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Abstract: Demand response (DR) programs were usually designed to provide load peak reduction
and flatten the load curve, but in the context of rapid adoption of emerging technologies, such as
smart metering and sensors, load flexibility will address current trends and challenges (such as
grid modernization, demand, and renewables growth) encountered by the evolving power systems.
The uncertainty of the renewable energy sources (RES) and electric vehicle (EV) fleet operation
has increased the importance of load flexibility that can be managed to provide more support
for the stable operation of power systems, including balancing. In this paper, we propose a data
model to handle load flexibility and take advantage of its benefits. We also develop a methodology
to collect and organize data, combining the consumption profile with several auxiliary datasets
such as climate characteristics of the location, independent system operator (ISO) to which the
consumer is affiliated, geographical coordinates, assessed flexibility coefficients, tariff rates, weather
forecast for day-ahead flexibility forecast, DR-enabling technology costs, and DR programs. These
multiple features are stored into a flexibility relational database and NoSQL database for large
consumption data collections. Then, we propose a data processing flow to obtain valuable insights
from numerous .csv files and an algorithm to assess the load flexibility using large residential and
commercial profile datasets from the USA, estimating plausible values of the flexibility provided by
two categories of consumers.

Keywords: large datasets management; load flexibility database; DR programs; DR-enabling tech-
nology costs

1. Introduction and Literature Review

According to [1], it is estimated that by 2030, load flexibility will avoid new generation
capacity (57%), lower energy costs by shifting the operation of controllable appliances from
peak to off-peak hours (29%), allow new transmission and distribution capacity (12%),
and provide frequency regulation of ancillary services regulation (2%). Various demand
response (DR) programs have been studied [2,3] as well as methods to assess the load
flexibility of buildings [4–6]. In [2], the flexibility was measured for a three-year period
using 186 residential consumers’ data with a large set of smart appliances from Belgium.
The purpose of this study was to identify the impact and performance of demand response
(DR) programs. Another residential consumption area was investigated in the Netherlands
from the DR point of view. The responsiveness of residential demand to signal tariffs using
home energy management systems that shift the flexible load from evening to midday
hours and consume energy from local generation was proposed in [3].

A useful classification of demand response services into three main categories (“shed”—
reduce load, “shift”—reschedule, and “shimmy”—fast dispatch) is performed in [7], which
also provides a comprehensive study on DR-enabling technology costs for control and
communication. For residential consumers, flexible appliances, such as heating, ventilation,
and air conditioning (HVAC); water heaters; pool pumps; and battery storage, including
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electric vehicles (EVs), were proposed to provide DR through direct load control (DLC),
automated demand response (ADR—involving communication, measurement, control
infrastructure, and a signal that triggers a specific response) programs and programmable
communicating thermostats (PCTs). Most of these appliances can provide DR services
except for HVAC, which was only investigated to shed and shift with PCTs.

The demand flexibility potential of seven northern European countries with high
shares of renewable energy sources was reviewed and estimated in [8]. The study identi-
fied and compared the flexibility potential by analyzing the methods used for flexibility
potential estimation. The flexibility was assessed to be 15–29% of the peak load. However,
the study did not show the value of the flexibility potential or integrate other data sources
to provide added value.

The demand potential of HVAC of 12-storey residential buildings in Nordic countries
to sustain renewable energy sources (RES) integration was investigated in [9] by taking
into account the indoor climate conditions and comfort of the residents. The flexibility
potential of HVAC was analyzed to provide ancillary services. The results underline the
necessity of aggregating the loads and offering ancillary services, and they lead to a load
reduction of 1.57 MW for a Danish region.

Another interesting study investigated and calculated the DR potential in Germany
to support RES integration using an electricity market model. It results showed that DR
diminished the curtailments, emphasizing that the flexibility potential varied between DR
programs [10]. This study strengthens the idea of implementing various DR programs or
combinations of programs to obtain the best results. In addition, the flexibility load was
assessed for buildings by considering the potential of heat pumps [11].

