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Abstract: Limiting the increase in CO2 concentrations in the atmosphere, and at the same time,
meeting the increased energy demand can be achieved by applying carbon capture, utilization and
storage (CCUS) technologies, which hold potential as the bridge for energy and emission-intensive
industries to decarbonization goals. At the moment, the only profitable industrial large-scale carbon
sequestration projects are large-scale carbon dioxide enhanced oil recovery (CO2-EOR) projects.
This paper gives a general overview of the indirect and direct use of captured CO2 in CCUS with
a special focus on worldwide large-scale CO2-EOR projects and their lifecycle emissions. On the
basis of scientific papers and technical reports, data from 23 contemporary large-scale CO2-EOR
projects in different project stages were aggregated, pointing out all the specificities of the projects.
The specificities of individual projects, along with the lack of standardized methodologies specific
for estimating the full lifecycle emissions resulting from CO2-EOR projects, pose a challenge and
contribute to uncertainties and wide flexibilities when estimating emissions from CO2-EOR projects,
making the cross-referencing of CO2-EOR projects and its comparison to other climate-mitigation
strategies rather difficult. Pointing out the mentioned project’s differentiations and aggregating data
on the basis of an overview of large-scale CO2-EOR projects gives useful information for future work
on the topic of a CO2-EOR project’s lifecycle emissions.

Keywords: carbon capture; utilization and storage; large- scale CO2-EOR projects; lifecycle analy-
sis; emissions

1. Introduction

The Paris Agreement came into force in 2016 with the intention of mitigating global
warming by keeping the global average temperature increase under 2 ◦C, and preferably
even under 1.5 ◦C, when compared to pre-industrial levels. The only way to do this is
through full harmonization with the energy and climate targets, which are comprised
of a significant reduction of greenhouse gas emissions by 2030 (by 45%), as well as total
decarbonization by 2050, based on the application of energy efficiency, renewable energy
use and carbon capture and storage (CCS), or carbon capture, utilization and storage
(CCUS). CCS technology implies avoiding CO2 emissions to the atmosphere by capturing
and storing it in geological formations characterized with long-term containment capabil-
ity [1,2]. As per the strategies submitted to the United Nations Framework Convention
on Climate Change (UNFCCC), CCUS is often recognized as a favorable option to fight
climate change due to the turning of unwanted greenhouse gas into valuable products [3].
In order to be reused for various purposes (used for yield boosting or for the production of
fuels, chemicals, building materials, etc.) CO2 is captured from different sources, such as
fossil fuel-based power plants, ammonia production plants, biomass fermentation facilities,
natural gas processing plants, or it can be captured (removed) directly from the air. The
commercial-industrial source of CO2 should be at least 0.01 to 0.5 Mt CO2/year [3,4].
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At the moment, even though energy efficiency, use of renewable energy sources and
fuel switching are often required as the exclusive priority in achieving climate goals, the
world’s high dependency on fossil fuel is still very much present. Therefore, the fossil fuel
production industry (oil, gas and coal industry) has been undertaking different carbon-
reduction initiatives in order to retain market competitiveness by providing a constant
energy supply with an ecological footprint that is as low as possible [5,6].

Significant experience and existing infrastructure for underground fluid injection
represent an essential basis for the development of CO2 underground deposition technology.
Additional oil production by CO2 injection and CO2 permanent storage within depleted oil
and gas reservoirs or suitable geological formations seem to be sustainable options, which
provide multiple benefits [7,8].

Keeping in mind that CO2 usage for different products should not necessarily result in
overall emission reduction, the benefits of each utilization/storage project must be evalu-
ated by performing a comprehensive lifecycle analysis. This requires clear methodological
guidelines that are temporarily under development by several expert groups. Furthermore,
the retention time for CO2 differs significantly, being in the range from one year, in the
case of fuel generation, up to millions of years, in the case of carbonation [3]. Carbonation
refers to a natural reaction of metal oxides, i.e., calcium (Ca) or magnesium (Mg) containing
minerals (e.g., serpentine, olivine, wollastonite) with CO2, which results in the production
of calcium or magnesium carbonates (CaCO3 or MgCO3). Such processes can be considered
as a CO2 utilization or storage option. While the utilization refers to the recently developed,
accelerated ex situ carbonation, able to produce valuable construction materials, a storage
option refers to the last of the trapping mechanisms occurring within a geological formation
(underground storage), which enables the permanent retention of CO2. Since the use of
pure CO2 is not essential for mineralization (impurities simply do not interfere with the
reaction), a purification step can be avoided, which results in lower costs [9,10].

Although, as stated before, emission-reduction results differentiate from project to-
project, it is obvious that the best results, in terms of both sequestrated CO2 quantities
and sequestration permanency, can be achieved by just performing CCS projects. Other
CCUS options, in fact, delay emissions to a greater or lesser extent, but due to economical
profitability (they produce valuable products), today, at a time of a relatively low CO2
market price, such projects are more preferable. However, due to residual oil production,
currently, the only form of large-scale industrial carbon sequestration profitable projects are
CO2-EOR projects. Although fossil fuel combustion and waste gas generated during CO2-
EOR operations at an EOR site result in new emissions, substantial quantities of CO2 remain
permanently stored within the depleted reservoirs. Since there are some disagreements
over CO2-EOR emission assessment, a lack of standardized methods for measuring the full
lifecycle emissions resulting from CO2-EOR projects (needed for crediting EOR’s carbon
reductions) hinders CO2-EOR application as CCUS technology.

In this paper, captured CO2 utilization, an overview of the worldwide CO2-EOR
projects and an analysis of CO2-EOR lifecycle emissions are presented.

2. Methods

As we noted an evident lack of systematic reviews of EOR projects and their emissions,
the intention was to get a comprehensive picture of this topic. Therefore, we made a cross-
section of the actual large-scale EOR projects. By presenting a qualitative analysis of the
CO2-EOR site emission sources and related emissions, as well as by giving a literature
review on large-scale CO2-EOR, we tried to consolidate and summarize the available data,
which can serve as a comprehensive base for further research on the topic. The literature
search was based on electronic resources available from the University of Zagreb system.
The reviewed reports were limited to those from governmental agencies, companies or
recognized professional associations. Due to turbulent climate-mitigation strategies and
technology progress, we decided to focus only on recent publications to make sure that our
search is limited only to relevant data. Searches focused on reports published from 2017
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to 2020. These reports took on a variety of forms, from short pamphlets and factsheets to
comprehensive book-like reports. However, when talking about future fossil fuel usage, we
tried to avoid oil companies’ reports, which could be biased, and we rather used publicly
available project databases to ensure that all datasets are verifiable to the readers. There are
a number of online CCS project databases collected by different associations, e.g., Carbon
Capture and Sequestration Technologies at the Massachusetts Institute of Technology (abbr.
MIT) [11], Global CCS Institute [12], International Energy Agency (abbr. IEA) [13]. As per
the KAPSARC data source [14], in 2018, there were 23 CO2-EOR large-scale projects, which
are, after checking and comparing to other databases and science papers, briefly described
in the paper.

Academic literature was searched much more broadly, covering peer-reviewed pa-
pers, theses, books, preprints, abstracts, technical reports, etc. In literature, search major
databases and search engines were used, such as Web of Science, Conference Proceedings
Citation Index—Science, etc.

Searches were refined to journal articles and titles, and abstracts were scanned for pa-
pers and articles discussing CCS/CCUS technologies and CO2-EOR projects. Additionally,
a more systematic review of the literature was initiated to identify relevant research and
data related to emissions from CCS/CO2-EOR projects. Searches focused on papers and
articles published from 2015 to 2020, even though some of the earlier published papers
covering the general characteristics of CCS/CCUS technologies were used. The literature
search was limited to only Croatian and English-language documents. Trade publications
were not considered.

3. Captured CO2 Utilization

Globally, about 230 Mt/y of CO2 is used for different purposes, covering both interme-
diate CO2 usage (CO2 is not chemically converted) and its conversion (into fuel, chemicals
or building materials) (Table 1) [3].

Table 1. Use of captured CO2. Modified according to [3,15].

