≤ DI(yt, xt, It, kt; Z, t,ω), 0 ≤
λ ≤ 0;

(b) The monotonicity condition is satisfied;
(c) It is homogeneous: λDI(yt, xt, It, kt; Z, t,ω) = L(λyt, λxt, λIt, λkt; Z, t,ω), λ > 0;
(d) It is non-increasing in inputs: DI(yt, λxt, It, kt; Z, t,ω) ≤ DI(yt, xt, It, kt; Z, t,ω), λ ≥

0; and
(e) It is non-decreasing in investment: DI(yt, xt, λIt, kt; Z, t,ω) ≤ DI(yt, xt, It, kt; Z, t,ω),

0 ≤ λ ≤ 0.

The DIDF property mentioned above states that the outputs and the inputs vary in
the same proportion. The monotonicity property is fulfilled if the first derivatives of the
DIDF ≥ 0. The common way to impose the homogeneity property is to divide all the
inputs by one of the inputs following [30] as follows:

DI(yt, xt, It, kt; Z, t,ω)

x1
= L

(
yt, x̌kt,

.
It,

.
Kt; Z, t,ω

)
(3)

where x̌t is a vector of input ratios with x̌kt =
xkt
X1

, ∀k = 2, . . . , K;
.
It =

It
x1

, and
.

Kt =
Kt
x1

. We
re-write Equation (3) in logarithm and a translog (TL) form as in [12] as

lnDI(yt, xt, It, kt; Z, t,ω)− lnx1 = TL
(

lnyt, ln x̌kt, ln
.
It, ln

.
Kt; Z, t,ω

)
(4)
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We re-arrange Equation (4) and add the random error term (vit) to make the distance
function stochastic.

−lnx1 = TL
(

lnyt, ln x̌kt,
.

lnIt, ln
.
kt; Z, t,ω

)
+ vit − lnDI(yt, xt, It, kt; Z, t,ω) (5)

where vit is the white noise (vit), while lnDI = uit ≥ 0 captures the effects of technical
inefficiency.

The other issue that arises from the economics literature is that if a farm observes
some of its efficiency and productivity, its input choices may be influenced, resulting in an
endogeneity problem with the stochastic production frontier estimation. The traditional
approaches to addressing endogeneity in production function estimation that employ
instrumental variables and fixed effects are problematic on both theoretical and empirical
grounds. Nevertheless, an important feature of the ideas that are opposed to [31] (the Input
Requirement Function) is that, in the DIDF model, inputs as regressors appear in ratios.
Consequently, the inputs in ratio form in the DIDF model solve the endogeneity problem.
See for more detail the [23] discussion on the endogeneity problem, which can be found
in Appendix B in the supplementary data at European Review of Agricultural Economics
(ERAE) online.

3. Empirical Model

Because of its flexibility, we use the translog specification of Equation (5). Thus,
Equation (5) specified as a translog DIDF in log form is:

−lnx1 = α0 +
K
∑

k=1
βk ln x̌k,it +

P
∑

p=1
βpln

.
kp,it +

H
∑

h=1
βhln

.
Ih,it +

M
∑

m=1
βmln

.
ym,it + βtDt+

1
2

K
∑

K=1

K
∑

K=2
βkklnxk,itlnxk,it +

1
2

P
∑

p=1

P
∑

p=2
βpplnkp,itlnkp,it +

1
2

H
∑

h=1

H
∑

h=2
βhhln

.
Ih,itln

.
Ih,it+

1
2

M
∑

m=1

M
∑

m=2
βmmln

.
ym,itln

.
ym,it +

K
∑

K=1

P
∑

p=1
βkplnxk,itln

.
kp,it +

K
∑

K=1

H
∑

h=1
βkhlnxk,itln

.
Ih,it+

K
∑

K=1

M
∑

m=1
βkmlnxk,itln

.
ym,it +

P
∑

p=1

H
∑

h=1
βphln

.
kp,itlnIh,it +

P
∑

p=1

M
∑

m=m
βpmln

.
kp,itln

.
ym,it+

H
∑

h=1

M
∑

m=1
βhmln

.
Ih,itln

.
ym,it +

K
∑

k=1
βkt ln x̌k,itDt +

P
∑

p=1
βptln

.
kp,itDt +

H
∑

h=1
βhtln

.
Ih,itDt+

M
∑

m=1
βmtln

.
ym,itDt+

1
2βttD

2
t +ωi + vit − uit

(6)

where ln
.
ym,it is a vector of potential outputs in a logarithm (m = 1, · · · , M). lnx̌k,it is

a vector of inputs in a logarithm divided by the labour input (j = 1, · · · , J) by farms
(i = 1, · · · , N) and time (t = 1, · · · , T) given a vector of gross investments It(

ln
.
Ih,it =

lnIht
X1

, ∀ h = 1, . . . , H
)

and a vector of initial capital stocks kt(
ln

.
kp, it =

lnIpt
X1

, ∀ p = 1, . . . , P
)

at time t as discussed above: ˇlnxkt =
lnxkt

X1
, ∀k = 2, . . . , K.