An estimation of DR potential using a fitted regression model was performed for
residential and commercial buildings with EnergyPlus (a building simulation program
to model energy consumption) datasets using two-state models for appliances, with ther-
mostats obtaining an accuracy of 80–90% [12]. The main drawback of this study was that
it used only a limited dataset of load. The big data feature and multiple data sources
correlated with load data were not considered in the DR prediction. In addition, a quantifi-
cation of load flexibility potential using cooling and heating systems of office buildings
was analyzed in [13]. Several big data [14,15] and business intelligence techniques [16,17]
for decision makers were engaged to find patterns in large sets of consumption data, and
extensive reviews were performed into smart metering data analytics [18].

The experts in flexible demand from Nordic countries mentioned that the savings are
as yet uncertain. They also underline the importance of taking further steps to properly
design real-time prices, reconsider revenue regulation of the grid operators to incentivize
DR implementation, and envision aggregation services [19].

In this paper, we corroborated the findings of previous studies [1,7] regarding flexi-
bility coefficients estimated at the state level and DR-enabling technology costs by using
large load profile datasets. We organized data to obtain useful insights regarding flexibility
potential for certain geographical areas. We propose a data model to organize data in order
to answer the following two questions: What is the potential size of the load flexibility
resources? What are the savings that residential or commercial consumers can obtain? To
achieve these goals, the paper is divided into five sections. In Section 1, the most relevant
research studies are presented, in the Section 2, the data processing methodology is defined.
The data model is built in Section 3. Simulations and results are provided in Section 4, and
in Section 5 the conclusions of this study are drawn.

2. Data Processing Methodology

The load profile datasets were downloaded from the OpenEI website that provides a
free data source to facilitate research in energy [20]. Load profile datasets for residential
consumers and commercial buildings were provided by the Department of Energy in the
USA, representing reference houses by location and targeting the energy efficiency for
residential and commercial buildings [21].
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From a large set of files, 273 load profiles for residential consumers located in various
locations of the USA and storing hourly consumption data in kWh with the following
attributes were extracted:

• Date/Time
• Electricity: Facility
• Gas: Facility
• Heating: Electricity
• Heating: Gas
• Cooling: Electricity
• HVAC Fans: Electricity
• General, Interior Lights: Electricity
• General, Exterior Lights: Electricity
• Appl., Interior Equipment: Electricity
• Misc., Interior Equipment: Electricity
• Water Heater and Water Systems: Gas

They were classified into gas and electricity consumption. Some of the loads are not
controllable whereas some of them can be included into DR programs. The consumption
was split into electricity and gas in total and with details for heating, cooling, HVAC,
interior and exterior lights, and interior and other appliances. Gas provided heating
for the houses and water. Thus, the volume of data for residential consumers was over
2.07 million records. However, the volume of data could expand to hundreds of thousands
if the individual consumers were considered. In addition, for commercial buildings, the
record count was more than 131 million records.

The datasets were archived as zip files containing large .csv files [20]. For the residential
data, 273 .csv files were inside one large archive. For the commercial data, 10 large archives
each contained 94 folders (except the last archive that had 90 folders), and each folder
contained 16 .csv files and 8760 records, with a total of 14,976 .csv files of commercial
data. Considering the size and dimensionality of the data, Mongo DB collections with an
aggregation pipeline and Python were used to import, process, and calculate the residential
data. Whereas, for the commercial data, the overview looked totally different. Analyzing
the folders, files, and data structure, some interesting facts were noticed:

• Only .csv files were analyzed as input datasets, so the data presentation was standard;
• All the .csv files had the same fields/columns structure (Date/Time, Electricity: Facility,

Fans: Electricity, Cooling: Electricity, Heating: Electricity, InteriorLights: Electricity,
InteriorEquipment: Electricity, Gas: Facility, Heating: Gas, InteriorEquipment: Gas,
Water Heater: WaterSystems: Gas);

• Each file name had a pattern which could give us more information about the dataset,
as an example for RefBldgLargeHotelNew2004_v1.3_7.1_3A_USA_GA_ATLANTA.csv,
the pattern is Ref [LocationType][Year]_v1.3_7.1_3A_[Country]_[State_ISO]_[City].csv.
Location type, year, country, state independent system operator (ISO) and city are
vital information extracted them for each file;

• The structure of the file path was easy to scan after unzipping each archive. An exam-
ple is COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT.part9\USA_TX_Alice.Intl.
AP.722517_TMY3\RefBldgStripMallNew2004_v1.3_7.1_2A_USA_TX_HOUSTON.csv
having the following pattern [ARHIVE_NAME]\[ROOT_FOLDER]\[FILE_NAME].csv.

