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Abstract: To achieve strong, successful and commercial aqua-biotechnological microalgae applica-
tions, screening, isolation, molecular identification, and physiological characterizations are needed.
In the current study, a native cyanobacteria strain Arthrospira platensis NIOF17/003 was isolated from
the surface water of El-Khadra Lake, a saline-alkaline lake located in Wadi El-Natrun, Egypt. The
cyanobacterium was phylogenetically identified by 16S rRNA molecular marker and deposited in
the GenBank database (accession number MW396472). The late exponential phase of A. platensis
NIOF17/003 was reached at the 8th day of growth using Zarrouk medium, with a recorded dry
weight (DW) of 0.845 g L−1. The isolated strain showed 52% of protein, 14% of carbohydrate, biomass
productivity of 143.83 mg L−1 day−1, 8.5% of lipid, and lipid productivity of 14.37 mg L−1 day−1. In
general, the values of cetane number, iodine value, cold filter plugging point (52.9, 85.5 g I2/100 g
oil, and −2.2 ◦C, respectively) of the isolated fatty acid methyl esters are in accordance with those
suggested by international standards. Besides, applying algal-free lipid (FL) as biodiesel byproduct
in the production of rotifer (Brachionus plicatilis) revealed that a 0.6 g L−1 FL significantly increased
the rotifer population females carrying eggs, confirming that FL can be used efficiently for B. plicatilis
production. The current study concluded that the new isolate A. platensis NIOF17/003 is a promising
strain for double sustainable use in biodiesel production and aquaculture feed.

Keywords: Arthrospira platensis NIOF17/003; aquaculture; biodiesel production; byproduct; live-
feeds; blue-green algae; El-Khadra Lake; alkaline lake; Wadi El-Natrun

1. Introduction

Rapid consumption of fossil fuel requires the substitution-sustainable fuel source,
which can substitute the traditional fuel for the interpolation of the energy crisis with a
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lower environmental effect. Researchers and scientists are working to discover renewable,
sustainable, and eco-friendly energy sources to replace or reduce the conventional fuel
excess load. Therefore, discovering a sustainable source of fuel is a constantly dynamic
issue [1]. Nowadays, biodiesel becomes an appropriate substitution tool for researchers
and scientists for supplementing conventional fuel. Biodiesel’s characteristics are very
close to fossil diesel that can be used in the existing engine without any modulation. At
present, biodiesel’s production cost is from 1.5 to 3-fold more than fossil diesel due to
the high cost of raw feedstocks and unavailability of oil crops utilized for human food
consumption [2].

Algal biomass are considered an attractive natural source of bioactive materials that
can be utilized in several applications such as food industry [3], pharmaceuticals [4],
cosmetics [5], biogas and biodiesel [6,7], antimicrobial and antioxidant activities [3,8],
aquaculture [9–12], biofertilizers and bioremediation [13–16]. Therefore, the screening of
native microalgae species is necessary to realize a potent algal database with effective
commercial biotechnological applications [3,17]. In the near future, it is presaged that algal
biomass will be the most sustainable source for biodiesel production, due to its biodiesel-oil
contents which can reach more than 40-fold higher than those of other plants [18]. In
addition, the algal-free lipid biomass is filled with several other components that can be
utilized in many applications, including aquaculture feeds, animal feed additives, and
valuable bioactive compounds for cosmetic and pharmaceutical products [17,19].

Cyanobacteria, filamentous blue-green algae, have wide ranges of biotechnological
applications [2,4,14]. Over the world, Arthrospira (formerly named Spirulina) is one of the
most famous cyanobacterium strains that has been extensively cultured at mass commercial
scale [20,21]. The global production of Spirulina grew from 48 thousand tons in 2005 to
over 89 thousand tons in 2016 [22]. Until now, more than 30 species of Arthrospira have
been identified. The well-known dominant species includes Arthrospira platensis, A. maxima,
A. major, A. laxissima, A. caldaria, A. princes, A. subtilissima, A. subsalsa, A. spirulinoides and
A. curta [23]. Due to the unique metabolic compounds and biochemical composition of
A. platensis, this species is a strong candidate to utilize in many biotechnological applica-
tions such as human food supplements, pharmaceuticals, animal feed additives, omega- 3
fatty acids, essential amino acids, biofertilizer, and pigments [4,14,21,23,24]. Recently, due
to the considerations of biomass and lipid productivity, many authors stated that A. platensis is
considered one of the most magician feedstock for biodiesel production [2,20,23,25–27]. Inter-
estingly, several studies reported that the quality of biodiesel extracted from Arthrospira-oil
is agreed with the recommended specifications of international standards of Europe (EN
14214) and USA (ASTM6751−03) [23–27].