CO2 Source Use of Captured CO2 Application Used CO2
(Mt/y)

Share
(%)

Fossil fuels
Biomass

Underground deposits
Industrial processes

Air

Direct use

EOR, EGR, ECBM 78 34

Food and beverages 14 6

Heat transfer fluids
(EGS, supercritical CO2 power cycle) - -

Conversion

Yield-boosting
(urea/fertilizers) 131 57

Chemicals
(intermediates, polymers, formic acid)

7 3
Fuels

(methane, renewable methanol,
gasoline/diesel/aviation fuel)

Building materials
(aggregates, cement, concrete)

3.1. CO2 Conversion

CO2 conversion includes different kinds or purposes of conversion, such as yield
boosting, chemicals, fuels and building materials. They are briefly described below.

Yield Boosting. The largest usage of captured CO2 is by the fertilizer industry (about
130 Mt/y) for urea production, followed by the petroleum industry (about 80 Mt/y),
where CO2 is used for EOR purposes. The rest of the captured CO2 serves as feedstock
for different industries; for instance: food and drink industries use CO2 as a carbonating
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agent, preservative and solvent for flavor extraction, etc. Another option for CO2 use is
CO2-based chemical production. Carboxylation reactions use CO2 (it replaces a part of
the fossil fuel-based raw material) as a precursor for polymer-forming, while reduction
reactions produce chemicals by breaking C = O bonds [3].

Chemicals. CO2-based synthetic fuels may refer to methane, methanol, gasoline, and
aviation fuels. CO2 captured at power plant exhausts could be used directly in catalytic
processes for the generation of synthetic gas. Syngas, as a mixture of CO and H2, is a crucial
component in the production of hydrogen, ammonia, methanol, and synthetic hydrocarbon
fuels. As an intermediate, it can be used in the production of synthetic petroleum by the
Fischer–Tropsch process [1,16].

Fuels. The synthetic fuel generation process uses CO2 and hydrogen to produce a
carbon-based fuel, which is, due to easier handling, used in aviation. CO2 conversion
into methanol has a wide range of use (as a fuel, fuel additive or an intermediate for
plastics, textiles, and other products) [10,17–21]. However, among all the above-mentioned
CO2-based chemical production processes, only polymer production is market competitive
due to its relatively low-energy intensity and high product market prices. On the other
hand, the costs of synthetic fuel production are uncompetitively high, given that the
chemical conversion of CO2 and pure hydrogen production are energy-intensive. Another
disadvantage of CO2-based fuels is their short life span, which means that CO2 is reemitted
very quickly into the atmosphere.

Building materials. Besides the options where CO2 can react with minerals to form
carbonates for building materials, it can also be used in concrete production, as a part of
cement, aggregate (sand, gravel or crushed stone), or instead of water for concrete curing.
Nevertheless, the huge costs per ton of used CO2 are still not encouraging [3].

3.2. Direct Use of CO2

Significant direct use of CO2 refers to its underground injection, which may refer
to (1) enhanced oil recovery (EOR), (2) enhanced coalbed methane recovery (ECBM),
(3) enhanced gas recovery (EGR), (4) enhanced shale gas recovery (ESG), an enhanced
geothermal system (EGS) and (6) a supercritical CO2 power cycle [21]. Injected CO2 serves
as a solvent for residual oil production (EOR). In EGR projects, it pushes natural gas to the
production wells, while in ECBM projects, desorption/adsorption processes are crucial for
the displacement of methane with CO2 in the coalbed (Figure 1) [22,23]. When injected
into reservoirs, CO2 participates in enhancing hydrocarbon recovery through different
mechanisms, such as maintaining pressure, multi-contact miscible displacement, molecular
diffusion, or the desorption of methane. The injection of CO2 in a supercritical state into
the reservoirs decreases oil viscosity and improves its flow rate (a miscible CO2 process) or
simply pushes the remaining oil (an immiscible CO2 process) [24,25].
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Conventional, water-based EGS requires huge water quantities for maintaining the
reservoir’s pressure (870.64–15,898.68 L/MWh). Furthermore, about 10–20% of water is
lost during EGS stimulation and operation, posing an issue, especially in water scarcity ar-
eas [27,28]. Since 2000, the use of SCCO2 as an alternative working fluid was proposed [29],
numerous studies on the feasibility and extraction efficiency of the CO2-based systems
have been conducted [27,30,31].

CO2 is non-toxic and noncombustible, and therefore convenient for use as a work-
ing fluid in enhanced geothermal systems (EGS). This geothermal energy concept uses
supercritical CO2 instead of water to produce heat from deep, dry and impermeable rocks.
Such a system is composed of a binary-cycle power plant, which operates based on heat
exchange from the hot supercritical fluid (CO2) to a secondary working fluid used in a
vapor cycle. There are many advantages of using CO2 as a working fluid in geothermal
systems instead of water. Besides the benefits of water savings and CO2 sequestration, CO2
is less prone to dissolve minerals and other substances, having a positive impact on scaling
and corrosion reduction. The high density of the supercritical CO2 allows for a reduction
of most of the system’s components, resulting in a decrease of the environmental footprint
and capital costs [32,33].

Power generation by the supercritical Brayton cycle (S-CO2 BC) is a promising alter-
native to the steam turbine process. Up to now, research on the integration of different heat
sources (including fossil fuels, nuclear, waste heat, and renewables) has been performed,
and there are some small-scale pilot units in operation. Although there have not been any
commercial S-CO2 power plant installed up to now, low operational and maintenance
costs, a small physical footprint, and higher thermal-to-electric energy conversion efficiency
(density of a supercritical fluid is close to that of a liquid, and therefore allows for less
pumping power) are listed as the main technological advantages [34,35].

There is a significant geothermal potential of hot dry rocks (HDR). Theoretical calcula-
tions showed that a 20 ◦C reduction of 1 km3 of HDR provides enough energy to operate a
10 MWe electric generator over a 20 year period, which is equivalent to 1.3 Mt of oil [27].
Although supercritical CO2 technology does not have a commercial application thus far,
strong climate-energy goals and a strong commitment to renewables can be a trigger for
its development and application. Cost–benefit analysis based on its CO2 storage capacity,
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power production and the costs of the heat extraction and energy conversion systems could
give a solid base for further development phases.

Another use of CO2 is in preserving fruits, vegetables, meats, food grains, as well as
inactivating microorganisms and extracting oils, flavors, colors, chemicals, etc. [36].

4. Enhanced Oil Recovery by Injecting CO2

The first step of CCS is to extract CO2 from other gaseous substances. CO2 can
be captured from natural gas (if it comes from a CO2 rich oil or natural gas reservoir)
using absorption, adsorption, chemical looping, or membrane gas separation, or it can be
captured from flue gases at large CO2 point sources (power plants and industrial processes)
by one of the following three methods: pre-combustion capture, post-combustion capture
and oxyfuel combustion. Once captured, CO2 is dehydrated and prepared for transport.
It is transported by pipelines, trucks, or ships in a supercritical state to the storage site.
Currently, globally operating CCS projects and CCS projects under construction stand for
around 40 × 106 tCO2/y [37].

Today’s main applications of CO2 usage refer to CCS and CO2-EOR projects [38]. Even
though the two process types consist of the same phases (CO2 capture, transport, and injec-
tion; see Figure 2), they differentiate by injection purpose, storage preservation, injection
depth and rate, injection–formation type, injection well completion and monitoring.
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Permanent storage of the injected CO2 is provided by a carefully selected geological
formation, which must meet certain criteria, among which the significant injection capacity
and the presence of impermeable cap rock and bedrock (natural trap) are of the utmost
importance [40–46].

