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Abstract: Aluminum (Al) toxicity is a major environmental stress that inhibits plant growth and
development. There has been impressive progress in recent years that has greatly increased our
understanding of the nature of Al toxicity and its mechanisms of tolerance. This review describes the
transcription factors (TFs) and plant hormones involved in the adaptation to Al stress. In particular,
it discusses strategies to confer plant resistance to Al stress, such as transgenic breeding, as well as
small molecules and plant growth-promoting rhizobacteria (PGPRs) to alleviate Al toxicity. This
paper provides a theoretical basis for the enhancement of plant production in acidic soils.

Keywords: Al toxicity; Al tolerance mechanism; Al tolerance strategy

1. Introduction

Aluminum (Al) is the third most abundant chemical element in the earth’s crust. Al
mainly exists as aluminosilicates and oxides with non-phytotoxicity in neutral or slightly
acidic soils. In acidic conditions (pH < 5.0), the mineral form of Al dissolves to release the
soluble Al3+ species, which can rapidly inhibit root elongation and further affect the uptake
of water and nutrients, eventually resulting in nutritional deficiency and drought stress,
which lead to severe loss of plant productivity [1,2]. Acidic soils occupy approximately
50% of potentially arable lands worldwide, most of which are distributed in Southwest
Asia, Central Africa, and South America, as well as in Australia, eastern North America,
and throughout Europe [3,4]. In recent decades, with an increasing intensity of human
activities, especially an increase in acid deposition caused by global industrialization and
the high-intensity utilization of agricultural soil have led to the continuous entry of a
large amount of exogenous H+ into the soil, which has greatly accelerated the process of
soil acidification, raising a huge threat to sustainable agricultural development and food
security [5]. Liming can ameliorate Al toxicity by raising the soil pH, but it has little effect
on the improvement of the underlying soil and hardens the soil structure [6]. The world’s
population is also growing rapidly and is anticipated to increase to 9.7 billion by 2050 [7].
Therefore, understanding Al-resistance mechanisms and the development of strategies to
confer plant resistance for sustainable agricultural productivity remains imperative.

The research on Al stress has been updated rapidly in recent years, and a substantial
number of new genes have been proven to be involved. For example, Snowden et al. cloned
five wali1–5 (wheat aluminum induced) genes from the root tips of Al-treated Warigal wheat
(Triticum aestivum) [8]. Subsequently, Richards et al. cloned wali6 and wali7 in this variety
of wheat [9]. However, there are limited reviews on Al stress. Furthermore, more and
more evidence has confirmed the involvement and roles of Al in promoting plant growth,
improving phosphorus efficiency, and alleviating H+, manganese, and iron toxicities in
acidic conditions [10,11]. Additionally, Al stress confers plants tolerance to abiotic stresses
by activating the stress-related genes and attracts the plant growth-promoting rhizobacteria
(PGPRs) toward roots by inducing root exudates [10,12]. Therefore, more reviews on the
progress of research on Al stress are needed. This paper comprehensively reviews recent
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advances by studies on Al toxicity and tolerance in plants, thereby providing a theoretical
basis for the cultivation of Al tolerant varieties.

2. Effects of Aluminum (Al) Stress in Plants

Al stress has become the main limiting factor with multifarious detrimental effects in
plants (Figure 1). The Al3+ ion is a multivalent cation that rapidly and strongly binds to
negatively charged sites in the root [13]. It has been reported that Al changes the properties
of the cell wall (CW) and interferes with the transport of molecules across the cell membrane,
influencing an array of intercellular processes [14]. The major target site of Al toxicity is
the root apex, particularly the distal part of the transition zone [15]. Al binding of the
root causes loss of Mg2+, K+, and Ca2+, as well as limits the availability of indispensable
nutrients, especially phosphorus (P), magnesium (Mg), and molybdenum (Mo), therefore,
impairing root growth [16,17]. Al also reduces expansion, stomatal closure, and net
photosynthesis in leaves, and tends to bind with P to form insoluble complexes in acidic
soil, thereby resulting in P deficiency for plant growth [18,19]. Likewise, Al stress decreases
the phytoextraction capability from contaminated soils using hyperaccumulators [20].
Moreover, Al stress can cause the production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), which trigger a series of free radical chain reactions, including the
peroxidation of the cell membrane system, decrease in enzyme activities, decomposition of
chlorophyll, and breakage of the DNA strand [21]. Recently, Al stress has been reported
to disturb soil rhizobia by affecting the efficacy of nodulation and N-fixation in legume
species, and therefore influences the balance of hormones in plant roots, which has been
proposed to cause growth inhibition [22,23]. Intriguingly, Al3+ has been regarded as a
beneficial element in the growth of some plants in acidic soil, and Al-induced growth
enhancement in tea plants has been associated with the maintenance of DNA integrity in
meristematic cells and increased uptake of nutrient elements [10,24,25].
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Figure 1. Adverse detrimental effects of aluminum (Al) stress and their location in plants.

3. Al Tolerance Mechanisms in Plants

Plants thriving in acidic soil have adaptations, including external exclusion and
internal tolerance, to detoxify Al [3,26]. External exclusion prevents Al from entering
cells through Al-induced root exudation of organic compounds into the rhizosphere,
decreasing the capacity of CWs to bind Al3+ and rhizosphere alkalization. Internal tolerance
mainly includes the uptake and sequestration of Al in the vacuole and the improvement of
antioxidant capacity inside cells [5,27]. Recently, various approaches have been used to
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study the mechanisms of Al tolerance in plants. Transcriptome, proteome, metabolome,
mutation breeding methodologies, and several Al-tolerant genes have been reported to be
involved in the secretion of organic acids (OAs) for Al3+ chelation, CW modification for
the reduction in Al content, pH increase in the rhizosphere, etc. (Table 1).

Table 1. Genes confirmed to be involved in Al tolerance in recent years.