These facts lead to the conclusion that an import of data into another tool for data
processing and calculation could be easily automated. For the automation, Python script is
used a. Next step was to choose a tool for data processing and calculation. Our criteria for
choosing the database were:

# Scalable with a big data load;
# Familiar and easy to use;
# Can run on local machines;
# Easy to setup;
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# Open Source.

Therefore, five databases, both SQL and NoSQL, are taken into consideration. In
Table 1, the comparison is shown:

Table 1. Databases comparison based on 5 criteria.

Scalable with a
Big Data Load

Familiar and Easy
to Use

Can Run on Local
Machines Easy to Setup Open Source

PostgreSQL Yes Yes Yes Yes Yes

MongoDB Yes Yes Yes Yes Yes

Cassandra DB Yes Partial Yes Partial Yes

Elasticsearch Yes Yes Yes Partial Yes

HBase (Hadoop) Yes Partial Yes Partial Yes

Based on the table of comparison, we decided to use PostgreSQL, as we are mostly
familiar with SQL technology and this kind of databases. However, for handling the
two large datasets that come from residential and commercial consumers, the top open
source NoSQL and relational databases at the moment were used [22]. Thus, each file
from the datasets was scanned and each row from the .csv file was inserted into a row in
PostgreSQL. Additionally, location, city and state were extracted from the file name and
added to the consumption data. For the beginning, all the rows were inserted into just
one table, after that the relations were normalized. To understand the correlation and data
source, a synthesis is provided in Table 2.

Table 2. Columns description.

Column Name Database Data Type
Database Source Example Observation

date_time Timestamp .csv file 11 July 2004 21:00:00

Id Serial Unique identifier of
row, auto generated

electricity_facility_kwhourly Numeric .csv file 10.8926491824

fans_electricity_kwhourly Numeric .csv file 32.0021175342

cooling_electricity_kwhourly Numeric .csv file 15.1069992076

heating_electricity_kwhourly Numeric .csv file 5.48122459637

gas_facility_kwmonthly Numeric .csv file 1.8243253836

interiorlights_electricity_kwhourly Numeric .csv file 1.0115996781

interiorequipment_electricity_kwhourly Numeric .csv file 4.04639871239

gas_facility_kwhourly Numeric .csv file 7.29730153440

heating_gas_kwhourly Numeric .csv file 16.4436737891

electricity_facility_kwmonthly Numeric .csv file 24.9203635340

interiorequipment_gas_kwhourly Numeric .csv file 5.48122459637

water_heater_watersystems_gas_kwhourly Numeric .csv file 0.5500053624

location_type Text .csv file name RefBldgSmallOffice Extracted from the
file name

year Numeric .csv file name 2004 Extracted from the
file name

state_code Text .csv file name GA Extracted from the
file name
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Table 2. Cont.

Column Name Database Data Type
Database Source Example Observation

city Text .csv file name ATLANTA Extracted from the
file name

filename Text .csv file name
RefBldgWarehouse-

New2004_v1.3_7.1_3A_
USA_GA_ATLANTA.csv

Used for
investigations

filepath Text .csv file path

D:\stats\Data\COM-
MERCIAL_LOAD_DATA_

E_PLUS_OUTPUT.part1
\USA_AL_Troy.Air.Field.