A. platensis species has the ability to exist and grow in various types of water like
seawater [28], freshwater [29], aquaculture wastewater [30], industrial wastewater [31],
agriculture wastewater [32], and domestic wastewater [33]. A. platensis is a filamentous,
spiral-shaped, blue-green alga that culture in alkaline water, with pH up to 11 [20]. These
unique environmental conditions have the priority to prevent external contamination
by pathogenic bacteria and/or other families of microalgae, while it cannot prevent the
contamination by other blue-green algae. A. platensis is not easily influenced by changes in
physical and chemical environmental conditions, like nutrient limitations, water tempera-
ture, light intensity, and salinity. Arthrospira strains naturally exist in high alkaline water
which contains carbonate or bicarbonate [23]. In Egypt, El-Khadra Lake is an Egyptian shal-
low alkaline lake located in Wadi El-Natrun, a depression hydrostatically jointed with Delta
and its lakes and hosts figures of main shallow alkaline lakes, reaching area about 162 acres.
The weather at Wadi El-Natrun is arid and naked, which leads to continuous evaporation
of its lake water generating great crusts of salts [34]. Determination of cyanobacteria in
El-Khadra Lake, especially Spirulina species which are a dominant species in the El-Khadra
Lake, had already been reported [34–38]. However, Arthrospira species of El-Khadra Lake
is not yet exposed to evaluate their potential as biodiesel or aquaculture feedstuff.
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Therefore, the current work aims to study the potential of biodiesel production, in
integration with aquaculture feedstuff as biodiesel-byproduct, of Arthrospira strain, a native
pure strain isolated from the El-Khadra Lake. The phylogenetic identification was carried
out using 16S rRNA molecular marker. The growth, biochemical composition, lipid and
biomass productivity of the isolated strain were determined. In addition, the specification
of biodiesel produced from the oil of isolated strain was evaluated and compared with
international standards and with other recommended strains. Moreover, the whole biomass
(WB) of isolated strain and the residual algal-free lipid biomass (FL) after oil extraction
were evaluated for their potential utilization as the primary feedstock of marine rotifer
(Brachionus plicatilis).

2. Materials and Methods
2.1. Sampling

Water samples were collected in 2017 spring season, at noon, from the water surface
of El-Khadra Lake (30◦26′504′′ N; 30◦13′546′′ E), Wadi El-Natrun, Egypt (Figure 1). Water
samples were possessed in sterilized bottles and transferred shortly after collection to
the Microalgae Room, Invertebrates Laboratory, National Institute of Oceanography and
Fisheries (NIOF), Alexandria, Egypt. In the field site, water quality parameters of tempera-
ture, pH, and salinity were measured using a pH/temperature meter (Milwaukee MW102,
Milwaukee Instruments, Inc., Rocky Mount, NC, USA) and a portable conductivity meter
(Oakton, Eutech Instruments, Vernon Hills, IL, USA). CO3, HCO3, electrical conductivity
(EC), and total soluble salts (TSS) values of the water surface of El-Khadra Lake were
determined according to APHA [39].
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Figure 1. Location of the cyanobacterium collection site (El-Khadra Lake 30◦26′504′′ N; 30◦13′546′′ E,
Wadi El-Natrun, Egypt).

2.2. Isolation and Purification

Cyanobacterium isolate was purified and conducted on Zarrouk medium [40] in agar
solid medium followed by serial dilution method as described previously [41]. Cyanobac-
terium isolate was initially investigated by a microscope (Olympus, light microscope,
INV-100, Esse3, MB, Italy). The purified isolate was kept and sub-cultured in 500 mL
of sterilized Zarrouk medium and incubated under controlled temperature conditions
(28.5 ± 1.5 ◦C), illumination (3500–4500 Lux day−1), and continuous aeration with shaking
at 80 rpm. The pure isolated strain was morphologically identified under light microscope
as Arthrospira (Spirulina) species, using the following key references [42–44].

2.3. Phylogenetic Identification

The total genomic DNA was extracted from dried Arthrospira powder following
the standard CTAB (cetyltrimethylammonium bromide) protocol modified from Grube
et al. (1995) [45] with minor modifications [46]. The 16S rRNA gene was amplified
using the universal primers, 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-
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TACGGCTACCTTGTTACGACTT-3′) with Super Pfx DNA Polymerase (Life Technologies,
Grand Island, NY, USA). PCR thermal cycle initiated with denaturation of DNA at 98 ◦C
for 3 min, followed by 34 cycles with denaturation at 98 ◦C for 10 s, annealing at 58 ◦C for
30 s, elongation at 72 ◦C for 25 s, and final elongation was performed at 72 ◦C for 10 min.
PCR products were visualized in 1% (w/v) agarose gel electrophoresis. DNA fragments
that corresponded to the particular size of 16S rRNA gene were purified by the FastPure
Gel DNA Extraction Mini Kit and later sequenced in Hongxun Technology (Suzhou, China).
The purified 16S rDNA sequences were aligned and compared with different 16S rDNA
sequences using the nBLAST search (http://www.ncbi.nlm.nih.gov/blast) to find the
closely related species. The sequences were aligned using MUSCLE with the default
parameters (MEGA X software) (www.megasoftware.net). A dendrogram was created
using the neighbor-joining (NJ) algorithm based on the parameter distance (PD) using
MEGA X software [47].