Genes Description Plant Species Functions References

AhFRDL1 Ferric reductase defective-like 1
protein Arachis hypogaea Transport citrate [28]

AtPrx64 Class III peroxidase Arabidopsis thaliana Peroxidase [29]

AvSAMS1 S-adenosyl methionine
synthetase Andropogon virginicus Alterations of methylation status [30]

BoALMT1 Aluminum induced malate
transporter Brassica oleracea Transport malate [31]

BdMATE

Multidrug and toxic compound
extrusion

Brachypodium distachyon

Transport citrate

[32]
GmMATE75 Glycine max [33]
GmMATE79 Glycine max [33]
GmMATE87 Glycine max [33]

GsMATE Glycine soja [34]
PtrMATE1 Populus tomentosa [35]
PtrMATE2 Populus tomentosa [35]
TaMATE1B Triticum aestivum [36]

FeSTAR1 Half-type ABC transporter Fagopyrum esculentum Affect cell wall hemicellulose
metabolism [37]

GmGRPL Glycine-rich protein-like protein Glycine max
Regulating the level of

indole-3-acetic acid (IAA) and
ethylene

[38]

GmIREG3 Iron regulated/ferroportin Glycine max Sequestrating Al into the
vacuoles [39]

GmME1 NADP-malic enzyme Glycine max NADP-malic enzyme activity [40]
HtNHX1 Sodium (potassium)/proton

antiporters
Helianthus tuberosus Na+/H+ antiporter [41]

HtNHX2 Helianthus tuberosus [41]

HvABCB25 ATP binding cassette
transporters Hordeum vulgare Vacuolar Al sequestration [42]

MsCS Citrate synthase Medicago sativa Citrate synthesis [43]

MsPG Polygalacturonase Medicago sativa
Decreasing Al accumulation and

increasing porosity and
extensibility of cell walls

[44]

NtSUT1 Sucrose transporter Nicotiana tabacum Sucrose uptake [45]
OsAUX3 Auxin carrier Oryza sativa Auxin influx carrier [46]
VuAAE3 Acyl activating enzyme Vigna umbellata Oxalyl-CoA synthetase [47]

VuFDH Formate dehydrogenase Vigna umbellata Catalyze the oxidation of
formate [48]

ZjOMT Methyltransferase Zoysia japonica Melatonin synthesis [49]

ZmAT6 Aluminum tolerance protein Zea mays Scavenging reactive oxygen
species [50]

ZmPGP1 P-glycoprotein Zea mays Auxin efflux carrier [51]

3.1. External Exclusion Mechanisms

In the Al tolerance mechanism, plants can secrete OAs, such as citrate, malate, and
oxalate, from roots under Al stress [3,26,52]. Accumulating evidence has shown that citrate
is more dominant than malate and oxalate in response to Al stress [3]. Al-induced secretion
of OAs is mediated through anion channels or transporters [53]. To date, Al-activated
malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) have
been identified [5,16,17,27]. Since Sasaki et al. identified TaALMT1 from wheat [54], it has
been discovered that ALMT is involved in Al-induced secretion of malate to alleviate Al
toxicity in Arabidopsis [55,56], barley (Hordeum vulgare) [57], rape (Brassica napus) [58,59],
maize (Zea mays) [60], Yorkshire fog (Holcus lanatus) [61], Camelina (Camelina sativa) [62],
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rubber tree (Hevea brasiliensis) [63], and cabbage (Brassica oleracea) [31], etc. Interestingly,
TaALMT1 also plays a role in alkaline tolerance by promoting exudation of both malate
and gamma-aminobutyric acid (GABA) in wheat. In addition, MATEs, which are well
characterized as multidrug transporters, can transport various substrates, such as citrate,
secondary metabolites, and plant hormones, through electrochemical cation gradients [64].
In recent years, MATE genes have been identified from various plant species, including
Arabidopsis [65], cabbage [66], Brachypodium distachyon [32], eucalyptus (Eucalyptus camal-
dulensis) [67], buckwheat (Fagopyrum esculentum) [68], soybean (Glycine max) [33,69,70],
Rubiaceae (Psychotria rubra) [71], sorghum (Sorghum bicolor) [72], rice bean (Vigna umbel-
lata) [73–76], maize [77,78], wheat [36], wild soybean (Glycine soja) [34], etc. The difference
in cell location and Al-induced expression patterns of MATE transporters have been de-
termined. For instance, FeMATE1 localized on the plasma membrane (PM), is specifically
expressed in roots, whereas FeMATE2 located on the Golgi membrane, is expressed in both
the roots and the leaves [68]. Al stress could induce PtrMATE1 expression in 12 h, in con-
trast to the expression pattern of PtrMATE2, which occurred 24 h after Al3+ treatment [35].
VuMATE1 was expressed at 6 h after Al stress, whereas VuMATE2 was expressed at the
early stage of Al stress [73,76]. However, most plants that adopt external exclusion need to
protect the root tip from Al toxicity directly on the root surface and ensure the dynamic
balance of plant essential nutrients [79]. Al is the most abundant metal element in the
earth’s crust; plants cannot alleviate all Al toxicity in acidic soil but can neutralize a portion
around the root tip. Therefore, the first reaction of plants to Al toxicity is to prevent the Al3+

around the root tip from entering the root cells, which may be the main target of OAs [80].
The transmembrane transport of OAs depends on the driving force formed by the

proton electrochemical gradient on both sides of the PM, which provides continuous power
for organic acid secretion [81,82]. Al stress increases the activity of PM H+-ATPase and
inhibits the expression of VHA-a2, VHA-a3, and vacuolar proton pump activity, and there-
fore increases the proton gradient on both sides of the PM and promotes OAs secretion by
AtALMT1 and AtMATE [83]. Al stress reduces the entry of OAs into vacuoles by inhibiting
vacuolar proton pump activity and activating the PM transport system, which secretes large
amounts of intracellular OAs to the apoplast. While OAs secretion is blocked, vacuolar
proton pump activity is activated, indicating that intracellular Al tolerance may be an
alternative [83]. Additionally, it is known that OAs secretion depends on the maintenance
of internal concentrations of OAs. Zhou et al. identified a cytosolic NADP-malic enzyme,
GmME1, which was implicated in the organic acid pool and confers higher Al resistance by
increasing internal malate and citrate concentrations and their external efflux [40]. Recently,
Sun et al. found that the level of the MsCS transcript was higher in Al tolerant cultivar as
compared with the Al sensitive cultivar and the activity of citrate synthase (CS) affected Al
resistance through citrate concentration and exudation in alfalfa cultivar [43]. These results
suggest that OAs secretion can be regulated through the activation of OA transporters, PM
H+-ATPase activity, and improvement of the internal OAs pool.