β are parameters to be estimated, Dt is the dummy variable for a time t, and (vit) denotes
the white noise, which fulfills the classical assumption. ωi denotes farm-level heterogeneity
and uit ≥ 0 denotes efficiency, which is assumed to have a truncated normal distribution,
i.e., uit ∼ N+(µit,σ2

u). We assume that µit is a function of a vector of firm characteristics
(zit), i.e., uit ∼ N+(∂zit,σ2

u). Equation (6) was estimated using [16] true fixed-effect model
specifications. Technical efficiency was calculated following the procedure of [32]

E(exp(−uit|εit) (7)

where εit = vit − uit
Following [33], the marginal effects of environmental variables were estimated as

follows
(∂E(exp(−uit/εit))/(∂zitk). (8)
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As discussed in Section 2, we imposed the homogeneity property of the technology on

Equation (6) before the estimation; that is,
K
∑

k = 1
βk = 1,

K
∑

k =1
βkp =

K
∑

k =1
βkh =

K
∑

k =1
βkm = 0,

while quadratic symmetric implies βkp = βpk; βkh = βhk βkm = βmk. We imposed these
restrictions before the estimation.

4. Data

We used farm-level data collected by the Norwegian Institute of Bioeconomy Research
(NIBIO). The empirical analysis was based on data collected from 663 dairy farms for the
years 2000–2018, with a total of 5327.

The choice of variables in the final model was based on two criteria. First, we consid-
ered data availability. Second, we considered the literature available on the subject; for
instance, [4,10,23]. Thus, the dynamic production technology was modeled in terms of
two outputs and five inputs (land, labour, materials, capital assets, and gross investments).
Dairy output (y1) is the total farm revenue from milk and dairy products. Other outputs
(y2) include crops and other outputs the farm produced. Labor (x1) was measured as the
total number of labor hours used on the farm. Farmland (x2) is in hectares. Materials (x3)
include the implicit value index for feed and electricity used for milk production. Capital
assets (K) account for the implicit quantity index, which was obtained by deflating the
value of machinery, buildings, and livestock at the beginning of the year. Gross investment
(I) includes the flow of investments during a year. The datasets contain observations with
zero values for investments. Thus, to use a flexible functional form (Translog), following

the literature (see, for instance, [25,34] we transformed the value; that is, ln (I +
√

I2 + I) .
All values are adjusted to 2015 values. Our dynamic analysis estimated both the level of
performance and the environmental variables that caused the difference. Thus, in addition
to output and input variables, we included four variables as covariates in our efficiency
model to account for exogenous variables. These are (i) the financial structure of the farm,
measured as the ratio of debt to an asset; (ii) government support in Norwegian Kroner
(NOK); (iii) farm experience, measured in a year; and (iv) farm owners’ off-farm income,
measured in NOK. A summary of the descriptive statics is presented in Table 1.

Table 1. Descriptive statistics for the main variables used in the empirical analysis (2000–2018).

Variables Mean Std. Deviation

Output Variables
Dairy revenue in 1000 * NOK (y1) 969.031 696.191
Other output in 1000 NOK (y2) 32.497 60.651

Input Variables
Land in hectares (x1) 34.404 20.438
Labour in 1000 h (x2) 3.534 0.940
Materials in 1000 NOK (x3) 535.469 402.353
Capital in 1000 NOK (K) 503.570 312.117
Investment in 1000 NOK (I) 449.655 605.403

Exogenous Variables
Debt to Asset Ratio (Z1) 0.400 0.181
Subsidy in 1000 NOK (Z2) 533.134 228.512
Farm experience in a year (Z3) 27 10

Off-farm income in 1000 NOK (Z4) 0.671 0.331

Observations 5327
* NOK = Norwegian kroner in 2015. 1 NOK = 11 EUR. Source: Author’s calculation.