722267_TMY3\RefBldg Ware-
houseNew2004_v1.3_7.1_3A_

USA_GA_ATLANTA.csv

Used for
investigations, in case

we found some
irrelevant data we

can go directly to file

hour Numeric data_time field 23 Used to optimize
the queries

When the data was inserted into the database, the insertion time was too long, only
inserting 1,007,400 rows took 5270.9 seconds, having in mind that the total target of rows to
be inserted is 131,189,412, the insertion time was not acceptable in this state. So, we decided
to optimize the insertion by doing two things. Firstly, the insert statement from a simple
insert to a prepared statement was changed, so the statement is already processed by the
database; and secondly, instead of single row statement, batch statement was used. For the
batch statement, some experiments were performed to see which volume per statement is
more suitable and performant in our case. Table 3 shows the results of this experiment.

Table 3. Batch statement experiment times.

Number of Inserted Rows per Batch Total Duration Seconds Total Rows Inserted

1 5270.980333328247 1,007,400

100 538.0430161952972 1,007,400

200 435.40850925445557 1,007,400

300 382.5205578804016 1,007,400

350 381.44075322151184 1,007,400

400 367.4466257095337 1,007,400

500 371.1627984046936 1,007,400

1000 412.53081250190735 1,007,400

The best insertion time for batch was 367.4466257095337 having the batch size of
400 rows. Keep in mind that this may be different depending on the resources available on
the machine (CPU, RAM memory, storage type) and the insertion statement.

We are aware that the insertion procedure can be further optimized, implementing
mechanisms such us “in file” import directly into database, parallelism, or resource boosting.
In the end, the total insertion of 131,189,412 rows took 47,958.8661942482 s or 13 h and 18 min.

In Figure 1, the algorithm implemented in the Python script for import written in
pseudocode is provided. The algorithm steps are the following:

1. The script starts scanning the target path for unarchived data folders (prerequisite
step was to download all the archived data and unarchived it to a specific path).

2. The script finds an unarchived folder and scans it inside for a root data folder.
3. The script finds a root data folder and starts to iterate on each file. At this point, the

files are in .csv format.
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4. Each file is opened, and the columns of .csv format are validated. In case a column is
missing, or an unexpected column appears the script will log an error and close the
process. In this way, an inconsistency can easily be identified and investigated.

5. If the columns are valid the script will iterate though the rows. The columns of file
will be combined with the row values and each row data will be added to the “rows
to be inserted” list.

6. If the number of items in list is equals to the number of batch size (to be
inserted), the list will be transformed into a big batch statement and ran against
the PostgreSQL database.

7. If the end of file is reached and the number of rows to be inserted is not equals to the
number of batch size, the insert will be done, so it can be continued with another file.

8. The next file will be processed.
9. If the root folder has no more file, the root folder will be changed.
10. If the unarchived folder has no more root folders, the unarchived folder will be changed.
11. The program will end when there will be no more unarchived folders to be processed.

Figure 1. Python script algorithm schema.
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After the data was fully inserted into PostgreSQL database, further investigation to
reduce the data is performed as it was still big and the queries were not performant enough,
even by adding indexes on some common columns and aggregation query could took over
several hours.

Then, the table of consumption is combined with another tables which contains data
about state independent system operator (ISO) code together with the ISO code of region,
flexibility coefficients, DR enabling technology costs. After this join, the consumption for
each hour, region ISO code and location type is analyzed.

The very large volume of consumption datasets especially for commercial consumers
falls into big data paradigm. Therefore, the dimensionality of the datasets is reduced
as in Figure 2 to process the data and obtain useful insights. First, the peak hours are
identified and then built the data model considering other datasets that are correlated with
the consumption data. The data model represents the interaction of reduced consumption
dataset with the flexibility potential, ISO affiliation, tariff rates, flexibility services, weather
forecast, and DR enabling technology costs. The data model is implemented into a database
for flexibility assessment and savings computation.

Figure 2. Data processing flow.

3. Building the Data Model and Algorithm for Load Flexibility Assessment

Identification of flexibility potential for residential and commercial buildings starts with
the main datasets: the load curve for the two categories of consumers. The load curve represents
the mean hourly load. Its shape allows us to identify the peak (hPEAK_START , hPEAK_STOP)
and off-peak hours and perform further calculations to assess the flexibility and the savings.