In addition to the secretion of OAs, the release of phenols has been verified to have
the capacity to detoxify Al through chelating Al3+ ions. For example, Al and silicon (Si)
trigger the release of catechol, catechins, and quercetin by root tips, which could potentially
detoxify Al [84]. Ma et al. also found that phenolic compounds were involved in coping
with Al toxicity in the Chinese fir by comparative transcriptome [85]. Chen et al. reported
the enhancement of polyphenolic metabolism as an adaptive response to Al stress in lettuce
roots [86]. Recently, the findings of Fu et al. indicated that Al-polyphenol complexes
improved Al resistance in tea plants [87]. Therefore, a comprehensive exploration of
the roles of phenolic compounds under Al stress might be an ideal target for genetic
engineering in the future.

The CW is the first barrier for plants to resist external stress and has been recognized
as the major target of Al toxicity; plants can alleviate Al stress by modifying the CW [88].
For example, OsSTAR1 interacts with OsSTAR2 to form an ATP-binding cassette (ABC)
transporter complex, which is specifically responsible for transporting uridine diphosphate
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(UDP)-glucose and modifying CWs in rice [89]. Similarly, FeSTAR1 and FeSTAR2 also
form an ABC transporter complex, which participates in Al tolerance through the CW
matrix polysaccharide metabolism in buckwheat [37,90]. Recently, Fan et al. showed that
abscisic acid (ABA) alleviation of Al toxicity in rice beans depends on ABI5-mediated CW
modification and osmoregulation [91]. More recently, Liu et al. identified a 4-coumarate,
which influences Al resistance through the modification the CW [46]. Moreover, pectin
methylesterase (PME) plays an important role in Al tolerance by regulating the degree of
pectin esterification in the CW, which converts highly methylated pectin into a negatively
charged demethylation form, resulting in more Al3+ binding to pectin [92]. Overexpression
of OsPME14 accumulated the content of Al in the root tip CW and increased its sensitivity
to Al in rice [93]. Furthermore, it was found that Al-tolerant varieties showed higher
methylated pectin ratio and lower PME activity in rice, corn, and buckwheat [13,94,95].
Therefore, Al-resistant crop varieties can be cultivated by reducing the pectin content of
plant root tips or increasing the degree of methylation of pectin.

Additionally, rhizosphere alkalization is one of Al tolerance mechanisms by reducing
the solubility of Al [96]. For example, Yang et al. showed that elevated pH from 2.5
to 4.0, alleviates the Al-toxicity of Citrus by increasing root accumulation of malate and
citrate [97,98]. Further experiment showed that raised pH alleviates Al-induced a decrease
in total soluble protein level and an increase in electrolyte leakage in citrus leaves and roots
by conferring the ability to maintain a balance between production and detoxification of
ROS and methylglyoxal [92]. Moreover, Liu et al.’s study on wild barley showed that low
pH and higher Al tolerance in XZ16 were associated with a higher ability of H+ uptake
and rhizospheric alkalization [99]. Magnesium promotes the elevated root surface pH
regulation in Populus, resulting in root surface alkalization in the transition zone, which
alleviates the toxicity of high concentration Al [100].

3.2. Internal Tolerance Mechanisms

Internal tolerance mechanisms are mainly involved in Al detoxification, uptake,
translocation, and accumulation of non-phytotoxic complexes of Al in the various or-
gans [101,102]. For instance, buckwheat, hydrangea, and tea can accumulate a large
amount of Al in the aboveground parts via transporting nontoxic Al complexes [103–105].
Several transporters have been reported to be involved in the absorption, sequestration,
and transportation of Al from roots to aboveground parts in plants. In rice, OsNrat1, a
PM-located transporter, belongs to the natural resistance-associated macrophage protein
(Nramp) and has low similarity with other Nramp members, which specifically transports
Al3+ rather than bivalent metals (Mn2+, Fe2+, and Cd2+) [102]. Bioinformatics suggest that
the Ala-Ile-Ile-Thr element is the key determinant of Nrat1 for Al selectivity [106]. In Ara-
bidopsis, AtALS3 acts as an Al transporter to redistribute Al outside sensitive tissues [107].
Moreover, OsALS1, an ABC transporter located in the tonoplast, sequestrates Al3+ in
the vacuole. The knockout of OsALS1 leads the high sensitivity of rice to Al stress [26].
FeALS1.1 and FeALS1.2, OsALS1 homologs, can also sequestrate Al3+ in the vacuoles
and detoxify Al in the roots and leaves in buckwheat [108]. Likewise, the AvABCG1
transporter confers Al tolerance by accumulating Al3+ in specific areas of Andropogon vir-
ginicus [109]. HvABCB25 transports Al from the cytoplasm to the vacuoles for sequestration
in barley [42]. In addition, HmPALT1 and HmVALT1 are involved in transporting Al in
hydrangea (Hydrangea macrophylla) [105]. The mechanism of Al detoxification in plants is
achieved by forming non-phytotoxic complexes of small molecular organic compounds
with Al3+ [10,27,52]. NIP1;2, the closest homolog to HmPALT1, facilitates the transport of
Al-malate from the CW to the symplast in Arabidopsis [110]. NIP1;2-mediated transport
of Al-malate complex depends on Al-induced malate secretion mediated by AtALMT1.
Therefore, the coordinated operation of the Al detoxification mechanism between external
and internal parts of the plants is linked by NIP1;2 and AtALMT1.