2.4. Growth, Biomass, and Biochemical Constituent

The cyanobacterium isolate was cultivated for 12 days in a batch culture system
using 1 L conical flask filled with 500 mL of sterilized Zarrouk medium. Batch cultures
were maintained under controlled conditions of temperature (28.5 ± 1.5 ◦C), continuous
illumination (3500–4500 Lux day−1) by tubular fluorescent lamps (PHILIPS Master TL-D
85 W/840), and continuous aeration (3 cm3 min−1) was continuously applied to the cultures
by a sterile filtered air, with shaking at 80 rpm. The isolate growth was conducted by the
determination of optical density (OD560), growth rate, dry weight (DW), and biochemical
composition at the late exponential phase (LEP, day 8th). OD was monitored using a
spectrophotometer (CECIL 2010, double beam) as a standard curve by measuring the initial
optical density at (OD560) of ≈0.05 [48]. Biomass productivity was evaluated according to
Abomohra et al. [49] as the following equation:

Biomass productivity (mg L−1 day−1) = (DWL − DWE) × (tL − tE)−1 (1)

where, DWE and DWL are the DW (mg L−1) when the growth reaches to the days of early
exponential phase (tE) and the days of late exponential phase (tL), respectively.

For biochemical analysis, once the culture accomplished to late exponential phase (LEP,
day 8th), 10 mL of culture water was centrifuged at 7000× g for 10 min. The supernatant
was neglected, and the pellet was preserved at −20 ◦C for further analysis. Extraction
and determination of total protein were conducted according to Rausch’s methods [50]
and Hartree [51], respectively. Extraction and determination of total carbohydrate were
conducted according to Myklestad and Haug [52] and DuBois et al. [53], respectively.
Extraction and determination of total lipid were performed according to the method
previously described by Elshobary et al. [54]. After oil extraction, the residual algal cells,
called algal-free lipid (FL), were dried (55 ◦C for 48 h) and preserved (−20 ◦C) for further
analyses. The extracted oil was subjected to transmethylation using sodium methoxide
methods as previously described by Ashour et al. [17] for GC analysis. Briefly, 50 mg of
dried lipid extracts were mixed with 666 µL of methanol: toluene (50:50, v/v) and 333 µL of
0.5 M sodium methoxide were added and incubated for 20 min at room temperature. After
incubation, 1 mL of NaCl (1 M) and 100 µL of HCl (37%) were added, then FAMEs were
extracted by addition of 3 mL of hexane. The upper hexane phase was transferred to a clean
tube for evaporation. FAMEs were redissolved in 20 µL of acetonitrile and subjected to
GC analysis. Lipid productivity was calculated as the method described by Wen et al. [55]
using the following equation:

PLipid (mg L−1 day−1) = CLipid (g g−1) × DW (g L−1)/T (day) (2)

where PLipid and CLipid is the lipid productivity and lipid contents of algal cells, respectively,
DW is dry weight of algal cells, and T is the time of cultivation.

http://www.ncbi.nlm.nih.gov/blast
www.megasoftware.net
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2.5. Determination of Biodiesel Properties

The physicochemical characterizations of FAMEs of the biodiesel produced from
cyanobacterium were calculated.

Unsaturation degree (DU, %), saponification value (SV, mg KOH g−1), iodine value
(IV, g I2 100 g−1 oil), cetane number (CN), cold filter plugging point (CFPP, ◦C), long-chain
saturation factor (LCSF, wt%), and kinematic viscosity (KV, mm2 s−1), were determined as
described by Ramirez-Verduzco et al. [56] and Ashour et al. [17], as the following equations:

DU = Σ MUFA + (2 × PUFA) (3)

SV = Σ [(560 × N%)/M] (4)

IV = Σ [(254 × N% × D)/M] (5)

CN = 46.3 + (5458/SV) − (0.225 × IV) (6)

KV = −12.503 + (2.496 × ln M) − (0.178 × D) (7)

LCSF = (0.1 × C16:0) + (0.5 × C18:0) + (1 × C20:0) + (1.5 × C22:0) + (2 × C24:0) (8)

CFPP = (3.1417 × LCSF) − 16.477 (9)

where, N% is the percentage of each fatty acid; MUFA and PUFA are the percentage of
monounsaturated and polyunsaturated fatty acids, respectively; M is the molecular mass
of each fatty acid; D is the number of carbon-carbon double bonds; and C16:0, C18:0, C20:0,
C22:0 and C24:0 are the percentages of the corresponding fatty acids.