In Croatia, the first application of CO2-EOR was started in October 2014 by the
oil company INA–Oil Industry Ltd. The aim of the project was the enhancement of
hydrocarbon production by alternating the injection of carbon dioxide and water (WAG)
into the mature oil fields Žutica and Ivanić. During the estimated 25-year project’s lifetime,
about 5 × 109 m3 of CO2 will be injected into the reservoirs of the mentioned fields, which
will result in additional hydrocarbon production (3.4 × 106 t of oil and 599 × 106 m3 of
natural gas). Due to geological and physical conditions, about 50% of the injected CO2
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will remain permanently trapped in the reservoirs, while the rest will be produced along
with associated gas [2]. CO2 injection into the Ivanić field during the period 2014–2019
has resulted in a total hydrocarbon production of 1,579,429 barrels of oil equivalent (boe),
which represents a 35% recovery increase. The injection of CO2 into the Žutica field started
in 2015. It has increased daily production by more than 7.5 times, resulting in a total
hydrocarbon production of 390,136 boe. According to estimations, 77% of the production
can be attributed to the EOR project. For EOR purposes on both fields, 1 billion m3 (1.98 Mt)
of CO2 was injected within the five-year period. Permanently stored emission quantities
are equivalent to 25% of annual emissions of road motor vehicles in Croatia [47–49].

An additional advantage of CO2-EOR projects is the fact that, once the project is
completed, the site can be used for further injection for the purpose of permanent CO2
sequestration, without additional investment. A calculation of the CO2 volume that can
be stored in the two selected reservoirs of the Ivanić field in Croatia was made within the
MBAL (Material Balance) program module of the IPM (Integrated Production Modeling)
petroleum engineering software package [50]. Such a model considered the injection of
CO2 after the termination of the EOR project (predicted EOR project closure pressure is
138.5 bar) up to the level of the initial reservoir pressure (184 bar). The obtained capacity
was at the level of 1.95 × 109 m3 (3.9 Mt) of CO2 (Figure 3). Although the estimated
capacity is not big compared to the large world CCS demonstration projects capacities,
considering the national emissions of the Republic of Croatia (as per the national Report
on the projection of greenhouse gas emissions, CO2eq emissions in 2020 are 23.42 Mt), the
obtained storage capacity is not negligible [51].

1 
 

 
 
 

 

Figure 3. MBAL (Material Balance) calculation of CO2 that can be injected into the selected reservoirs of Ivanić field after
the termination of the carbon dioxide enhanced oil recovery (CO2-EOR) project [50,51].

An Overview of CO2-EOR Projects in the World

CO2-EOR has been applied successfully for almost fifty years, and nowadays, it is the
most used EOR method. EOR-projects (CO2-EOR and other EOR methods) worldwide in
the period 1971–2017 are shown in Figure 4.
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Figure 4. EOR projects worldwide [52,53].

In 2020, more than 375 EOR projects were in operation (Figure 5), accounting for about
2% of the global oil production (more than 2 × 106 bbl/d). There are also good forecasts
for the mentioned technology for the future since it is expected that by 2040, this share
could double [23]. Although EOR application commenced in North America, recently, EOR
technologies are being applied worldwide: in Malaysia, the United Arab Emirates, Kuwait,
Saudi Arabia, India, Colombia, Ecuador, etc. While in 2013, almost 70% of the EOR projects
were conducted in North America, today, this proportion has decreased to about 40% [53].

CO2-EOR and residual oil zone studies are under preparation by the US Geological
Survey (USGS). Their purpose is the assessment of the national potential of hydrocarbons
recovery after CO2 injection into conventional oil reservoirs in the USA [54].

Large-Scale CO2-EOR Case Studies

As per the KAPSARC data source, in 2018, there were 23 CO2-EOR large-scale
projects in different project stages, having a CO2 capture capacity of approximately 42 Mt
(Table 2 [14]). As per the Global CCS Institute, a large-scale project is defined as a project
with a capture capacity of at least 0.8 Mt/y of CO2 for a coal-based power plant and
0.4 Mt/y for other industrial facilities [37].
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Table 2. CO2-EOR projects, status overview 2018. Modified according to [14].

Project Name
CO2

Capture
Capacity (Mt/y)

Stage Location Industry

1. Petrobras Lula Oil Field CCS Project 0.7 Operate Brazil Natural gas
processing

2. Alberta Carbon Trunk Line (“ACTL”) with
Agrium CO2 Stream 0.6 Execute

Canada

Fertilizer
production

3. Alberta Carbon Trunk Line (“ACTL”) with
North West Sturgeon Refinery CO2 Stream 1.4 Execute Oil refining

4. Boundary Dam Carbon Capture and
Storage Project 1 Operate Power generation

5. Great Plains Synfuel Plant and
Weyburn-Midale Project 3 Operate Synthetic natural

gas

6. PetroChina Jilin Oil Field EOR Project
(Phase 2) 0.5 Define

China

Natural gas
processing

7. Sinopec Qilu Petrochemical CCS Project 0.5 Define Chemical
production

8. Yanchang Integrated Carbon Capture and
Storage Demonstration Project 0.4 Define

9. Sinopec Shengli Power Plant CCS Project 1 Define Power generation
10. Huaneng GreenGen IGCC Project (Phase 3) 2 Evaluate

11. Uthmaniyah CO2-EOR Demonstration
Project 0.8 Operate Saudi Arabia Natural gas

processing

12. Abu Dhabi CCS Project (Phase 1 being
Emirates Steel Industries (ESI) CCS Project) 0.8 Execute United Arab

Emirates
iron and steel

production

13. Texas Clean Energy Project 2.4 Define

United States

Power generation14. Kemper County Energy Facility 3 Execute

15. Petra Nova Carbon Capture Project 1.4 Execute

16. Air Products Steam Methane Reformer
EOR Project 1 Operate Hydrogen

production

17. Coffeyville Gasification Plant 1 Operate Fertilizer
production18. Enid Fertilizer CO2-EOR Project 0.7 Operate

19. Lost Cabin Gas Plant 0.9 Operate

Natural gas
processing

20. Shute Creek Gas Processing Facility 7 Operate

21. Val Verde Natural Gas Plants 1.3 Operate

22. Riley Ridge Gas Plant 2.5 Evaluate

23. Century Plant 8.4 Operate

Figure 5 shows project distribution according to related industries and capacity.
Progress in project application can be tracked since the early 1970s (Figure 6).

A great majority of the ongoing projects (81%) in 2018 were in the USA and Canada,
mostly using CO2 from natural gas processing (Table 2; Figures 5 and 6). Regarding
CO2-EOR projects related to power generation, besides one operational project (Boundary
Dam, Canada), there were two projects in the execution phase (Petra Nova and Kemper
County, USA).

The USA is a good example of the positive effects of policy incentives on EOR projects.
In the 1980s, a decrease in US domestic oil production led to the passing of the Windfall
Profit Tax, which triggered the application of EOR by a significant reduction of its tax
burden. Today, the US 45Q tax credit has been amended to provide a tax reduction of 35$/t
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of stored CO2 by EOR activities. The International Energy Agency (IEA) New Policies
Scenario predicts a greater number of oil fields to become mature and therefore inclined
to new EOR developments. According to the same scenario, the total EOR production
will grow up to more than 4.5 × 106 bbl/d, accounting for approximately 4% of global oil
production in 2040 [52].
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The application of CCS technologies to a new conventional power plant can reduce
CO2 emissions by up to 90%. However, the high costs of capturing and compressing
CO2 is reflected in an energy price increase of 21–91%, especially in the case of distant
transportation [42,55]. Although CCS was initially considered to be an acceptable solution
for coal-based power facilities, low natural gas prices and renewable energy development
are replacing coal-based power production in developed regions, which resulted in fewer
CCUS application cases.

The CO2 -EOR case studies shown in Table 2 (in total 23) are briefly described below.
Val Verde Natural Gas Plants, TX, USA. Before the construction of the Pensoi pipeline

in the mid-1970s, four natural gas processing plants in the Val Verde area was venting
over 2 Mt/y of CO2. However, in 1996, this pipeline was converted into a natural gas
transportation pipeline, again causing venting of significant quantities of CO2. Therefore,
it was decided to redirect emitted CO2 by a new pipeline to the EOR projects in West
Texas, located at a distance of several hundred kilometers. Nowadays, five separate gas-
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processing facilities in the Val Verde area are capturing around 1.3 Mt/y of CO2 for use in
EOR operations at the Sharon Ridge oilfield. The CO2 content of the inlet gas stream at the
Val Verde plant is in the range of 25 to 50% [56].
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Enid Fertilizer CO2-EOR Project, OK, USA. This is one of the largest fertilizer pro-
duction plants in North America, producing ammonia, liquid fertilizer and urea. The
original plant was built in 1974, which was further upgraded in the 2000′s. Since 1982,
about 0.7 Mt/y of CO2 has been transported by a 225 km long pipeline and injected into
depleted oil fields in southern Oklahoma for the purpose of EOR [56].