5. Results and Discussion

The dynamic and static counterparts’ estimates are presented in Table 2. Before
we estimated the models, the variables were normalized to the geometric mean; thus,
parameters can be interpreted as partial elasticities at the point of approximation. The
linear parameters for inputs and outputs have the sign expected from the theory, namely
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positive for inputs and negative for outputs, and all are statically significant at the 1%
level. The estimated partial elasticity of dairy output to land input (x2) is significant, with a
value of 0.242 for the dynamic model and 0.147 for the static model, which means that the
cost of land input represents on average 14%–24% of the total cost in the sample, ceteris
paribus. The highest partial elasticity was found in both models for material input (x3),
i.e., 0.359 for the dynamic model and 0.416 for the static model. The partial elasticity for
capital inputs (x4) had a value of 0.184 for the dynamic model and 0.209 for the static model.
Moreover, the partial elasticity of investment (I) was positive and statistically significant
(0.005), which shows that dairy farm investment accounts for 21%–18% at the sample mean,
ceteris paribus. The distance elasticity for dairy output (y1) was significant, with values
of −0.453 for the dynamic model and −0.535 for the static model. This result shows that
a 1% increase in dairy output leads to a 0.45–0.53 increase in total costs, ceteris paribus.
Moreover, the distance elasticity for other outputs (y2) was significant, with values of
−0.007 for the dynamic model and −0.009 for the static model. The coefficients for the time
trend were statistically significant at the 1% level, with values of 0.005 for the dynamic
model and 0.001 for the static model, which implies that the dairy sector in Norwegian
agriculture has made technological progress during the period 2000 to 2018 at the rate of
0.1%–0.5% per annum. The partial elasticity for investment (0.005) and the coefficient of the
trend variable (0.005) were both positive and significant at the 1% level. The positive value
indicates that investment-based technical progress occurred during the years 2000–2018. A
similar result was reported by [22] for genetics-based investment in Icelandic dairy farms
from 1997 to 2006.

Table 2. Dynamic and static model parameters estimates and marginal effects estimates.

Variables
Dynamic Model Static Model

Estimated
Value

Robust Std.
Error

Estimated
Value

Robust Std.
Error

Elasticities
x2 (Land) 0.242 *** 0.008 0.147 *** 0.007

x3 (Material) 0.359 *** 0.009 0.416 *** 0.009
K (Capital) 0.184 *** 0.007 0.209 *** 0.008

I (Investment) 0.005 *** 0.000
y1 (Dairy output) −0.453 *** 0.012 −0.535 *** 0.009
y2 (Other output) −0.007 *** 0.001 −0.009 *** 0.001

D (year) 0.005 *** 0.001 0.001 0.001
Constant 0.112 *** 0.006 0.160 *** 0.004

Marginal effects of determinates on technical efficiency b

Debt to asset ratio 0.469 *** 0.111 0.892 *** 0.160
Subsidy 0.002 *** 0.000 0.002 ** 0.000

Farm experience −0.001 *** 0.002 −0.004 *** 0.002
Off-farm activity 0.000 0.000 0.001 0.000

Different tests of the technology
Welch test comparing mean TE 22.836 *** 0.000

LR test of random effect 3480 *** 0.000 2562 ** 0.000
Cobb–Douglas technology 1285 *** 0.000 985 *** 0.000

Log. Likelihood 5291 *** 0.000 3984 *** 0.000

Technical Efficiency 0.902 0.115 0.876 0.124

Number observation 5327 5327
p < 0.10, ** p < 005, and *** p < 0.01; The second-order parameters in the translog (TL) were dropped to save
space, but are available from the authors on request. b Positive efficiency score parameter estimates show that the
variable has a negative effect on technical efficiency.

The negative of the inverse of the sum of the partial output elasticities provides a mea-
sure of the economies of scale (EOSs) [34], which are referred to as ray scale economies [35];
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i.e., EOS = −
[

2
∑

m=1

∂lnDI
∂ ln ymit

]−1

. If the EOS > 1, the technology exhibits an increasing return;

if the EOS < 1, the technology exhibits a decreasing return; and if the EOS = 1, the tech-
nology exhibits a constant return [36]. The results show that the EOS is higher than 1 in
both the dynamic model and the static mode; thus, the dairy farm technology for the years
2000–2018 exhibits increasing returns to scale for the average farm. Similar results were
reported by [37].

The estimated marginal effects of environmental variables on technical efficiency are
reported in Table 2. The result indicates that, apart from off-farm income, all environmental
variables included in the model are significantly correlated with technical efficiency in
milk production and, thus, the sustainability of the dairy sector. The debt–asset ratio had a
significant negative effect on the technical efficiency of Norwegian milk producers. It was
expected that those farmers who received credit would help to invest in the dairy sector.
Debt helps dairy farms relax capital constraints and can smooth the flow of income during
difficult years [38,39]. However, the result suggests that dairy farms with higher debt incur
higher costs, which reduce their technical efficiency. There is no consensus in the economics
literature on the relationship between debt and technical efficiency. For instance, earlier
results obtained by [23] support our finding; however, [25] reported a positive correlation
between technical efficiency and debt-to-asset ratio.