2.6. Application of Algal-Free Lipid as Aquaculture Feed

After biodiesel extraction, the algal-free lipid (FL), in comparison with whole biomass
before lipid extraction (WB), was evaluated as feed for marine rotifer Brachionus plicatilis
(L-type with average length about 180 µm). Before the experiment, B. plicatilis was cul-
tured under controlled conditions of temperature (27 ± 1 ◦C), salinity (30 ± 1 ppt), pH
(7.7 ± 0.15), continuous gentle aeration, and enriched with native isolate marine microalga
Nannochloropsis oceanica NIOF15/001, previously isolated and identified by [17], at density
5 × 106 cells mL−1 day−1. B. plicatilis were harvested from the stock culture tanks and
transferred to the new culture water for a 24 h gut evacuation. After 24 h of starvation, B.
plicatilis were distributed with a constant initial stock density of 20,000 individual L−1 of
filtered seawater with different concentrations (0.2, 0.4, 0.6, 0.8, 1.0 g FL or g WB) of FL
(FL0.2, FL0.4, FL0.6, FL0.8, FL1.0, respectively) and WB (WB0.2, WB0.4, WB0.6, WB0.8, WB1.0,
respectively). Each concentration (treatment) was conducted in three replicates. The rotifer
B. plicatilis feeding trial was continued for 72 h in batch culture system. The experiment
was monitored under controlled conditions of (22 ± 1 ◦C), salinity (30 ± 1 ppt), and pH
(7.7 ± 0.15), without aeration. Rotifer growth indices were evaluated based on population
(increase in number) and the number of females carrying eggs. The counts of rotifer individ-
uals were determined using a Sedgwick-Rafter counting cell, under an optical microscope.
Rotifer individuals were transferred to glass slides covered with coverslips to quantitative
sample counts.

2.7. Statistical Analysis

Data were presented (n = 3) as mean ± standard deviation (SD). Before analysis,
normality and homoscedasticity suspicions were affirmed. Statistical analyses for results
were conducted using SPSS (IBM, v. 20, Armonk, NY, USA). All evaluated variables were
conducted to an analysis of variance (ANOVA) followed by Duncan’s multiple range tests
and least significant difference (LSD) test, at a significant level (p < 0.05).
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3. Results
3.1. Water Sample Characterizations

Surface water characteristics of El-Khadra Lake are shown in Table 1.

Table 1. Physicochemical characteristics of water surface of El-Khadra Lake.

Characteristics Values

Temperature (◦C) 27.50 ± 0.75
pH 9.36 ± 0.17

CO3 (ppt) 2.80 ± 0.18
HCO3 (ppt) 8.55 ± 260

Conductivity (EC, ds/m) 87.70 ± 1.90
Total Soluble Salts (TSS, ppt) 67.30 ± 1.10

Presented data were as mean ± standard deviation (n = 3).

3.2. Phylogenetic Identification

The 16S rDNA gene phylogeny was inferred from more than 1383 bp nucleotide
sequences (PCR-based). From the maximum likelihood phylogenetic tree based on the
16S rRNA gene, the 16S gene region was aligned, with 16S nucleotide sequences of 12
Arthrospira strains in the NCBI Ribosomal DNA sequence plus three 16S rDNA sequences
of Lyngbya and Neolyngbya sp. as an outgroup in the NCBI rDNA sequence. Each species
formed monophyletic clades and the isolated strain was grouped in Arthrospira platensis
(KC195868, KC536647, and KM019966) with high similarity reached to 100%, 97.5% and
85% bootstrap, respectively (Figure 2). The newly isolated Arthrospira platensis NIOF17/003
sequence was deposited in the GenBank database (accession number MW396472).
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3.3. Growth and Biochemical Composition

Figure 3 shows the growth phases of A. platensis NIOF17/003 cultured on Zarrouk
medium for 12 days; namely, early and late exponential phases (EEP and LEP, respec-
tively) and early stationary phase (ESP). Table 2 shows the dry weight (0.845 g L−1),
proteins (52.03%), lipids (8.52%), and carbohydrates (14%), based on cell dry weight, at LEP.
Biomass and lipid productivity, at LEP, was 143.83 and 14.37 mg L−1 day−1, respectively,
as presented in Table 2.
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Table 2. Biochemical composition, growth and productivity of Arthrospira platensis NIOF17/003.

Parameter Values

Dry Weight (DW, g L−1) 0.845 ± 0.038
Proteins (% DW) 52.03 ± 0.77
Lipids (% DW) 8.52 ± 1.04

Carbohydrates (% DW) 14.00 ± 1.67
Biomass productivity (mg L−1 day−1) 143.83 ± 3.69

Lipid productivity (mg L−1 day−1) 14.37 ± 0.37
Presented data were as mean ± standard deviation (n = 3). All obtained data were analyzed from harvested cells
at late exponential phase (LEP).