Shute Creek Gas Processing facility Wyoming, USA. It has been processing natural
gas from the LaBarge field since 1986. The raw gas is of the lowest hydrocarbon content
commercially produced in the world (about 20%), containing CO2 in high concentration
(65%). In order to separate sour gases, the Shute Creek Gas Processing facility was built.
Before upgrading, H2S along with approximately 0.4 Mt/y of CO2 were disposed of. An
expansion in plant capacity was completed in 2010, reaching a capturing capacity of 7 Mt/y
of CO2. The separated CO2 is transported from the Shute Creek facility via the ExxonMobil,
Chevron and Anadarko Petroleum pipeline systems to oil fields in Wyoming and Colorado
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for use in EOR activities. The pipeline distance from Shute Creek to the larger volume
customers of Salt Creek and Rangely is approximately 460 km and 285 km, respectively [56].

Great Plains Synfuel Plant and Weyburn-Midale Project, Saskatchewan, Canada. The
Great Plains Synfuel Plant, North Dakota, began with operation in 1984, representing the
only commercial-scale coal gasification plant in the USA that produces synthetic natural
gas. Since the waste stream contains a high content of CO2 (95%), no further processing
is required. The CO2 is transported by a 329 km pipeline to the Weyburn and Midale oil
fields Saskatchewan, Canada. About 2.4 Mt/y of CO2 is injected into the Weyburn field,
and approximately 0.6 Mt/y of CO2 is injected into the Midale field. The main injection
target zones are at a depth of about 1500 m. The Weyburn-Midale CO2 Monitoring and
Storage Project was conducted in the period 2000–2011, supported by the International
Energy Agency (IEA) Greenhouse Gas Research and Development Program, with a focus
on monitoring behavior of the injected CO2 and permanent storage [56].

Century Plant, TX, USA. It is used for processing high CO2-content (more than 60%)
gas streams produced from different reservoirs in West Texas. It began operating in 2010
with a smaller level of capturing capacity, but in 2012, the capacity extended to its full level
of 8.4 Mt/y. After being compressed, the CO2 is transported to an industrial hub located in
Denver City by a 160 km long pipeline and is finally injected into the Permian Basin for
EOR activities. The Permian Basin of West Texas and southeast New Mexico is one of the
largest and most active oil basins in the USA [56].

Air Products Steam Methane Reformer EOR Project, TX, USA. It has been operating
since 2012. It captures approximately 1 Mt/y of CO2 at two steam methane reformers at
the Port Arthur energy refinery. Captured CO2 is transported by 158 km of pipelines to an
oil field for EOR. After 21 km, the pipeline is connected to a much larger diameter Green
Pipeline, used for the collection and transportation of CO2 from different sources [56–58].

The Petrobras Santos Basin CO2-EOR project, Brazil. It is located offshore, approxi-
mately 300 km from the coast. EOR is applied to the Petrobras Lula oilfield, which is one of
the largest oil fields in Brazil, positioned in the pre-salt carbonate reservoir, just below a
thick, 2000 m salt column. After pilot injection of produced reservoir gas into the oil field,
large-scale production began in 2013. Membrane processing units installed on-board of
the floating production facility are used for the separation of the CO2 from the produced
natural gas. While natural gas is transported to an onshore facility by pipeline, the CO2 is
compressed and reinjected into the hydrocarbon’s producing reservoir. The produced oil is
transported to shore by tankers. The project is known for the deepest CO2 injection well
in operation. Since 2017, CO2 reinjection has been carried out by ten floating production
storage and offloading (FPSO) units: seven at Lula Field, two at Sapinhoá Field and one at
Lapa Field [59–61].

Coffeyville Gasification Plant, KS, USA. The project is an example of CCS applied
to the fertilizer industry, which has been operational since 2013. The process of nitrogen
fertilizer production involves petroleum coke gasification and synthetic natural gas creation.
Although CO2 generated in the process is used for fertilizer manufacturing, a significant
part of the CO2 is vented. Up to 1 Mt/y of the CO2 is captured by a carbon capture unit
and is then delivered to the North Burbank Oil Unit in Oklahoma for EOR purposes [56].

The Lost Cabin Gas Plant CCS project, WY, USA. The project operates with a pre-
combustion capture of 0.9 Mt/y of CO2. The feed gas, which has been purified at the Lost
Cabin Gas Plant since 1996, contains around 20% of CO2. In 2013, the plant was connected
with the EOR injection site at the Bell Creek oil field in MT, USA, by the 374 km long
Greencore pipeline [56].

Boundary Dam 3, Saskatchewan, Canada. This project represents the world’s very
first full-chain CCS applied on a coal-fired power plant. While producing 110 MW of
electricity, it simultaneously enhances oil recovery and significantly reduces CO2 emissions
by capturing and injecting up to 1 Mt/year of CO2 into 1.4 km deep Weyburn oilfield
reservoirs and into a 3.4 km deep saline reservoir (Deadwood formation). Captured SO2 is
used as feedstock for a sulfuric acid plant [58].
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Uthmaniyah Carbon Dioxide Enhanced Oil Recovery (CO2-EOR) Demonstration
Project, Saudi Arabia. The project captures approximately 0.8 Mt/y of CO2. The captured
CO2 is compressed and transported via an 85 km pipeline to the injection site in Uth-
maniyah field, which is a part of the giant Ghawar field (the largest oil field in the world).
Besides the determination of additional oil recovery and sequestered CO2 quantities, the
project goals are related to risk analyses and the identification of operational concerns. A
comprehensive monitoring and surveillance plan, including advanced routine logging
and use of new technologies for plume tracking and CO2 saturation modeling, follow the
CO2-EOR operations [60].

Kemper County Energy Facility, MI, USA. It was a lignite based integrated gasification
combined-cycle (IGCC) facility designed to convert locally mined lignite to synthesis gas.
It was planned to be the first commercial application of air-blown transport integrated
gasification (TRIG) technology. The peak capacity of 582 MW would occur when using
both syngases in the combustion turbine and natural gas firing in the heat recovery steam
generator duct burners. After carbon capture and removal of impurities, purified syngas
would be used as fuel for combined–cycle power generating units. The project was expected
to capture approximately 3 Mt/y of CO2. One part of it would be sent by a 98 km CO2
pipeline and used for EOR at Heidelberg oil field, replacing temporary EOR solution,
which uses CO2 from natural CO2 reservoir. The rest of captured CO2 would be sent
by an 87 km pipeline to another oil field in the vicinity of West King, Mississippi. The
startup was originally projected for 2014, but due to a number of technical issues and huge
costs, it was decided to operate using natural gas, without carbon capture and storage
technology [56,62].

Petra Nova Carbon Capture facility, Huston, TX, USA. It was installed at the W. A.
Parish power coal plant, and started with operations in 2017, as the world’s largest post-
combustion CO2 capturing system, intended to capture 1.4 Mt/y of CO2. Captured CO2
was planned to be transported via a 130 km pipeline and injected into the West Ranch oil
field. Nevertheless, very shortly after a successful start, a drop in oil prices in the first
half of 2020 caused CO2 capture at Petra Nova to become uneconomical. Further project
operation may be under the federal 45Q tax credit incentive, ensuring companies $35 per
metric ton (1.102311 t) of geologically stored CO2 within the EOR and up to $50 for its
storage in a saline formation [63,64].