The other components of the data model will be described in the following subsections.
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3.1. DR Capability, Climatic Areas, and ISO

The regional differences could be significant in terms of challenges and load flexibility.
Thus, the average estimation is not useful, and the consumers are grouped by ISO, states,
and locations.

Five flexibility ranges are assessed in [1] and seven climatic areas in the USA are
identified in [23] according to Figure 3. Additionally, the states and their affiliation to an
ISO is shown in Figure 4.

Figure 3. Five flexibility potential ranges [1] and 7 climatic areas in the USA [23].
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Figure 4. Ten independent system operators (ISOs) and the 52 states in the USA.

The identification of the entities that form the data model contains information that
is presented in Figures 3 and 4: Loads, State_flex that embeds the flexibility coefficients;
Climate_areas; ISOs; and Locations.

Correlating the information from Figures 3 and 4, the average flexibility coefficients
are obtained for residential (a) and commercial consumers (b) at the ISO level as in Figure 5.

Figure 5. Flexibility coefficients for each ISO. (a) residential consumers; (b) commercial consumers.

3.2. DR Programs

Load flexibility potential is empowered by the emerging programs enabled primarily
by smart meters, sensors technologies, smart thermostats, switching modules connect-
ing/disconnecting and controlling the operation of the appliances and local generation
and storage. Some of the programs such as DLC should be just revitalized by data analyt-
ics showing the benefits of their implementation at large scale. DR programs are briefly
described in Table 4.

3.3. DR Enabling Technology Costs

The DR enabling technology costs were assessed for both residential and commercial
consumers [7] as in Tables 5 and 6.
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Table 4. Demand response (DR) programs.

No. DR Program Description

1 ADR or DLC Control of customers’ flexible appliances for DR purposes using an automated signal that
triggers a specific response.

2 Smart-thermostats Temperature is remotely controlled to reduce heating/cooling appliances usage at peak.

3 Discounted rates Residential consumers reduce consumption to a specific level and get a discounted rate.

4 Bid load
Residential consumers bid the day-ahead curtailment program at 15 min-resolution. If their

orders are executed, they must curtail and receive an additional payment. Otherwise, they will
encounter a penalty that is usually mentioned in an agreement.

5 Signal tariffs
Static or dynamic signal rates that encourage the consumption at off-peak intervals. These
tariffs can be designed as Time-of-Use (ToU) tariffs, critical peak, variable peak, real-time

pricing, or dynamic tariff rates set by consumption optimization with game theory.

6 Consumers’ awareness
Residential consumers are aware of the load reductions requirements and behave accordingly
without a financial incentive. Such programs are tailored to show the advantages and benefits

of a certain behavior towards a sustainable consumption.

7 Charging batteries Residential consumers are stimulated to charge batteries including EV during off-peak interval.

8 Thermal storage
Boilers and other similar appliances operate at off-peak hours. The boiler tanks preserve the
water temperature. For commercial buildings, it can be extended to the ice processing. Thus,

the water can be frozen at off-peak hours and provide cooling at peak hours.

9
Smart Adaptive

Switching Module
(SASM)

It automates the control of various appliances, including generation and storage. It is based on
a priority of the appliances and control of the load with fuzzy rules.

10 Dispatchable load The program requires more engagement from consumers.

Table 5. DR enabling technology costs for residential consumers.

No. Action DR Program Flexible App. Control Tech. and Comm. Cost ($/End-Use)

1 Shed DLC
HVAC 166

Pool pump 147

Room AC 75

2 Shed and Shift Smart-thermostat HVAC 279

3 Shimmy ADR Control Water Heater 2136

DLC Water Heater 350

Table 6. DR enabling technology costs for commercial consumers.