3.4. Fatty Acid Profiles and Biodiesel Characteristics

Table 3 shows the fatty acids (FA) profile of A. platensis NIOF17/003 isolate. The
highest FA category was saturated SFAs (42.27%), followed by polyunsaturated fatty acids
(PUFA) (31.04%), and monounsaturated fatty acids (MUFA) (26.71%). Palmitic acid (C16:0)
was the most predominant FA (33.60%), resulting in high SFA content. However, in PUFA
category, linoleic acid (C18:2ω6) was the most dominant FA (27.88%), while the rest of
PUFA were mainlyω3 fatty acids (3.16%) of alpha-linolenic acid (1.99%, ALA, C18:3ω3),
eicosatrienoic acid (0.46%, C20:3ω3, ETE), eicosapentaenoic acid (0.32%, C20:5ω3, EPA),
and docosahexaenoic acid (0.36%, C22:6ω3, DHA).
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Table 3. Fatty acids profile of the isolated Arthrospira platensis NIOF17/003.

Fatty Acids Percentage (%) of Total FA

C6:0 0.04
C8:0 0.23

C10:0 0.13
C11:0 0.24
C12:0 0.05
C13:0 0.08
C14:0 1.96
C14:1 0.45
C15:0 1.75
C15:1 0.18
C16:0 33.60
C16:1 11.34
C17:0 1.86
C17:1 0.48
C18:0 2.33
C18:1 14.26

C18:2ω6 27.88
C18:3ω3 1.99
C20:3ω3 0.46
C20:5ω3 0.32
C22:6ω3 0.39
ΣSTFA 42.27

ΣMUFA 26.71
ΣPUFA 31.04

SFAs, MUFA and PUFA are saturated, monounsaturated, and polyunsaturated fatty acids.

Table 4 shows the biodiesel characteristics of A. platensis NIOF17/003 compared with
other species of Arthrospira, and marine microalga Nannochloropsis as one of the most
promising biodiesel species, and those conformed by international standards (ASTM and
EN). The values of CN, IV, SV, and CFPP were in conformance with ASTM and EN, while
KV was higher recommended by EN and ASTM (Table 4).

Table 4. Physicochemical characteristics of biodiesel of Arthrospira platensis NIOF17/003 in comparison to different strains
of Arthrospira and marine microalga Nannochloropsis, and the recommended global standards of ASTM and EN biodiesel.

Strain/Standard DU CN IV SV LCSF CFPP KV Db ≥ 4 Reference

A. platensis NIOF17/003 88.7 52.9 85.5 210.7 4.5 −2.2 19.3 0.71 This study
A. platensis 12.53 * 70 102 191.9 * 4.28 * −3 12.4 0 [20]
A. platensis 99.08 * 71.02 * 109.64 * 110.50 * 8.35 * 9.75 * 4.67 0 [57]

N. oceanica CCMP531 58 58 66 207 * 5 * 10 4.2 5.4 [58]
N. oceanica CCNM 1081 70–102 * 36–54 88–169 195–200 4.4–6 2.5–2.8 4.6 * 12–36 [59]
N. oceanica NIOF15/001 57 52 94 200 6.7 4.6 4 19.5 [17]
US (ASTM6751−03) # - ≥47 - - - - 1.9–6.0 - [60]
Europe (EN 14214) # - ≥51 ≤120 - - ≤5/≤−20 3.5–5.0 - [61]

DU is unsaturation degree; CN is cetane number; IV is iodine value (g I2/100 g oil); SV is saponification value (mg KOH g L−1); LCSF is
long-chain saturation factor (wt%); CFPP is cold filter plugging point (◦C); KV is kinematic viscosity at 40 ◦C (mm2 s−1), and Db ≥ 4 is
percent of fatty acids with double bonds equal and/or higher than 4 as % of total fatty acids. * Values were calculated based on the given
data using the equations in the references. # Values of recommended global standards of USA (ASTM biodiesel), and Europe (EN 14214).