Abu Dhabi CCS, Mussafah, United Arab Emirates. It is the first fully commercial
large-scale CCS facility applied in the iron and steel industry, the Emirates Steel Industries
factory. About 0.8 Mt/y of CO2, which is produced as a byproduct of the direct reduced
ironmaking process, is captured and transported via pipeline to oil reservoirs for EOR
purposes. Abu Dhabi National Oil Company is developing its second CCUS facility in the
United Arab Emirates, which would capture 1.9 to 2.3 Mt/y of CO2 from its gas processing
plant that will be used for EOR purposes in the same reservoir [56,60].

The Alberta Carbon Trunk Line (ACTL) CCUS, Alberta, Canada. The system started
with full operation in 2020. It captures about 1.3 Mt/y of CO2 from a bitumen refinery
using gasification technology (North West Redwater Partnership Sturgeon Refinery), while
an additional 0.3–0.6 Mt/y of CO2 is gained from the Agrium’s Redwater fertilizer plant.
Captured CO2 serves for the production of 1 billion bbl of oil from the Clive oil reservoir.
The ACTL (16” trunkline), constructed in the length of 240 km with a huge capacity of
14.6 Mt/y of CO2, is the largest capacity pipeline for the transportation of anthropogenic
CO2. It will enable the connection of different emission sources, including coal-fired
power plants, upgrading/refining operations, petrochemicals, and a natural gas processing
plant [56,60].

Under defining and evaluation phases, there are eight large-scale CO2-EOR projects.
Most of them (63%) are planned in China despite the fact that tight continental geology
and heavier oil pose significant issues [65]. With regard to the CO2 source industry, there
are an equal share of power generation and chemical production facilities (40%). While
emerging Asian economies are still leaning on coal-based energy, and carbon capture and
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storage is seen as an effective emission reduction solution, a comprehensive framework
and policy support are still missing [14,65].

Sinopec Shengli Power Plant, Dongying, Shangdong province, China. The project
considers a conventional amine-based CO2 capture facility installed at the 25 MW Unit 1
of the coal-fired power plant. The implemented post-combustion capture process enables
CO2 delivery to the Shengli oil field for EOR purposes. In the project’s final stage, about
1 Mt/y of CO2 will be captured, transported, and injected to increase oil recovery by up to
15%. Shengli oil field is the second-largest oil field in China, producing around 200 million
bbl/y of oil. More favorable economic conditions, i.e., higher oil prices, are required for
startups [53].

Sinopec Qilu Petrochemical Project, Shangdong Province, China. The project considers
CCS applied at the Shengli coal-fired power plant. It captures up to 0.5 Mt/y of CO2, which
is transported via gas pipeline to Shengli oil field for EOR [66].

Yanchang Integrated CCS Demonstration Facility, China. It is designed to capture CO2
from a coal gasification unit. The 0.05 Mt/y of CO2 unit has been in operation since 2012,
while the larger 0.36 Mt/y of CO2 capture is under construction. Captured CO2 would be
used for EOR in oil fields in the Ordos Basin. Since they are facing a severe water shortage,
CO2-EOR would be a great solution for Yanchang Oilfield [67,68].

PetroChina Jilin Oil Field EOR Project (Phase 2), Jilin Province, China. CO2-EOR
operations have been performed on the Jilin oil field since 2006. The CO2 source is a natural
gas processing facility that processes natural gas from the Changchun gas field that contains
approximately 2.5% CO2. Phase 2 refers to the extension to a larger scale CO2-EOR, which
would sequester 0.8–1 Mt/y of CO2 and increase oil production by 500,000 t/y [11].

Texas Clean Energy Project, TX, USA. It was a proposed 400 MW coal-fired power plant
with installed capturing technology of 2.4 Mt/y. The project would combine Integrated
gasification combined cycle (IGCC) technologies, carbon monoxide (CO) shift, and Linde
Rectisol® wash unit (RWU) acid gas removal (AGR). A part of the captured CO2 would
be used for EOR activities in the West Texas Permian Basin, while another part of the
captured CO2, as well as a portion of the high-H2 syngas, would be used for urea fertilizer
production. Captured sulfur-containing gases would be converted to marketable sulfuric
acid [69]. Although an environmental impact statement was issued in 2011, an operation
was planned by 2018; the bankruptcy of the company’s sponsor, Summit Power, occurred
in 2017 after the US Department of Energy (DOE) decided to give up financial support due
to improper spending of money.

Riley Ridge Sweetening Plant, WY, USA. A pre-combustion CO2 capture plant was
designed to capture 2.5 Mt/y of CO2. Sour gas, produced from the Madison Formation,
which contains CO2, N2, CH4, He, and H2S, is originally processed at the Riley Ridge
Treatment plant, which has been in operation since 2013. Separated CH4 and He are sold,
while non-gaseous H2S/CO2 mixture is planned to be transported via 16” pipeline to
the Riley Ridge Sweetening Plant. After separation, H2S would be reinjected into deep
injection wells, while the CO2 would be transported via a 24” CO2 pipeline (the Greencore
Pipeline), planned to connect another source of CO2, which would be provided from the
existing Shute Creek Gas Plant. The CO2 destination is Bell Creek Field and other oilfields
in SE Montana, where it will be used for EOR purposes. Produced CO2, separated from
the oil at the surface, would be reinjected into the oil recovery process, which means that
after field decommissions, it would remain permanently geologically stored [70].

Huaneng GreenGen IGCC project, Tianjin, China. The project has been developing
through three phases. The first two project phases refer to the construction of a 250 MW
integrated gasification combined cycle (IGCC) facility (completed in 2012) and the construc-
tion of a pilot facility that produces electricity from hydrogen with a small size capturing
of 0.2 Mt/y of CO2. The third phase refers to the construction of a 400 MW IGCC power
plant with an installed unit of 2 Mt/y of CO2 capture capacity. The captured CO2 fate is
still unknown, but one of the solutions considers EOR application at the Tianjin Dagang oil
field [65].
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5. CO2-EOR Site Emissions

Besides the fact that CO2 is the most abundant greenhouse gas, causing increased
global warming and consequently climate changes, which result in a wide spectrum of
consequences, CO2 is also directly adverse to human health and nature in high concentra-
tions. Humans are immediately endangered if CO2 concentration in the air rises above
7–10%, while plants, insects and soil organisms show a higher tolerance [10]. Furthermore,
a higher concentration of CO2 in a marine environment leads to seawater pH reduction,
while partial pressure enhancement is responsible for physical stress [71]. Due to the previ-
ously mentioned facts, it is of high importance to manage CO2 in a closed system to prevent
any leakage to the atmosphere during all phases of the CCS process. In order to achieve
that, for leakage risk mitigation, special technical and non-technical measures during the
processes of CO2 capture, transportation and injection into geological formations must
be applied.

Although in the CO2-EOR production process, CO2 is the predominant hazardous
compound, other harmful substances may also appear. Besides hazardous byproducts
characteristic for hydrocarbon production (e.g., produced water contains traces of light
hydrocarbons: BTEX, naphthalene, PAHs, alkylphenols, etc.), other CO2 related hazards
(e.g., capture chemicals, or formation of strong acids from traces NOx and SOx gases)
are possible. Trace elements (As, Cd, Hg, Pb, etc.) can appear as products from CO2-
water-reservoir interactions, or some radioactive elements (e.g., Ra), which are prone to be
incorporated in scaling minerals, can appear [71].

Different emission sources that could occur across CCS and/or CO2-EOR project
activities are shown in Figure 7.
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Figure 7. Potential greenhouse gas emissions sources and types of emissions in CCS and/or CO2-EOR
value chain. Modified according to [39].