Studies have showed that the transportation of other ions could also alleviate Al
toxicity [19]. For example, Ca2+ serves as an essential second messenger to modulate
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developmental plasticity in plants, which reduces the concentration of active Al and fix-
ation of P under Al stress [111,112]. Treatment with higher Ca2+ concentration alleviates
Al-induced inhibition of root growth, which is attributed to higher cytosolic Ca2+ concen-
trations through specific Ca2+ signatures triggering downstream responses [113]. Moreover,
Mg2+ is involved in metabolism-activating enzymes such as CS and malate synthase by
functioning as a cofactor for enzymes, thereby activating OA synthesis to alleviate Al
toxicity [114]. Overexpression of AtMGT1 and OsMGT1 confers Al tolerance in plants by
increasing the absorption of Mg and inhibiting potential targets of Al [115]. Li et al. showed
that Mg promoted root growth and increased Al tolerance by modulating the production
of nitric oxide in Arabidopsis [116]. Similarly, Kong et al. showed that the addition of Mg to
the Al treatment solution alleviated Al-induced inhibition of root growth, suppressed Al
uptake, and reduced hydrogen peroxide (H2O2) concentration in maize [99]. Furthermore,
K+ efflux was related to Al tolerance by accompanying OA secretion [99]. Recently, Li et al.
showed that ectopic expression of either HtNHX1 or HtNHX2, from Jerusalem artichoke
(Helianthus tuberosus), could enhance rice tolerance to Al stress and soil acidity by altering
K+ and H+ fluxes and the CW structure [41]. In addition, the application of zinc has been
shown to alleviate Al-induced damage via competing with Al and increasing the IAA
content in alfalfa [46]. Sulfate supplementation activates short-term tolerance to Al toxicity
in perennial ryegrass (Lolium perenne) roots by upregulating total superoxide dismutase
(SOD) activity [117]. Further studies are required to investigate how the adjustment of the
formula of fertilizer may alleviate Al toxicity.

Analogous to other abiotic stimuli, Al stress induces the overproduction of ROS and
lipid peroxidation, resulting in serious cell damage and even cell death [118]. To protect
plants from Al-triggered oxidative stress, plant tolerance to Al toxicity is enhanced by
improving the activity of ROS-scavenging enzymes, reducing the production of ROS, and
weakening lipid peroxidation [119]. For example, overexpression of WMnSOD1, an Al-
induced SOD, increases oxidative resistance, and Al tolerance [120]. Overexpression of
AtBCB and NtGDI1 ameliorates oxidative stress and confers a degree of resistance to Al
stress [121]. Overexpression of AtPrx64 reduces the accumulation of ROS and Al, thereby
promoting root growth [29]. Recently, ZmAT6, a chloroplast-located protein, has been
shown to increase the expression level of the ZmSOD gene and improve the activity of
antioxidant enzymes SOD in the antioxidant enzymatic system. In addition, the over-
expression of ZmAT6 in maize and Arabidopsis increased the activity of several enzymes
within the antioxidant system, thereby enhancing Al toxicity tolerance [50]. Moreover,
methyltransferase could reduce ROS, lipid peroxidation, and ion leakage, and overex-
pression of the methyltransferase gene can improve stress resistance of plants [122]. For
example, overexpression of ZjOMT enhanced Al tolerance of Escherichia coli by increasing
the content of melatonin [49]. In addition, a metabolic change is an internal tolerance
mechanistic in response to Al stress [48]. Overexpression of VuFDH increased Al tolerance,
which is likely due to their decreased Al-induced formate production in tobacco (Nicotiana
tabacum) [48]. Likewise, VuAAE3 played a critical role in Al tolerance mechanisms via
function as oxalyl-CoA synthetase [47].

4. Transcription Factors Are Involved in Adaptation to Al Stress

Transcription factors are protein complexes that regulate the transcription of genetic in-
formation from DNA to mRNA via specific binding to cis-acting elements in the promoters
of target genes and acting downstream of signaling cascades in response to environmental
stress [123]. The role of TFs in the Al signaling pathway has attracted significant attention
since the first TF, sensitive to proton rhizotoxicity 1 (STOP1) and involved in Al tolerance,
was identified. More TFs have also been identified to be involved in Al-induced signaling
pathways (Table 2).
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Table 2. Transcription factors involved in Al tolerance.

TFs Categories Plant Species Functions References

AtHB7 HD-Zip I transcription
factor

Arabidopsis thaliana Regulate the capacity of the cell wall to bind Al [124]
AtHB12 Arabidopsis thaliana [124]

AtWRKY47 WRKY transcription factor Arabidopsis thaliana Regulating genes responsible for cell wall
modification [125]

OsWRKY22 Oryza sativa Activation of OsFRDL4 expression and
enhancement of citrate secretion [126]

CcSTOP1

C2H2-type zinc finger
transcription factor

Cajanus cajan Regulate genes for OA transporters
Regulate GhMATE and GhALMT1 expression

Regulate the downstream Al or
low pH resistance genes

[127]
GhSTOP1 Gossypium hirsutum L. [128]
GmSTOP1a Glycine max [129]

GsGIS3 Glycine soja Regulating Al-tolerance-related genes [130]

HvATF1 Hordeum vulgare L. Regulating multiple downstream genes
involved in Al resistance [131]

NtSTOP1 Nicotiana tabacum Activation of NtMATE expression [132]

OsART2 Oryza sativa Regulate at least four genes implicated in Al
tolerance [133]

SbSTOP1 Sorghum bicolor L. Regulate SbMATE and SbSTAR2 expression [134]

GsMAS1 MADS-box transcription
factor Glycine Soja Accumulation of Al-activated citrate

and malate [135]

HvHOX9 Homeobox-leucine zipper
transcription factor Hordeum vulgare L. Regulate the capacity of the cell wall to bind Al [136]

MdMYC2 bHLH transcription factor Malus domestica Activation of ethylene biosynthesis [137]

VuABI5 Basic-leucine zipper
transcription factor Vigna umbellata Regulate genes involved cell wall modification

and osmoregulation [91]