No. Action DR Program Flexible App. Control Tech.
Cost ($/kW)

Comm. & Hardware
Cost ($/Site)

1 Shed DLC HVAC 62 107

2 Shed and Shift
ADR Control

HVAC 242 -

Refrigerated Warehouse 289 -

Smart-thermostat HVAC 171 -

3 Shimmy ADR Control

HVAC 310 2066

Refrigerated Warehouse 289 2066

Water Heater 166 1000
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3.4. Weather Data and Flexibility Forecast

In order to perform the day-ahead flexibility forecast, the meteorological datasets
could be extracted from the weather websites. The data is stored in .csv files and then
imported in the database. Even if it is an important component of the load flexibility
management, it is not an objective of this paper.

The steps required to extract weather data from websites, as in Figure 6, are presented
in Table 7.

Figure 6. Cont.
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Figure 6. Scraping the date from website to .csv file.

Table 7. Steps to extract weather data from the websites written in PHP.

No. Step

1
//Using CURL PHP library to download data via HTTP
//curl session initiation
$ch = curl_init();

2

//setting option with curl_setopt
//CURLOPT_URL option to specify the URL

curl_setopt ($ch, CURLOPT_URL, “https://www.timeanddate.com/scripts/cityajax.php?n=fl/
states&mode=historic&hd=\{$data\}&month=\{$dataMonth\}&year=\{$dataYear\}” (accessed on 2 February 2021))
//post request, 1-true

curl_setopt ($ch, CURLOPT_POST, 1);
//CURLOPT_RETURNTRANSFER returns the content of the page

curl_setopt ($ch, CURLOPT_RETURNTRANSFER, true);

3
//execute session $ch and display the result in browser

$server_output = curl_exec($ch);

4
//HtmlDomParser returns the content of the HTML page

$dom = HtmlDomParser::str_get_html ($server_output);

5
//create and save the extracted data into a .csv file

$fp = fopen (“Weather data {$dataAfisare}.csv”, ’w’);

https://www.timeanddate.com/scripts/cityajax.php?n=fl/states&mode=historic&hd=\{$data\}&month=\{$dataMonth\}&year=\{$dataYear\}
https://www.timeanddate.com/scripts/cityajax.php?n=fl/states&mode=historic&hd=\{$data\}&month=\{$dataMonth\}&year=\{$dataYear\}
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3.5. Data Model

The relational data model reflects the above-mentioned components that can be
correlated with load data to calculate flexibility potential and savings. Moreover, the
flexibility can be daily estimated using weather forecast that is based on weather readings.

The most linked entity is LOCATIONS connecting 9 entities: WEATHER_READINGS,
TARIFF_RATES (through TARIFF_LOCATIONS), WEATHER_FORECAST, CLIMATE_AREAS,
ISOS, STATE_FLEX, LOADS, LOAD_FORECAST. The load forecast is stored at the level of
an appliance that belongs to a specific location. DR_PROGRAMS and DR_APP_COSTS
store data about programs described in Table 4 and DR enabling technology costs presented
in Tables 5 and 6. In WEATHER_READINGS data is collected as in Table 7. Based on the
data model, a procedure is written to implement algorithm presented in Table 8 to calculate
the flexibility potential and savings of the residential or commercial consumers.

Table 8. Algorithm for flexibility potential and savings.

Notations:
h ∈[hPEAK_START, hPEAK_STOP]—hour;
hPEAK_START—peak start hour;
hPEAK_STOP—peak stop hour;
Wf—flexible capacity;
∝f—flexibility coefficient;

CEH—consumption of electricity heating;
CWH—consumption of water heater;
CHVAC—consumption of HVAC;
S—savings from flexibility usage;
tPEAK tariff rate at peak hours;
tOFFPEAK tariff rate at off-peak hours.

Case 1: ALL SHIFT Case 2: HVAC SHED, EH, WH SHIFT

Assess flexibility Assess flexibility

IF h ≥ hPEAK_START AND h≤hPEAK_STOP THEN :
Wf =∝f ×∑

h
(CEH + CWH+CHVAC);

END IF;

IF h≥hPEAK_START AND h≤hPEAK_STOP THEN :
Wf_SHIFT= ∝f ×∑

h
(CEH + CWH)

Wf_SHED =∝f ×∑
h

CHVAC

END IF;

Compute savings Compute savings

S= ∑
h

Wf × (tPEAK − tOFF−PEAK)

SSHIFT = ∑
h

Wf_SHIFT × (tPEAK − tOFFPEAK)

SSHED = ∑
h

Wf_SHED × tPEAK

S = SSHIFT+SSHED

Starting from this model, useful insights are extracted using performant queries that
release synthetic information related to load flexibility. The results achieved in this paper
are based on the data model presented in Figure 7.