3.5. Nutritional Value of Biodiesel Byproduct (FL) as Aquaculture Feed

Population (ind. L−1) and number of females carrying eggs (ind. L−1) of rotifer B.
plicatilis were those fed on different concentrations of FL (FL0.2, FL0.4, FL0.6, FL0.8, FL1.0,
respectively) and DW (DW0.2, DW0.4, DW0.6, DW0.8, DW1.0, respectively) of A. platensis
NIOF17/003, shown in Figure 4. Among all evaluated treatments, the highest significant
rotifer population was obtained when rotifer feed FL0.6 concentration (0.6 g of algal-free
lipid), followed by FL0.4, and FL0.8. On the other hand, rotifer feed on FL0.6, FL0.8, and
DW0.4 were recorded as the highest significant number of females carrying eggs (Figure 4).
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Figure 4. Population and number of females carrying eggs of rotifer B. plicatilis are those fed on
different concentrations of Arthrospira platensis NIOF17/003 free lipid (FL, as biodiesel byproduct) in
comparison to A. platensis dry weight (DW) before lipid extraction. FL0.2, FL0.4, FL0.6, FL0.8, FL1.0,
respectively, and DW0.2, DW0.4, DW0.6, DW0.8, DW1.0, respectively, are different concentrations (0.2,
0.4, 0.6, 0.8, 1.0 g) of FL or DW of A. platensis NIOF17/003. Data presented are mean ± standard
error (n = 3). Different letters in each plotted series indicate significant differences at p < 0.05 using
Duncan’s test.

4. Discussion

Arthrospira, the super natural food, has a long history of human consumption in Africa
back to the 9th century AD. Arthrospira cakes, called dihé, are harvested from the Kossorom
Lake (Chad Lake) and sun-dried in greenish cakes. Dihé is a blooming of natural Arthrospira
in the soda lakes of Chad and Niger and considered a common diet component of the
population communities of the area. Annually, about 40 t of dihé cakes have been harvested
from Chad Lake with local trading value more than US $100,000. Therefore, Arthrospira
cakes, dihé, represent a significant contribution to the economy of Chad and Niger [62].
Arthrospira is the dominant species in alkaline lakes of the Rift Valley and semi-desert
Sudan-Sahel zone [63]. As well, Arthrospira has been reported as dominant in El-Khadra
Lake, the alkaline lakes located in Wadi El-Natrun, Egypt [34–38]. Although Arthrospira
is a widely distributed species in Africa and consumed by different African communities,
achieving significant contributions to the national economy of many African countries,
very few studies were conducted on the biotechnological applications of Arthrospira along
with Africa [64], and the biomass production of Arthrospira is still limited [65].

To achieve strong, successful and commercial aqua-biotechnological applications,
screening, isolation, molecular identification, and physiological characterizations are
needed for native aquatic organisms [8,17,66,67]. In the current study, the native cyanobac-
teria strain A. platensis NIOF17/003 was isolated, in spring 2017, from surface water of the
El-Khadra Lake, Wadi El-Natrun, Egypt and deposited in the GenBank database (Accession
Number MW396472). A. platensis NIOF17/003 showed 52% of protein and 14% of carbo-
hydrate, at LEP based on dry weight percentage (DW%). Our results are in the same line
with the results obtained by Marrez et al. [37] who found that the protein and carbohydrate
contents of A. platensis, isolated from El-Khadra Lake and cultured on different growth
media, were from 49.5% to 59.8% and from 12.4% to 22.8%, respectively. Whereas, Aly and
Gad [36] reported that A. platensis, isolated from El-Khadra Lake and cultured outdoor at
semi-pilot scale cultivations, showed 64% protein and 10% carbohydrate. Albert et al. [68]
stated that the protein content of A. platensis sampled from three production sites, around
Chad Lake, were ranged from 50.2% to 58.6%. It is scientifically recognized that Arthrospira
has a protein content that varies from 50 to 70% of its DW, overriding that of meat, soy-
beans, eggs, grains, or dried milk [69]. Interestingly, Arthrospira has a complete protein that
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contains all essential amino acids, which form 47% of total protein weight. According to the
literature, leucine, valine, and isoleucine are the highest values for the essential amino acids
reported in Arthrospira, while methionine and cysteine (sulfur-containing amino acids) are
the most poorly essential amino acids [69,70].

The present study found that A. platensis NIOF17/003 showed 8.52% of lipid per-
centage, at LEP, based on DW%. Our results agreed with Aly and Gad [36] who found
that A. platensis, isolated from El-Khadra Lake and cultured outdoor at semi-pilot scale
cultivations, showed 8% of lipid. Moreover, Marrez et al. [37] found that the lipid content
of A. platensis, isolated from El-Khadra Lake and cultured on different growth media, were
ranged from 6.57% to 8.13%. Whereas, Albert et al. [68] reported that the lipid content
of A. platensis, sampled from three production sites around Chad Lake, was varied from
3.4% to 9.9%. Habib et al. [21] found that the lipid content of A. platensis varied from
5.6 to 7%, while Yoshida and Hoshi [71] cited that the lipid content of A. platensis may
reach to 11%. Matta et al. [72] cited that the lipid content of A. platensis ranging from 4 to
16%. However, the differences between our results and those obtained by other studies,
even those isolated from the same site of El-Khadra Lake, may be due to different culture
systems, scales, extraction methods, environmental conditions [21,36,37,68–73], or available
nutrient limitation [73].