VuNAR1 NAC-type transcription
factor Vigna umbellata Regulate cell wall pectin metabolism [138]

AtSTOP1, a C2H2-type zinc finger transcription factor, has been found to be critical
for both proton and Al tolerance, which regulates the expression of downstream-STOP1 Al-
resistance genes (Figure 2). However, the expression of AtSTOP1 is unaffected by Al stress,
which suggests that AtSTOP1 is modulated by Al at posttranscriptional or posttranslational
levels. Zhang et al. showed that an F-box protein-encoding gene regulation of the Al-
activated malate transporter expression 1 (RAE1) regulates the stability of STOP1 via the
ubiquitin-26S proteasome pathway in Arabidopsis. This indicates that STOP1 is regulated at
a posttranslational level [139]. Recently, Guo et al. showed that hyperrecombination protein
1 (HPR1) regulates nucleocytoplasmic STOP1 mRNA export to modulate the expression
of STOP1 downstream genes and Al resistance of plants, highlighting that the regulation
of STOP1 by HPR1 occurs at a posttranscriptional level [140]. More recently, Fang et al.
showed that the SUMOylation of STOP1 is involved in the regulation of Al resistance [141].
In this study, STOP1 is mono-SUMOylated at K40, K212, or K395 sites; and blocking STOP1
SUMOylation reduced Al resistance through the reduction in STOP1 stability and the
expression of STOP1-regulated genes. Moreover, the SUMO protease ESD4 specifically
interacts with deSUMOylates STOP1, and mutation of ESD4 increases the SUMOylation of
STOP1 and the expression of AtALMT1, which contribute to Al stress tolerance.
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The functions of STOP1-like proteins, including CcSTOP1 [127], GhSTOP1 [128],
GmSTOP1 [129], NtSTOP1 [132], and SbSTOP1 [134], in other plant species, have been
characterized, and proven to be essential for the expression of several Al-tolerance-related
genes. For example, GmSTOP1 contributes to both Al resistance and H+ tolerance, and
overexpression of GmSTOP1a increases the expression of GmALMT1 and decreases Al
accumulation in soybean hairy roots under Al stress [129]. AtSTOP1 and OsART1 are both
central regulators involved in Al tolerance through the regulation of multiple downstream
genes. However, the rice homolog (Al resistance transcription factor, OsART1) regulates
only Al tolerance genes [142]. Furthermore, OsART2, a homolog of OsART1, has been
shown to regulate Al tolerance independent of the OsART1-regulated pathway in rice
and to play a supplementary role in Al tolerance [133]. HvATF1 (Al-tolerant transcription
factor 1) is the closest homolog of AtSTOP1 and OsART1 and alleviates Al stress through
regulating multiple genes in barley; this provides insights into the different molecular
mechanisms of Al tolerance in plants [131]. Liu et al. also cloned a C2H2 zinc-finger
protein, GsGIS3, which enhanced tolerance to Al toxicity by regulating Al-tolerance-related
genes [130].

In Arabidopsis, two HD-Zip I TFs (AtHB7 and AtHB12) have been identified to specifi-
cally participate in Al resistance through a reversed genetic approach. Interestingly, AtHB7
and AtHB12 promote root growth through positive regulation of the cell number and cell
length under normal conditions, while playing opposite roles by regulating the capacity of
the CW to bind Al3+ under Al stress [124]. Recently, HvHOX9, a novel homeobox-leucine
zipper transcription factor, was identified to play a critical role in Al tolerance in barley
by decreasing root CW Al binding, increasing apoplastic pH in the root, and silencing of
HvHOX9 which increased Al accumulation in root CW and decreased H+ influx after Al
exposure [136]. Li et al. showed that WRKY47 was involved in altering Al distribution be-
tween the apoplast and symplast by regulating the genes responsible for CW modification,
thereby improving Al tolerance [125]. Lou et al. reported that a NAC-type TF, VuNAR1,
is involved in Al resistance in rice beans, and overexpression of VuNAR1 induced higher
WAK1 expression and low pectin content via directly binding to the WAK1 promoter and
regulating CW pectin metabolism [138]. Li et al. demonstrated that OsWRKY22 contributes
to Al tolerance by functioning together with OsART1 in the positive regulation of OsFRDL4
expression and citrate secretion [126]. A MADS-box transcription factor, GsMAS1, presents
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a constitutive expression pattern induced under Al stress. The overexpression of GsMAS1
enhanced the tolerance to Al stress in Arabidopsis with larger values of the relative root
length and higher proline accumulation as compared with those of wild type (WT) under
Al stress through Al stress-related pathways [135]. These findings emphasize the need to
study transcription factors involved in Al tolerance, which could help to understand the
entire molecular network of Al tolerance in plants, elucidate the mechanism of plant Al
tolerance, and lay a theoretical foundation for the cultivation of Al-tolerant varieties using
modern molecular techniques.

5. Plant Hormones Involved in Adaptation to Al Stress

Plant hormones play an important role in the internal tolerance mechanisms [23,143].
For example, TAA1 regulates auxin biosynthesis in the root apex transition zone (TZ) in
Arabidopsis, which mediates Al-induced inhibition of root elongation [144]. Subsequently,
flavin monooxygenase-like proteins (YUCCA), which act downstream of TAA1, have been
reported; they regulate auxin accumulation in the root apex TZ in response to Al stress,
thereby controlling root growth [145,146]. The synergistic effect of auxin and cytokinin in
response to Al stress in Arabidopsis has been described; Al stress induces the expression of
the key gene of cytokinin synthesis by mediating Al-induced auxin signaling, eventually
leading to the accumulation of cytokinin and inhibiting root growth in the root apex
TZ [147]. Moreover, miR393 is involved in Al-induced root growth inhibition by regulating
auxin signaling in barley [148]. Exogenous IAA treatment could promote the secretion
of H+ in the plant rhizosphere, balance the level of H+ in internal and external cells, and
reduce Al content in pectin by reducing the content of pectin and PME activity in the
root tip. This reduces Al accumulation in the CW [149,150]. Wang et al. investigated an
auxin influx carrier, OsAUX3, which is involved in root growth in response to Al stress
by affecting acropetal auxin transport in rice [46]. Similarly, Zhang et al. found that an
auxin efflux carrier, ZmPGP1, was involved in root growth inhibition in maize under
Al stress [44]. The Al tolerance of OsAUX3 knockdown lines and zmpgp1 mutants was
significantly higher than that of WT but auxin accumulation had an opposite trend in root
tips. These findings show that auxin may play different roles in Al-induced root growth
inhibition in different plants.