3.6. Algorithm for Load Flexibility Assessment

To assess the flexibility potential and compute the savings, we propose the algorithm
described in Table 9. For calculation, two cases are simulated: CASE1 ALL SHIFT algorithm
in which a small percent of the electric heating, water heater and HVAC consumptions are
shifted from peak to off-peak hours; and CASE2 HVAC SHED, EH, WH SHIFT in which a
small percentage of the HVAC consumption is shed, whereas also a small percentage of
electric heating and water heater consumption is shifted. The percentages assessed as in [1]
are converted to the flexibility coefficients. To estimate the savings, different rates for peak
tPEAK and off-peak hours tOFFPEAK are considered.
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Figure 7. Data relational model.

Table 9. Savings and flexibility capacity of residential consumers.

Shifted Load (kWh) Shed Load (kWh) Savings (Euro)

ALL SHIFT 12,434.42 0 3605.98

Total CASE1 12,434.42 0 3605.98

EH SHIFT 327.46 0 94.96

WH SHIFT 4025.12 0 1167.29

HVAC SHED 0.00 8081.84 3071.10

Total CASE2 4352.58 8081.84 4333.35

4. Simulations and Results

Apart from consumption data, in the simulations the datasets presented in the data
model above were partially considered. As it is complex, the consumption forecast, DR
enabling technology costs and climate area are eluded in the simulations that could be the
subject of another study. Therefore, the flexibility forecast is not in the scope of this paper.

The hourly average load is aggregated and grouped by ISO to obtain the daily load
curve (as in Figure 8a for residential and Figure 8b for commercial consumers). The
commercial consumers are located in the control area of only 7 ISO. In both cases, we
can notice that consumers that belong to SOUTHEAST and ERCOT ISO have a higher
consumption than the other consumers. However, the average profile consumption for the
two types of consumers varies very much in shape and amplitude.

As the datasets contain gas and electricity consumption, the total hourly consumption
is compared, noticing that for residential consumers the gas consumption is always higher
than electricity, especially at the morning hours when electricity consumption is lower (as in
Figure 9a). However, at evening the gas and electricity are more balanced, therefore, it is as-
sumed that gas is replaced by electricity. In case of commercial consumers (as in Figure 9b),
the electricity always exceeds the gas consumption. Further, gas consumption peak records
in the morning, whereas electricity consumption peak starts around 9 and decreases at 19.
Therefore, different time intervals are taken into calculating the flexibility value.
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Figure 8. Daily load curves of the residential (a) commercial (b) consumers grouped by ISO.

Figure 9. Electricity and gas curves of the residential consumers. (a) residential consumers; (b) commercial consumers.

The electricity daily load curve breakdown is presented in Figure 10a for residential
and Figure 10b commercial consumers. Both consumers have three flexible appliances that
are measured separately and may bring savings.

Figure 10. Daily average electricity load curve of the residential (a) commercial consumers (b) by components.
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The sum of controllable and non-controllable appliances consumption is shown in
Figure 11a for residential and Figure 11b for commercial consumers. The controllable
appliances count for 26% of the total consumption of the residential consumers. The
share of the controllable appliances is much bigger for commercial consumers showing an
increased flexibility potential.

Figure 11. Controllable and non-controllable appliances share. (a) residential consumers; (b) commercial consumers.

The breakdown of the controllable appliances is presented in Figure 12a,b. Heating has
the smallest share in both cases, whereas the HVAC and Cooling have the largest shares.

Figure 12. Electricity consumption breakdown by controllable appliances for residential (a) and commercial consumers (b).