The aquatic organisms are a sustainable source of PUFA, MUFA, SFAs, palmitic acid,
and fatty acid methyl esters [74,75]. Among all aquatic organisms, microalgal cells are
the most sustainable, attractive, and promising source [1–3,17–20,69,72,73]. Cohen [76]
stated that about 50 percent of the total lipid of Arthrospira is fatty acids. In the current
study, A. platensis NIOF17/003 isolate showed 3.16% of fatty acids as belonging to omega-3
(mainly ALA, ETE, EPA, and DHA), 31.04% of PUFA, 26.71% of MUFA, 42.27% of TFA,
and 33.6% of palmitic acid (C16:0), which presented as the most predominant SFA. These
results proved that, besides the high protein contents of A. platensis NIOF17/003, this
isolate is considered an attractive source for PUFA, omega-3 fatty acids, and palmitic acid
(C16:0), which considered the most considered fatty acid for producing biodiesel from
microalgae. PUFA and omega-3 fatty acids have significant nutritional value [69], which
means that A. platensis NIOF17/003 isolate is considered a source for human nutrition,
beside its significant quantity of protein. Our results are in the same line with Marrez
et al. [37] who found that A. platensis grown in different media showed PUFA ranged from
15.86 to 32.07%, SFAs ranged from 67.93 to 84.14%, and palmitic acid (C16:0) ranged from
11.11 to 45.33% of total FAs. Mostafa et al. [20] indicated that A. platensis, grown at an
indoor scale and enriched with Zarrouk medium, showed 89.6%, 6.2%, and 2.11% of SFAs,
MUFA, and PUFA. Habib et al. [21] concluded that PUFA of A. platensis may reach up to
30% of SFAs.

Although there is high protein content of A. platensis, which varies between 50 and
70% of its DW [69], many authors cited that A. platensis is an attractive, sustainable, and
promising source for biodiesel production [2,20,23,25–27]. Many authors concluded that
the most important keys for successful biodiesel production from microalgae are lipid
productivity and biomass productivity [55,77,78]. In spite of low lipid content (8.5%)
presented in A. platensis NIOF17/003 isolate in the current study, this isolate showed high
biomass productivity (143.83 mg L−1 day−1) and lipid productivity (14.37 mg L−1 day−1),
at LEP, with respect to biodiesel production, although the obtained results gives low relative
lipid content compared to green microalgae. A. platensis showed a comparable biomass
and lipid productivity, which make this isolate an economically viable biodiesel feedstock.

According to the literature, Nannochloropsis is considered one of the most promising
economic species for production of biodiesel [17,58,59]. In the present work, the reported
biomass productivity was 1.9, 5.7, and 7.6 times higher than those reported for N. oceanica
NIOF 15/001 [17], N. oceanica CCNM 1081 [59], and N. oceanica CASACC201 [79], respec-
tively. As well, the lipid productivity recorded in the current study was 1.3, 2.1, and
7.1 times higher than those reported for N. oceanica CCNM 1081 [59], and N. oceanica
CASACC201 [79], and N. oculata [80], respectively. Moreover, the comparison between the
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lipid profile of Arthrospira and Nannochloropsis is an important point to discuss. About 50%
of the total lipid of Arthrospira is fatty acids [76], while the composition of Nannochloropsis
lipid fractions includes hydrocarbons, triacylglycerides (TAGs), free fatty acids (FFAs),
amines, sterols, terpenes, and organic acids [81,82].

The optimal selection of microalgae strains for potential biodiesel production requires
high lipid productivity as well as requiring acceptable specifications of the FAMEs [17].
Many authors cited that the biodiesel properties are mainly influenced by the fatty acid pro-
file [4,49,54,83,84]. In the current study, the biodiesel properties of A. platensis NIOF17/003
isolate, comparing to Arthrospira, Nannochloropsis, and the recommended global standards
of Europe (EN14214) and US (ASTM6751−03), are presented in Table 4. The values of
CN, IV, and CFPP are in correspondence with those conformed by international standards
of ASTM6751–03 [60] and EN14214 [61]. As well, the values of DU, SV, and LFPP are in
the range of the recommended biodiesel feedstock species of N. oceanica NIOF15/001 [17],
N. oceanica CCMP531 [58], N. oceanica CCNM 1081 [59], and A. platensis [20,57]. The only
observed higher value in the current study was KV (Table 4).

Our results are in accordance with those obtained by Mostafa [20] who evaluated
biodiesel properties for A. platensis, comparing to ASTM, EN, and Egyptian petro-diesel.
On the other hand, Db≥ 4 of A. platensis NIOF17/003 isolate was lower than those obtained
by Nannochloropsis (Table 4) and this is due to the high level of PUFA. The current study
reported that, regarding biomass productivity, lipid productivity, and characteristics of
biodiesel produced from A. platensis NIOF17/003 isolate, this isolate is an attractive and
promising biodiesel feedstock. Our results are matched with many studies that reported that
microalgae, especially A. platensis, are promising biodiesel feedstock [2,20,23,25–27,83,84].