Melatonin is universally distributed in plants, and it plays important roles in various
physiological and biochemical processes [151]. Recent studies have shown that melatonin
ameliorates Al toxicity by scavenging ROS and secreting OAs. For example, melatonin
enhanced the activities of antioxidant enzymes and increased the exudation of malate and
citrate in soybean [152]. Moreover, melatonin interferes with nitric oxide (NO)-mediated
reduction in cell division cycle progression and the quiescent center cellular activity, which
subsequently alleviates Al-induced root growth inhibition [153]. Furthermore, melatonin
confers Al tolerance by decreasing Al binding in the CWs. In wheat seedlings, melatonin
augments antioxidants and induces antioxidant enzymes to control ROS and also enhances
the exclusion of Al from the root apex by altering CW polysaccharides [154]. Therefore,
melatonin ameliorates Al toxicity by building a defense line in response to Al stress, which
suggests that applying exogenous melatonin or enhancing melatonin biosynthesis may be
an effective strategy for enhanceing plant Al resistance.

Ethylene mediated Al-induced inhibition of root growth has also been confirmed
using mutants defective in ethylene signaling [155]. An et al. found that MdMYC2 nega-
tively regulates Al tolerance through upregulating the expression of ethylene-responsive
genes by binding to the promoter of MdERF3 (positive regulator of ethylene biosynthe-
sis) [137]. The synergistic action of auxin and ethylene mediates Al-induced inhibition of
root growth [143,155]. Moreover, Chen et al. showed that GmGRPL conferred Al tolerance
in Arabidopsis through regulation of the level of IAA and ethylene and improvement of
antioxidant activity [38]. Similarly, overexpression of the GsERF gene enhanced Al toler-
ance of Arabidopsis through an ethylene-mediated pathway [156]. In addition, ABA was
involved in regulating Al tolerance [157]. For example, ABA was involved in the early tol-
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erance mechanism in buckwheat seedlings by increasing the levels of ROS and activities of
catalase (CAT) and ascorbate peroxidase (APX) [158]. Recently, Fan et al. showed that ABA
alleviation of Al toxicity in rice beans depends on ABI5-mediated CW modification and
osmoregulation [91]. These findings indicate that plants respond to Al stress by regulating
the distribution and levels of various plant hormones.

6. Small Molecules to Alleviate Al Toxicity

Al toxicity is a major limiting abiotic factor for plant growth and productivity in acidic
soils. In the past few decades, various strategies have been used to alleviate Al toxicity.
Interestingly, the use of small molecules to alleviate Al toxicity has been confirmed. Among
these, there are many reports about Si, boron (B), and polyamines (PA).

Silicon is the second most abundant element in the earth’s crust after oxygen and
has versatile functions in plant biology, especially in plant defense and tolerance to both
biotic and abiotic stressors [159]. Si ameliorates the effects on Al toxicity in maize [160],
Norway spruce [161], rice [106,162,163], ryegrass [164], soybean [94], sorghum [165], and
wheat [166]. For example, Si treatment was shown to increase the growth of plant shoots
grown in the presence of Al without influencing the root growth in upland rice [163]. In
ryegrass, Si-mediate the alleviation of Al toxicity by the modulation of Al/Si uptake and
antioxidant performance [164]. In soybean and sorghum, Si reduces Al toxicity through
the formation of Al-Si complexes in mucigel and outer cellular tissues, thereby decreasing
the binding of Al to the CW [165]. These results suggest that the alleviation of Al toxicity
by Si is an effective strategy of Al detoxification for improving plant tolerance in acid soils.

Boron is an essential microelement for plant growth and is involved in alleviating
Al toxicity. This has been identified in many plant species, including citrus [167–169],
common bean [170], pea [171–173], rapeseed [174], sunflower [175], and wheat [176]. Li
et al. reported that pretreatment with B promoted polar auxin transport driven by the
auxin efflux transporter, PIN2, led to the downstream regulation of the PM-H+-ATPase,
resulting in elevated root surface pH, which is essential to decrease Al accumulation in this
Al-targeted apical root zone [173]. Moreover, pretreatment with B significantly increased
the activity of APX, peroxidase (POD), and CAT, therefore, increasing the elimination rate
of H2O2 in rice roots [177]. Furthermore, Yan et al. revealed that B pretreatment improved
root growth by weakening Al binding to alkali-soluble pectin, and reduced Al fixation on
the CW reduced Al accumulation, resulting in the alleviation of Al toxicity [178]. Therefore,
the application of B in nutrient solutions significantly increases root growth by alleviating
Al toxicity, emphasizing the feasibility of this method.

Polyamines are important signaling molecules in the ROS regulation under Al stress.
The application of putrescine could protect plant roots against Al-induced oxidative stress
by maintaining the antioxidant capacity in wheat [179,180]. Putrescine could reduce
the Al content in the CW by inhibiting the production of ethylene, therefore, alleviating
the inhibition of the root growth in wheat and rice [181,182]. Likewise, the application
of spermidine alleviates the adverse effects of Al toxicity by improving the antioxidant
system, as has been demonstrated in rice and mung bean [183,184]. These findings show
that the application of polyamines or improvement of endogenous polyamine content is an
effective strategy for plants to adapt to acidic soil.