CO2-EOR project emissions (combustion, vented and fugitive emission) can be ob-
served as direct and indirect emissions. Engines, heaters, and flares (combustion emissions),
venting points (intentional gas release from non-combustion sources) and joints (fugitive
emissions) on processing vessels, tanks, pipelines, and other equipment refer to the di-
rect CO2 emissions sources. Indirect emissions from the petroleum industry come from
different powering equipment and devices producing power outside the petroleum indus-
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try (e.g., CO2, CO, N2O, CH4 are emitted at power plants during electricity generation),
and therefore are also present in all phases of the EOR process (CO2 stream compression,
water-alternating-gas (WAG) injection, reservoir fluid production, fluid processing, etc.).
The intensity of indirect emissions is proportional to energy consumption and depends
on the energy source. However, in the case of on-site power production (usually in the
case of offshore production or on-site power production from an associated gas produced
during oil production), emissions related to energy production are considered as a part
of direct emissions. Fugitive emissions refer to unintentional gas releases (CH4, volatile
organic compounds (VOCs), CO2, N2O) from pressurized equipment at a connection point
(e.g., valves, flanges, pipe connections, mechanical seals, etc.) due to imperfect hermetical
tightness. Even though compared to the combustion and vented emissions, fugitive emis-
sions are relatively small (up to 5% of total emissions in upstream activities [72]), sealing
device degradation, equipment failures and operating conditions (pressure, temperature,
etc.) may lead to its increase. A simplified overview of the emissions occurring during the
EOR process is given in Table 3 and Figure 8.

Table 3. Simplified overview of CCS/CO2-EOR projects emissions. Modified according to [39].

Activity Emission Source Emission Type Direct/Indirect
Emissions GHG Type

0. CCS/CO2-EOR site
evaluation and

construction

Fuel combustion associated with site evaluation
and construction Combustion Direct CO2, CH4, N2O

Purchased electricity associated with site
evaluation and construction Indirect Indirect CO2, CH4, N2O

I. CO2 capture

Gas treatment equipment Combustion, vented
and fugitive Direct CO2, CH4, N2O

Uncaptured CO2 and CH4 Vented and fugitive Direct CO2, CH4

Purchased electricity associated with CO2 capture
processes Indirect Indirect CO2, CH4, N2O

Processing and disposal of CO2 extraction agent Combustion and
fugitive Direct CO2, CH4, N2O

II. CO2 transport

Compressors Combustion and
fugitive Direct CO2, CH4, N2O

Mobile combustion sources Combustion Direct CO2, CH4, N2O

Pressurized equipment and pipeline leakage Fugitive Direct CO2

Maintenance or emergency releases Vented Direct CO2, CH4

Intermediate storage Vented Direct CO2

Loading/unloading Fugitive Direct CO2

Purchased electricity associated with transport
activities Indirect Indirect CO2, CH4, N2O

III. Injection

Compressors Combustion and
fugitive Direct CO2, CH4, N2O

Pressurized CO2 injection equipment Fugitive Direct CO2

Maintenance or emergency releases Vented Direct CO2, CH4

Purchased electricity associated with injection
activities Indirect Indirect CO2, CH4, N2O

Production wells Vented, combustion
and fugitive Direct CO2, CH4, N2O

Recycled gas treatment equipment Combustion, vented
and fugitive Direct CO2, CH4, N2O

IV. CO2 storage
(geological formation)

Physical leakage from a geological formation Fugitive Direct CO2, CH4

CO2 leakage from wells Vented and fugitive Direct CO2, CH4

Uncaptured CO2 coproduced with hydrocarbons Vented and fugitive Direct CO2, CH4

Sustainability 2021, 13, x FOR PEER REVIEW 17 of 27 

Table 3. Simplified overview of CCS/CO2-EOR projects emissions. Modified according to [39]. 

Activity Emission Source Emission Type 
Direct/Indirect 

Emissions 

GHG 

Type 

0. CCS/CO2-EOR site

evaluation and construction 

Fuel combustion associated with site 

evaluation and construction 
Combustion Direct 

CO2, CH4, 

N2O 

Purchased electricity associated with site 

evaluation and construction 
Indirect Indirect 

CO2, CH4, 

N2O 

I. CO2 capture

Gas treatment equipment 
Combustion, vented 

and fugitive 
Direct 

CO2, CH4, 

N2O 

Uncaptured CO2 and CH4 Vented and fugitive Direct CO2, CH4 

Purchased electricity associated with CO2 

capture processes 
Indirect Indirect 

CO2, CH4, 

N2O 

Processing and disposal of CO2 extraction 

agent 

Combustion and 

fugitive 
Direct 

CO2, CH4, 

N2O 

II. CO2 transport

Compressors 
Combustion and 

fugitive 
Direct 

CO2, CH4, 

N2O 

Mobile combustion sources Combustion Direct 
CO2, CH4, 

N2O 

Pressurized equipment and pipeline leakage Fugitive Direct CO2 

Maintenance or emergency releases Vented Direct CO2, CH4 

Intermediate storage Vented Direct CO2 

Loading/unloading Fugitive Direct CO2 

Purchased electricity associated with 

transport activities 
Indirect Indirect 

CO2, CH4, 

N2O 

III. Injection

Compressors 
Combustion and 

fugitive 
Direct 

CO2, CH4, 

N2O 

Pressurized CO2 injection equipment Fugitive Direct CO2 

Maintenance or emergency releases Vented Direct CO2, CH4 

Purchased electricity associated with injection 

activities 
Indirect Indirect 

CO2, CH4, 

N2O 

Production wells 
Vented, combustion 

and fugitive 
Direct 

CO2, CH4, 

N2O 

CO2, CH4, 

CO2, CH4 

 CO2-EOR specificity. 

Dilmore [73] assessed atmospheric emissions occurring during site evaluation and 

characterization, construction, closure, and post-closure monitoring to be less than 1% of 

total emissions resulting from CO2-EOR activity, which means that the remaining 99% is 

assigned to project operation. 

CO2 capture processes (Figure 8) are, compared to other CCS/CO2-EOR phases, most 

energy-intensive (use of fossil fuels or electricity) and therefore most emission-intensive. 

In that phase of the CO2-EOR project, all types of petroleum industry emissions occur 

(combustion, vented and fugitive emissions). Captured gas processing activities (impurity 

extraction, dehydration, compression, etc.) are also sources of combustion, vented and 

fugitive emissions. 

In this phase, different types and different concentrations of impurities may appear 

in the CO2 stream, depending on the CO2 emission source (gas or coal-based power plant, 

cement plant, natural gas processing plant, ammonia plant, etc.), and on the type of cap-

ture process. If the captured gas is not processed at the capture site (CO2 source site), the 

CO2-EOR specificity.



Sustainability 2021, 13, 1800 17 of 27

Dilmore [73] assessed atmospheric emissions occurring during site evaluation and
characterization, construction, closure, and post-closure monitoring to be less than 1% of
total emissions resulting from CO2-EOR activity, which means that the remaining 99% is
assigned to project operation.

CO2 capture processes (Figure 8) are, compared to other CCS/CO2-EOR phases, most
energy-intensive (use of fossil fuels or electricity) and therefore most emission-intensive.
In that phase of the CO2-EOR project, all types of petroleum industry emissions occur
(combustion, vented and fugitive emissions). Captured gas processing activities (impurity
extraction, dehydration, compression, etc.) are also sources of combustion, vented and
fugitive emissions.

In this phase, different types and different concentrations of impurities may appear in
the CO2 stream, depending on the CO2 emission source (gas or coal-based power plant,
cement plant, natural gas processing plant, ammonia plant, etc.), and on the type of capture
process. If the captured gas is not processed at the capture site (CO2 source site), the CO2
capturing process results in reduced emissions at the CO2 source site, but in that case,
the environmental impact of the CO2-EOR project on the atmosphere is moved to the
injection/storage site. While a post-combustion scrubbing process results in a low level of
impurities, the pre-combustion process results in a CO2 stream with 1–2% impurities in
the form of H2, CO, traces of H2S, and other sulfur compounds. An oxyfuel process CO2
stream contains O2, N2, Ar, SOx and NOx, which requires an impurity reduction in the
subsequential cryogenic purification process [42].
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Even though there are some other transport options (ship or truck transport), CO2 is
usually transported by pipelines. Dominant emissions during the transport of pressurized
CO2 are fugitive emissions. Fugitive emissions from CO2 pipeline transport depend on the
CO2 stream composition as well as the type, number and size of the equipment installed
in the pipeline systems. Compressors, as the most important part of a CO2 transmission
system, are the main sources of combustion emissions during CO2 transport. To ensure
the supercritical state of CO2, the high injection pressure is needed, which makes CO2
compression/pumping to be highly energy-intensive, and therefore the most emission-
intensive process. If the compressors are powered by an electric drive, the compression
process only results in indirect CO2 emission (generated at a power plant). Direct CO2
emissions may occur in the case of gas-engine-driven compressors. However, emission
quantities are determined by the pressure of delivered CO2 and the required injection
pressure (depends on the reservoir pressure). Pipelines or tanks (in case of transport
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by ships, trucks, or intermediate storage) are also potential sources of vented emissions
(maintenance, emergency releases, etc.).