On the other hand, aquaculture is a promising industry that supplies essential and
cheap animal protein to meet a growing world population [74,85]. Protein is considered the
most important ingredients in aquaculture diets. Recently, the microalgae biomass has been
extensively utilized in aquatic animal feed, resulting in enhanced growth and survival [9].
Marine rotifer Brachionus plicatilis is considered the main zooplankton utilized as live food
for marine larvae in marine hatcheries [81,82]. In the present study, different concentrations
of FL (FL0.2, FL0.4, FL0.6, FL0.8, and FL1.0), compared to the same different concentrations
of A. platensis NIOF17/003 dry weight (WB0.2, WB0.4, WB0.6, WB0.8, and WB1.0), were
evaluated as feed for marine rotifer B. plicatilis. Among all treatments, application of 0.6
g of FL of A. platensis NIOF17/003 (FL0.6 concentration) resulted in the highest rotifer
population and the highest significant number of females carrying eggs.

Interestingly, this work is the first study that evaluates A. platensis free lipid (FL)
as feed for marine rotifer B. plicatilis. Our results are in the same line with the many
studies that evaluated the effect of microalgal-free lipid as feed for Artemia [17,86,87]
and concluded that microalgae-biodiesel byproduct (FL) significantly improved survival
and growth of Artemia franciscana. Ashour et al. [17] reported that applying 0.1 g L−1 of
FL of N. oceanica NIOF15/001 significantly improved survival (500%) and growth (40%)
of A. franciscana. Abomohra et al. [86] concluded that FL of S. obliquus up to 0.2 g L−1

improves the survival of Artemia up to 50%. Moreover, El-Kassas et al. [87] confirmed that
a mixed diet of lipid-free algal biomass (0.5 g L−1) achieved the highest survival (91.8%)
and the highest average of fresh weight (4.2 mg) of Artemia up to about 50%.

5. Conclusions

Although Arthrospira is a widely distributed species in Africa and consumed by differ-
ent African communities, achieving significant contributions to the national economy of
many African countries, very few studies were conducted on the biotechnological appli-
cations of Arthrospira along Africa, and the biomass production of Arthrospira is still very
limited. To achieve strong successful commercial and sustainable aqua-biotechnological
microalgae applications, screening, isolation, molecular identification, and physiological
characterizations are needed. In the current study, the new cyanobacteria strain Arthrospira
platensis NIOF17/003 was isolated from the water of El-Khadra Lake, an alkaline lake
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located in Wadi El-Natrun, Egypt, and deposited in the GenBank database under acces-
sion number MW396472. A. platensis NIOF17/003 showed that the values of protein,
carbohydrate, and lipid were 52%, 14%, and 8.5%, respectively. Biomass productivity
and corresponding lipid productivity was 143.83 mg L−1 day−1 and 14.37 mg L−1 day−1

respectively. Biodiesel characteristics of A. platensis NIOF17/003 isolate were compatible
with those recommended by international standards of US (ASTM6751−03) and Europe
(EN14214), as well as different strains of Arthrospira and Nannochloropsis. Thus, the present
work concluded that the isolate A. platensis NIOF17/003 is a favorable candidate for
biodiesel production, due to its high biomass productivity, lipid productivity, and compati-
ble biodiesel quality standards. Moreover, application of the residual algal-free lipid (at
0.6 g per 20,000 rotifer individuals) significantly increased the rotifer population and the
number of females carrying eggs, confirming that FL, rich in protein and carbohydrate, may
be efficiently utilized for sustainable rotifer production. Further studies will be conducted
on A. platensis NIOF17/003 that can be grown easily in photobioreactors (PBR), open
ponds, agricultural and industrial wastewater to enhance lipid productivity of A. platensis
NIOF17/003 to capitalize its feasibility for mass production and biodiesel production.
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Abbreviations

ANOVA analysis of variance
CFPP cold filter plugging point
CN cetane number
DU unsaturation degree
DW dry weight
EC electrical conductivity
EEP early exponential phase
FA fatty acid
FAME fatty acid methylated ester
FL free lipid biomass
GC-MS gas chromatography-mass spectrometry
IV iodine value
KV kinematic viscosity
LCSF long-chain saturation factor
LEP late exponential phase
MUFA monounsaturated fatty acid
NIOF National Institute of Oceanography and Fisheries
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NJ neighbor-joining
OD optical density
PD parameter distance
PUFA polyunsaturated fatty acids
RT retention time
SD standard deviation
SV saponification value
TSS total soluble salts
WB whole biomass
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