P, OAs, biochar, etc. reduce the effect of Al toxicity. The addition of P relieves Al
toxicity by increasing the carbohydrate content and relieving the inhibition of protein
synthesis [185]. The application of malate has also been shown to alleviate Al toxicity
in Pinus massoniana seedlings [186]. The application of biochar increases the pH value,
water holding capacity, and available nutrients in acidic soil, and also improves soil texture
and aggregation, therefore, relieving the plants [187]. Lin et al. showed that biochar
alleviates Al toxicity in achieving cabbage productivity [188]. Xia et al. reported that
biochar mitigates the Al toxicity of maize, which contributes to the improvement of soil
quality and enhancement of nitrogen use efficiency in acidic soil [189]. These results
show that the ability of small molecules to alleviate Al toxicity is a strategy in the acidic
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soil. However, further studies are needed to ascertain promising and sustainable small
molecules for ameliorating Al toxicity.

7. Plant Growth-Promoting Rhizobacteria (PGPRs) Alleviate Al Toxicity

Plant growth-promoting rhizobacteria are known to exert beneficial effects on plant
growth and health [190,191]. Several studies have reported the application of PGPR mit-
igated Al toxicity in acidic soil (Table 3). For example, inoculation with Pseudomonas
fluorescens 002 decreased the impact of Al toxicity in maize roots and increased the root
lengths and numbers [192]. Similarly, P. plecoglossicida Pp20 conferred maize root toler-
ance to Al toxicity by producing the enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase and IAA [193]. The authors further reported that Bacillus toyonensis Bt04 re-
duced Al accumulation and lipid peroxidation in maize seedlings, promoted maize growth,
and enhanced root development [194]. Moreover, inoculation of B. megaterium CAM12
and Pantoea agglomerans CAH6 improves Vigna radiata growth and reduces Al uptake in
plants [195]. The subsequent experiment revealed that Rhodotorula mucilaginosa CAM4
reduced Al accumulation and conferred Al tolerance to Lactuca sativa [196]. Furthermore,
Al-resistant PGPR induced a higher expression level of Al-stress related genes, exudation
of OAs, and production of polysaccharides, thereby alleviating Al toxicity [197–199]. Addi-
tionally, Rhizobium panacihumi DCY116T was used as a potential PGPR, which produced
higher proline, phenolic, sugar contents, and related gene expressions, to induce ROS
scavenging activity in Al-stressed seedlings [200]. These studies support the application of
PGPR to improve plant growth in acidic soils, by functioning as a biofertilizer for healthy
and safe crop production.

Table 3. Plant growth-promoting rhizobacteria (PGPRs) alleviate Al toxicity.

Strains Function Target Plant Effect of Aluminum Imposed on
Plant References

Bacillus megaterium
CAM12 Produce siderophore Vigna radiata Reduced Al uptake [195]

Bacillus sp. PSB16 Produce OAs and
polysaccharides Oryza sativa Chelated the Al, increased solution

pH, and enhanced rice growth [197]

Bacillus toyonensis Bt04 Produce auxin and
cytokinin Zea mays

Reduced Al accumulation in the
young maize roots, promotes maize

growth, and enhances root
development

[194]

Burkholderia
ginsengiterrae N11–2

Produce auxins and
siderophores and

phosphate
solubilization

Arabidopsis thaliana
and Panax ginseng

Showed the higher expression level
of Al-stress related genes and higher

biomass and higher chlorophyll
content

[198]

Burkholderia seminalis
ASB21

Produce OAs and
polysaccharides Oryza sativa Chelated the Al, increased solution

pH, and enhanced rice growth [197]

Burkholderia
thailandensis ASB7

Produce OAs and
polysaccharides Oryza sativa Chelated the Al, increased solution

pH, and enhanced rice growth [197]

Chryseobacterium
polytrichastri N10

Produce auxins and
siderophores and

phosphate
solubilization

Arabidopsis thaliana
and Panax ginseng

Showed the higher expression level
of Al-stress related genes and higher

biomass and higher chlorophyll
content

[198]

Enterobacter sp. RJAL6
Secrete oxalate, citrate,

succinate and
siderophores

Lolium perenne Promote ryegrass growth by
forming Al-siderophore complexes [199]

Klebsiella sp. RC3
Secrete oxalate, malate,
citrate, succinate and

siderophores
Lolium perenne Promote ryegrass growth by

forming Al-siderophore complexes [199]

Klebsiella sp. RCJ4
Secrete malate, citrate,

succinate and
siderophores

Lolium perenne Promote ryegrass growth by
forming Al-siderophore complexes [199]
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Table 3. Cont.

Strains Function Target Plant Effect of Aluminum Imposed on
Plant References

Pantoea agglomerans
CAH6 Produce siderophore Vigna radiata Reduced Al uptake [195]

Pseudomonas fragi N8

Produce auxins and
siderophores and

phosphate
solubilization

Arabidopsis thaliana
and Panax ginseng

Showed the higher expression level
of Al-stress related genes and higher

biomass and higher chlorophyll
content

[198]

Pseudomonas
plecoglossicida Pp20

Produce ACC
deaminase and IAA Zea mays Increased in lengths of seminal roots

and root dry mass [193]

Pseudomonas simiae N3

Produce auxins and
siderophores and

phosphate
solubilization

Arabidopsis thaliana
and Panax ginseng

Showed the higher expression level
of Al-stress related genes and higher

biomass and higher chlorophyll
content

[198]

Stenotrophomonas
maltophilla Sb16

Produce OAs and
polysaccharides Oryza sativa Chelated the Al, increased solution

pH, and enhanced rice growth [197]

Pseudomonas
fluorescens 002 Releases IAA Zea mays

increased primary, lateral, and
seminal root lengths and numbers,

as well as root dry mass
[182]

Rhodotorula
mucilaginosa CAM4 Bioaccumulation of Al Lactuca sativa

Reduce proline and MDA contents,
and enhance accumulation of

antioxidant enzymes
[196]

Rhizobium panacihumi
DCY116T Produce IAA Panax ginseng

Produced higher proline, phenolic,
sugar contents and related gene

expressions to induce ROS
scavenging activity

[200]

Stenotrophomonas sp.
RC5,

Secrete malate, citrate,
succinate and
siderophores

Lolium perenne Promote ryegrass growth by
forming Al-siderophore complexes [199]

Serratia sp. RCJ6
Secrete malate, citrate

and
succinate

Lolium perenne Promote ryegrass growth by
forming Al-siderophore complexes [199]

8. Transgenic Approaches Manipulating Al-Tolerant Genes

Transgenic breeding is a promising tool for abiotic stress improvement in crops,
which can create new and significant sources of resistance with rapid multiplication poten-
tials [201]. In the previous decade, numerous studies were conducted to develop Al-tolerant
crop cultivars through the manipulation of Al-tolerant genes, mainly concentrating on the
secretion of OAs, Al sequestration, and defense system.