Emissions associated with CO2 injection activities include all types of emissions
(combustion, vented and fugitive) from surface equipment as the emission sources. A
common surface CO2-EOR operation site is comprised of an injection system (distribution
manifold at the end of the transport pipeline, distribution pipelines to wells, additional
compression facilities, measurement and control systems, and the injection wells), produced
fluid (gas and liquid) separation and processing units, brine management units, CO2
recompression or recycle gas unit and optionally artificial lift equipment (Figure 9).

Direct emissions at the injection site are related to CO2 and CH4 and, to a lesser
extent, to nonmethane volatile organic compounds (NMVOCs), N2O, CO, SO2 and NOx
releases. VOC are released due to pressure and/or temperature changes in the tank (surface
storage of the produced oil prior to transport to the refinery) caused by surface conditions
and loading and unloading activities. Released from oil into the space between the tank
content level and the tank roof, volatiles are usually vented directly from the tank into the
atmosphere [72].

When a reservoir’s natural drive is not sufficient for bringing the fluid up to the
surface, a method of artificial lift must be applied to increase the oil production rate.
Artificial lift methods (selection primarily depending on the well depth, hydrocarbon
composition and production rate) vary in energy consumption; thus, the indirect emissions
vary through this phase of the project. The lowest energy consuming method, if any, is
applied when a low viscosity fluid, e.g., oil with dissolved CO2, is produced [74].
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During CO2-EOR, a certain amount of the injected CO2 is produced along with oil.
The injected CO2, produced along with associated gas, is recaptured and reinjected into
the geological formation. The gathering of EOR produced oil is carried out by pipelines.
At this stage, potential emissions are related to fugitive emissions from the equipment,
gas-operated pneumatic devices and valves.

The first step in the produced hydrocarbon processing is the separation of the pro-
duced fluids (oil, gas (in the case of CO2-EOR natural gas and CO2) and water). A bulk
separator is a three-phase vessel. Oil and gas separation commonly results in vented CH4
emissions (separators and tanks), as well as CH4 fugitive emission. In the case of CO2-EOR,
since CO2 is a part of the gaseous phase of the production fluid, the vented and fugitive
emissions, except CH4, also contain a significant portion of CO2. If the heat from fossil
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fuel combustion is used during the separation process, additional emissions of CO2 and
N2O are present [72]. Natural gas processing is done in order to comply with the gas
quality specifications. It can be achieved by chemical adsorption (an amine process), by
cryogenic fractionation, or by adsorption using molecular sieves [65]. If the associated
gas is produced at a high enough pressure, and if there is adequate infrastructure for its
gathering and processing, it can be used on-site as a powering fuel. In some cases, the high
cost of CO2 separation from the produced associated gas justifies reinjection of the entire
reproduced gas stream [76–78]. Nowadays, with high environmental standards and the
knowledge of the significant global warming potential (GWP) of CH4, the release of the
associated gas into the atmosphere is not considered to be a viable solution, so flaring and
venting are considered solely as safety actions, used for emergency shutdown, injectivity
issues or maintenance activities.

As mentioned before, fugitive emissions are related to all process units operating at
the CO2-EOR injection site. Although they are still not well investigated, it is assumed that
the amount up to a 2% loss of purchased CO2 [73].

CO2 can escape from a geological formation if its pressure, when injected into the for-
mation, exceeds formation capillary and fracture pressure, resulting in its passing through
the caprock. Other leakage risks refer to CO2 escape through poorly plugged abandoned
wells, faults, or fractures. The low leakage probability of a geological storage site is assured
by the selection of the injection formation that meets all the needed prerequisites, such
as impermeable cap and bedrocks, geological stability, the absence of leakage paths and
effective trapping mechanisms [79,80].

6. CO2-EOR Lifecycle Emissions

It is well-known that during EOR processes, a certain amount of CO2 is permanently
retained and stored in the injection formation, but up to which level can a real emission
reduction during the CO2-EOR process be achieved? First, to achieve emission reductions,
CO2 anthropogenic sources are required. When CO2 comes from its natural underground
reservoirs, a net negative emission is impossible to achieve. Even though in CO2-EOR
projects, CO2 is injected with the function of a solvent and a portion of it is produced with
a mixture of brine and hydrocarbons, ultimately about 60% of the injected CO2 remains
trapped in the oil reservoir pore space, while around 40% of it is reproduced with the
reservoir fluids (hydrocarbons and brine). However, as per Melzer [81], up to 95% of the
EOR injected CO2 can be permanently retained within the reservoir if the closed-loop
injection system is applied, which implies produced fluid separation and reinjection of the
reproduced CO2.

According to International Energy Agency (IEA), EOR activities in the USA use 0.3–0.6
t CO2/bbl of produced oil [82]. However, the primary goal of the EOR project is additional
oil production that generates additional emissions, but besides the already mentioned
emissions resulting from production processes, there is a whole range of production-related
activities that generate emissions, as well as the emissions generated by the final product
usage (fossil fuel burning). Therefore, the environmental performance of CO2-EOR projects
must be assessed, which is possible by the lifecycle assessment technique.

Lifecycle analyses for the CO2-EOR technological systems appear in different litera-
ture [83–89], where the benefit of stored CO2 is put against the environmental impact of
the required additional process. All the studies concur on the substantial benefits of CO2
emission reduction.

Azzolina et al. [90] made a lifecycle analysis of incremental oil produced by CO2-EOR
by developing an integrated model with a coal-based power plant and quantitative analysis
of GHG emissions in comprehensive system boundaries. The system boundaries were the
same as those used by Cooney et al. [91].

Cooney et al. differed emissions by upstream (coal mining, processing and transport;
coal-burning with CO2 capture, and CO2 transport), “gate-to-gate” (emissions associated
with site operation), and downstream (crude oil transport, refining, fuel transport, fuel
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combustion). As a result of the analysis, the incremental oil was lower-carbon fuel that
resulted in a lower emission factor. Coal mining, processing and transport have an average
emission factor of 60.7 kg CO2 eq/MWh. The emission factor of a coal-based power plant
with 85% CO2 capture is about 146 kg CO2 eq/MWh, while the emission factor for CO2
pipeline transport from the capture unit to the CO2 injection site amounts to 9.93 × 104

kg emitted/kg of CO2 transport. Downstream emissions are at the level of 485 kg CO2
eq/bbl [91].

As per the Clean Air Task Force (CATF) [92] (Figure 10), lifecycle emissions for
conventional oil production (well-to-wheel boundaries) are 0.51 t CO2/bbl. Average use of
0.3 t CO2/bbl in EOR would decrease conventional lifecycle emissions to 0.21 t CO2/bbl.
However, given that EOR site operations increase process emissions by 0.03 t CO2/bbl, that
the additional emissions from incremental oil consumption amount to 0.04 t CO2/bbl, and
the emissions from conventional oil production not displaced by EOR also amount to 0.04
t CO2/bbl, it can be concluded that every CO2-EOR produced barrel emits 0.32 t of CO2.
Compared to conventional oil production, CO2 emissions are decreased by about 37% [92].
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Thorne et al. [93] developed a conceptual EOR system with an oxyfuel power plant
in Poland, as the CO2 source, and an oil reservoir on the Norwegian continental shelf,
as the EOR operational site. The model used ship transport of CO2 based on two ships
transporting CO2 over a distance of 1253.3 km (677 nautical miles) and resulted in 71%
emission reduction compared to a non-CCUS system (a case when oil and electricity are
conventionally produced).