The result also indicates that the marginal effects subsidy has a negative and significant
correlation with the technical efficiency of dairy production. Similar results reported in
other studies, such as [25], suggest that “public subsidies could distort the timing of
the adjustment decision”. We were expecting the support to relax dairy farms’ financial
and liquidity constraints and encourage investment. Previous studies in the economics
literature provide mixed evidence of the effect of government support on-farm level
technical efficiencies. For instance, reference [40] report that subsidies received by dairy
farms in Spain, Portugal, and Italy have helped them to achieve better performance. On
the other hand, several studies focusing on dairy farms report that government payments
reduce producers’ incentives to generate the highest possible income from farming (see,
for example, [41–43]. However, our analysis does not account for any differential effects
of different types of direct subsidy on efficiency, so the result should be interpreted with
caution. However, dairy farmers obtain different types of support from the government,
and our study does not account for the different effects of different kinds of subsidies
on technical efficiency. As expected, the marginal effect of experience is positive and
statistically significant, which shows that more experienced farmers are likely to be more
efficient than those with fewer years of experience. Our findings are supported by other
studies in the literature (e.g., [44,45]).

Table 3 reports the estimated technical efficiency scores. Most farmers fall in the 0.80
to 0.90 efficiency range. This implies that a large range of dairy farms are technically
inefficient. The mean technical efficiency score is 0.92 for the dynamic model and 0.87 for
the static model. The results of the Welch test are reported in Table 3. These results show
that there is a statistically significant difference between the dynamic and static efficiency
scores. The dynamic efficiency score suggests that Norwegian dairy farms can reduce
the input requirement of producing the average output by 10% if the operation becomes
technically efficient. Ref. [30] report similar results for French dairy farms.
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Table 3. The distribution of technical efficiency scores for the dynamic and static models.

Percentile Dynamic
Model

Static
Model Difference

1% 0.384 0.366 0.018
5% 0.696 0.634 0.062

10% 0.774 0.726 0.048
25% 0.869 0.842 0.027

Mean 0.920 0.872 0.026
75% 0.974 0.954 0.020
90% 0.999 0.968 0.031
95% 0.999 0.972 0.027
99% 0.999 0.982 0.017

S. deviation. 0.115 0.124
Observation 5327 5327

Welch test for the dynamic and static models: 22.836
Source: Author’s calculation.

6. Conclusions and Policy Implications

Growing environmental concerns have prompted governments to make sustainable
choices. Measuring and improving the performance of farms in their production resource
use is crucial to sustainable agricultural development. This study focused on measuring
the performance of dairy farms in Norway from the dynamic and the static perspective. We
also estimated the marginal effects of environmental variables on the performance of the
farmers. The dynamic model allows us to account for farm management decisions through
investments. We used unbalanced farm-level panel data for the years 2000–2018. The result
shows that, in both models, farmers used resources inefficiently. The empirical result shows
that the technical efficiency estimated using the dynamic model (92%) was significantly
different from that estimated using the static model (87%). This is interpreted to mean
that the minimum costs for the years 2000–2018 were about 92% for the dynamic model
and 87% for the static model of the actual dairy output. Thus, the dynamic model better
estimates the performance of the dairy farms in Norway considering the farm managers’
decisions on investment.

The empirical results show that milk producers used the available technology sub-
optimally. Thus, there is a possibility to improve the use of existing technology and
investment in sustainable agricultural development. If all dairy farms follow an efficient
and sustainable pathway, it is possible to reduce wastage of production resources by 8%
to 13%. Sustainable pathways, such as facilitating experience sharing among farms, can
allow less-experienced dairy farms to learn from the best-performing farms. Experienced
farmers are likely to be more efficient in using production resources than those with fewer
years of experience, which suggests that policy-makers should encourage the exchange of
information to improve the efficiency of low-performing farms.

The empirical analysis shows that some of the environmental variables included in
the model, such as subsidized and indebted dairy farms, are negatively correlated with the
performance of the farmers. Thus, policy-makers should consider and revise the subsidy
and credit system if there is some imperfection in it. However, the results of these findings
should be interpreted more narrowly since dairy farmers receive different types of subsidy
and credit based on various criteria, and we could not identify the effect of such differences.
Different types of credit and subsidy might have different effects on farm performance;
thus, it would be necessary to repeat the analysis with less aggregated data on debt and
subsidy payments.
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