Al-induced OAs secretion is an important mechanism for controlling the degree of
resistance to Al toxicity in most plant species [5,17,27]. Therefore, increasing OAs secretion
is a research hotspot in the cultivation of Al-tolerant plant varieties. However, this is
mainly achieved through the genetic transformation of enzymes related to OAs metabolism
and OAs channel proteins. To date, ALMT and MATE have been identified to confer Al
tolerance through the secretion of malate and citrate. Particularly, heterologous expression
of ALMT or MATE confers Al-induced malate or citrate secretion and enhances their
Al tolerance in transgenic plants. For example, GmMATE13, GmMATE47, GmMATE75,
GmMATE79, and GmMATE87 have a citrate transport activity; and overexpression of these
genes have enhanced the tolerance of transgenic plants to Al toxicity in Arabidopsis [70,202].
Recently, AhFRDL1, a citrate transporter gene from peanut (Arachis hypogaea) that is
induced by both iron (Fe)-deficiency and Al stress, participated in both root-to-shoot
Fe translocation and Al tolerance. Overexpression of AhFRDL1 in Fe-efficient varieties
contributed to higher levels of Al tolerance and Fe translocation by promoting citrate
secretion [28]. Additionally, the secretion of OAs is related to the maintenance of internal
concentrations of OAs and the activity of PM H+-ATPase [43,81]. Therefore, the combined
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transformation of these multiple genes should be considered and explored for sustainable
applications in the future.

The compartmentalization and detoxification of vacuoles is an important internal
tolerance mechanism in plants [131,203,204]. Al transporters in the PM and tonoplast play
an important role and the genetic transformation of these transporters can significantly
improve the Al tolerance of plants. For example, overexpression of HvABCB25 significantly
improves Al tolerance and reduces Al accumulation of root tip cytoplasm in Tibetan wild
barley [42]. FeIREG1, an IREG transporter located in the tonoplast in buckwheat, plays
an important role in detoxification by sequestrating Al into vacuoles. Overexpression of
FeIREG1 enhances Al tolerance in Arabidopsis [203]. In soybean, the function of GmIREG3
is similar to that of FeIREG1, and overexpression of GmIREG3 enhances Al tolerance in
Arabidopsis [39]. In rice, Al transporter OsNrat1 and OsALS1 cooperate to detoxify Al.
Overexpression of OsNrat1 enhances Al tolerance in Arabidopsis [101]. In other plants,
OsNrat1 homologous genes, including ZmNrat1 [205] and SbNrat1 [206], have also been
reported to be involved in transporting Al. To the best of our knowledge, the co-genetic
transformation of Al transporters in the PM and tonoplast has not been reported. Hence,
their transformation into Al-sensitive plants to enhance Al tolerance is necessary.

Plants improve stress resistance by regulating the expression of tolerant genes. The
transformation of these genes can effectively improve Al tolerance of plants [201]. For
example, AvSAMS1 is a multiple tolerance gene and transgenic Arabidopsis showed a
higher tolerance to Al stress than Col-0 ecotype and also higher tolerance to other metal
stresses [30]. In addition, the DNA damage response (DDR) pathway maintains the
genome integrity under adverse conditions that affect DNA replication. The inhibition of
root growth regulated by DDR regulators in response to Al toxicity pinpoints DNA as a
primary target of internalized Al and also offers new strategies for obtaining Al-resistant
crops. Due to the highly conserved nature and function of the DDR, identified Arabidopsis
mutations may be easily mimicked in orthologous crop genes using the latest developments
in the CRISPR/Cas9 field [4], which provides useful insight into the genetic basis for a new
Al detoxification mechanism for improving plant tolerance to Al stress in acid soils.

9. Conclusions and Future Perspectives

Al stress is considered to be an important factor limiting plant growth in acidic soil,
but other minerals present in the soil can interact with Al [10]. This review covers the
current knowledge about Al resistance genes and the adaptive mechanisms of various
crops under Al stress. However, studies investigating the effect of Al interactions with
other restricting factors are scarce. These studies are imperative for developing plant
varieties in acidic soils.

The sensing of Al stress by plants and the transduction of the Al signal to activate
various downstream Al-tolerant strategies are fundamental frontier issues in plant sciences.
Studies have shown that signaling cascades of Al-induced citrate exudation comprised
heterotrimeric G-proteins, phospholipase C, inositol triphosphate, diacylglycerol, Ca2+,
and protein kinases [2,6]. However, there are limited reports on Al transmembrane signal
transduction. The Al receptor has not yet been identified, which is the most important
topic in plant Al stress research. Currently, salt and H2O2 sensors have been found
using Ca2+ imaging-based forward genetic screens, which inspires the identification of
Al receptor [207,208]. Future work should focus on the identification of early Al-sensing
components using genetic and biochemical approaches.

The rapid development of whole-genome sequencing and genome editing technology
provides more opportunities to reveal the mechanisms of Al tolerance and identify novel
Al-tolerant genes, which make it possible to cultivate Al-tolerant plant varieties using
modern biotechnology. Al tolerance in plants is a multi-level, multi-pathway, and multi-
gene control process. However, the improvement of Al tolerance of transgenic plants is
concentrated on one single gene. Therefore, the development of multiple Al tolerance
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genes is critical to enhancing the Al tolerance of plants in acidic soils through molecular
and conventional breeding.
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