Shminchak et al. [94] documented a GHG lifecycle analysis of the CO2-EOR site in
the Northern Michigan Basin, USA. In the period 1996–2017, about 2.29 × 106 bbl of oil
was produced by cycling a total of 2.09 × 106 t of CO2 into 1500–2000 m deep reservoirs.
The lifecycle analysis, based on site-specific operational records, included the processes
shown in Figure 11. All of them had total emissions of 1.93 × 106 t of CO2 eq. Thus, the
lifecycle analysis showed negative net emissions of −0.16 × 106 t of CO2 eq. However,
CO2 process emissions highly depend on the equipment used., e.g., a CO2 capture process
applied at a natural gas processing facility has lower emissions than CO2 captured from
coal-fired power plants, the CO2 compressors which use natural gas have fewer emissions
than electrical compressors which use electricity generated by coal-fired power plants, and
the oil–CO2 separation method which includes high- and low-pressure separators, is less
energy-intensive than other gas separation methods.
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7. Discussion

Climate issues related to increasing concentrations of CO2, mainly released during
fossil fuel combustion during power production, put strong initiatives to limit the use
of fossil fuels and to increase the employment of alternative power production solutions
like renewable energy sources. On the other hand, due to variability in the availability of
renewable energy sources, the cost of energy production from it, along with energy storage
issues and the constantly increasing global energy demand, especially in developing
countries, the world still strongly depends on fossil fuels, and the transition to a carbon-
free society will take place over several decades. A possible solution for the transition is
seen in CCS and CCUS technologies, which allow the use of fossil fuels while eliminating
the adverse climate change impacts associated with greenhouse gas emissions. Both
technologies eliminate a facility’s direct CO2 emissions. Although the primary goal of CCS
and CCUS technologies is CO2 sequestration, both technologies result in a certain amount
of emissions. Even though CCUS, along with CO2 sequestration, creates additional benefits
(production of new products), sometimes, depending on the type of project, it is a less
favorable solution compared to CCS (in cases when CO2 retention time is relatively short).

CCS comprises various technical and technological solutions depending on the size
and type of CO2 source, capture technology, transportation mean, and the final storage
destination (distance from the CO2 source, depth and characteristics of the geological
formation, etc.). Currently, the only type of large-scale CCUS projects are CO2-EOR projects
(see Table 2, Figures 5 and 6), which, along with CO2 sequestration, also result in residual
oil production. According to the KAPSARC database [42], in 2018, 11 of 23 large-scale CO2-
EOR projects were in operation (48%) (see Table 2), grouped, by related industries where
applied, into natural gas processing (6 projects, or 55%), fertilizer production (2 projects,
or 18%), power generation (1 project, or 9%), synthetic natural gas (1 project, or 9%), and
hydrogen production (1 project, or 9%). The rest of the projects were in the execution stage
(5 projects, or 22%), definition stage (5 projects, or 22%) or evaluation stage (2 projects, or
9%). With regard to the large-scale CO2-EOR projects in the execution phases, there is a
visible shift towards smaller capacity projects and other industry applications, such as iron
and steel production, fertilizer production and oil refining (Figure 6).

Regarding the capture capacity of these projects, projects related to natural gas process-
ing (52%) have the largest share of capture capacity. This is expected since, as mentioned
before, most of the large-scale CO2-EOR projects are related to natural gas processing,
which is not surprising since CO2 injection technology was developed by the petroleum
industry. The capture capacity of large-scale CO2-EOR projects related to power production
is 26%, fertilizer production 5%, synthetic natural gas 7%, oil refining 3%, iron and steel
production 2% and hydrogen production 2%.

Most of the projects, at different project stages, are conducted in the USA (48%) and
China (22%), followed by Canada (17%), Brazil (4%), Saudi Arabia (4%) and the United
Arab Emirates (4%) (Table 2, Figure 7).

As can be seen, all of the mentioned projects differ by CO2 source type and size (and if
the same, they differ by fuel type, net output, efficiency, capture technology, capture capac-
ity, captured CO2 purity, etc.), CO2 transport (choice of the transportation system and used
fuel, distance from the CO2 capture point to injection/storage point, etc.), injection/storage
site characteristics, time horizon, the geographical location of CO2-EOR value chain el-
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ements (thus different environmental impact due to different ecological sensitivity) and
different market conditions (cost of CO2, oil price). All of these differences pose a challenge
when estimating emissions from CO2-EOR projects. The mentioned varieties between
CO2-EOR projects (and generally CCS/CCUS projects), but also the lack of standardized
methods for estimating the full lifecycle emissions resulting from CO2-EOR projects, result
in various uncertainties and wide flexibilities on how to estimate emissions from these
kinds of projects.

Narrow-analysis of case-specific data could be done, but generally, there is a lack
of appropriate lifecycle emission estimation methodologies specific to CO2-EOR projects
(CCS/CCUS projects). In addition, due to the mentioned specifics, in order to estimate
the full lifecycle emissions resulting from CO2-EOR projects, normalization and a set of
benchmark information should be done, which will allow the cross-referencing of CO2-
EOR projects and its comparison to other climate-mitigation strategies. Pointing out the
mentioned differentiation and giving an overview of large-scale CO2-EOR projects gives
useful information for the future development of standardized methods for estimating the
full lifecycle emissions resulting from CO2-EOR projects.

8. Conclusions

CCUS will have an important role in achieving the Paris Amendment goal, as it
has proven the potential to deliver significant emission reductions across the energy
sector. Even though there are many technologies considered as CCUS, at the moment,
the only profitable CCUS projects are large-scale CO2-EOR projects, which along with
the sequestration of greenhouse gas, resulting in the production of additional value, i.e.,
incremental oil.

Due to the increasing global crude oil demand caused by economic growth in devel-
oping countries and rising needs in the transport sector, especially in market segments
with poor or no fuel alternatives (such as aviation), the petroleum industry through the
EOR projects could be an option which gives both, energy security and lower emissions.

According to the KAPSARC data source, in 2018, there were 23 large-scale CO2-EOR
projects in different implementation phases. Most of the projects were in North America
utilizing CO2 from natural gas processing. Considering the number of projects in the
definition/evaluation phase and the CO2 capture capacity of these projects, CO2-EOR
projects have a significant potential to play an important role in mitigating climate change
in China.

However, besides using CO2 for commercial activity, the main aim of the CCUS
projects is CO2 sequestration. They do not necessarily result in overall net negative
emissions due to the fact that the CO2 retention time significantly differs among the
projects ranging from one year, in case of fuel generation, to up to millions of years, in case
of carbonation.

With regard to CO2-EOR projects, all the conducted studies on lifecycle emissions
have shown substantial benefits in CO2 emission reduction. Studies have shown that
CO2-EOR lifecycle emissions for every barrel of incremental oil produced are 37% less than
in the case of conventional oil production methods. The practice has shown that about
60% of the CO2, injected with the purpose of a solvent used for driving the production
of residual oil, remains trapped in the reservoir pore space, while 40% of it is reproduced
with oil production. Ultimately, if a closed-loop injection system is applied, which is a
common case when CO2 is a commodity that must be purchased or when it is generated as
waste during natural gas processing, up to 95% of the cumulatively injected CO2 within
the CO2-EOR project remains permanently sequestrated in the oil reservoir.

When considering lifecycle emissions of CO2-EOR projects, within the “gate-to-gate”
(only CO2-EOR activities), the most carbon (and energy) intensive component is gas
compression. When conducting “gate-to-grave”, and especially when conducting “cradle-
to-grave” lifecycle emission analysis, due to various possible variants of all the processes
involved within all the segments covered by the analysis (upstream-CO2 generation, CO2-
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EOR activities and downstream-utilization of the produced oil), and the lack of LCA
methodologies specific for CO2-EOR projects (and CCUS/CCS projects in general), emis-
sion assessment is quite complex resulting in various uncertainties and wide flexibilities,
which impedes the cross-referencing and comparison of CO2-EOR projects to other climate-
mitigation strategies.
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26. Novak Mavar, K.; Gaurina-Med̄imurec, N.; Hrnčević, L. Carbon Capture, Utilization and Storage (CCUS)—The Environmental

Impact Rom Project Start to Closure. In Proceedings of the 7th International Symposium Mining and Environmental Protection,
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