The structure of the controllable appliances by ISO is shown in Figure 13. Most of
the flexible consumers belong to SOUTHEAST, MISO, and ERCOT ISO for residential,
respectively, MISO, SOUTHEST, and PJM for commercial consumers.



Sustainability 2021, 13, 1736 17 of 20

Figure 13. Flexible electricity consumption breakdown by ISO. (a) residential consumers; (b) commercial consumers.

Based on the proposed methodology and algorithm presented in Figure 2 and Table 5,
the flexible capacity and savings are calculated. The results are shown in Table 8.

The annually savings are quite modest even in the second case considering the total
number of residential consumers (273), the average value being almost 16 Euro. There-
fore, the DR enabling technology costs were not taken into account from evident reasons.
They could be supported by the aggregator (retailer) or grid operator. To be more effi-
cient, the reward that result from the tariff rates difference (tPEAK − tOFFPEAK) should be
accompanied by additional incentives. As peak rate and off-peak rates for residential
consumers, tPEAK = 0.38 Euro and tOFFPEAK = 0.09 Euro, respectively tPEAK = 0.27 Euro
and tOFFPEAK = 0.09 Euro are considered in calculation.

The flexibility coefficients are taken from a previous study and used as input data.
They vary from less than 0.1 to 0.15 of the peak load. In case the flexibility coefficients
are increased up to 0.15 of the peak, the results of this alternative scenario are shown
in Figure 14.

Figure 14. Flexible potential and savings for the assessed flexibility coefficients and 15-scenario.

For commercial consumers, the shifted power totalized 9.3 million MWh with savings
of 88.1 million Euro. In this case, the savings are significant considering the total number
of commercial consumers (14,976), the average value being almost 5900 Euro per consumer.
However, the DR enabling costs are much higher for commercial consumers and their
supportability can be shared or they can be on aggregator.
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5. Conclusions

In this paper, we started from the findings of previous studies, regarding flexibility
coefficients estimated at the state level and DR enabling technology costs and combined
them with large load profile datasets to obtain useful insights regarding flexibility potential
for certain geographical areas.

Usually, large datasets challenge researchers when it comes to achieving valuable
insights from numerous data. Thus, 273 load profiles for residential consumers located in
various locations of the U.S. storing hourly consumption data with the numerous attributes
were extracted. The volume of data for residential consumers was over 2.07 million records.
However, the volume of data could expand to hundreds of thousands if the individual
consumers were considered. In addition, for commercial buildings, the records counted for
more than 131 million records. To handle such volume of data, the files were automatically
imported with a Python script, reduced and for data processing, storage, and calculation,
two top databases (both SQL and NoSQL) are considered.

Hence, in this paper, we proposed a data model that handles large volumes of data and
correlates load data with other datasets to assess or calculate the savings from flexibilities.
The algorithm can be written as a stored procedure and applied separately for residential
and commercial consumers considering different peak intervals, DR programs, costs, and
tariff rates.

By implementing the proposed data flow, model, and algorithm, we obtained total
savings of over 7500 Euro per year for residential consumers and 88.1 million Euro for
commercial consumers. the annual savings are quite modest even in the second case
considering the total number of residential consumers (273), the average value being
almost 16 Euro. For commercial consumers, the shifted power totalized 9.3 million MWh
with savings of 88.1 million Euro. In this case, the savings are significant considering the
total number of commercial consumers (14,976), the average value being almost 5900 Euro
per consumer. However, we noticed a significant difference in the population sizes and
consumption levels of the two categories. As individual savings could be considered as
reasonable for commercial, savings for residential consumers are very modest and may not
incentive enough to implement DR programs.

As a further study, we will focus on emergent data management solutions in relation
to the local flexibility markets and their implementation by means of direct load control
and machine learning algorithms that are able to forecast the generation of local energy
sources (Photovoltaic (PV) and wind generating systems) and balance the consumption
requirements, storage and provide the surplus to the local markets. Furthermore, the
model implementation can be further enhanced with consumption forecast, DR enabling
technology costs and climate area characteristics.
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Abbreviations

DR Demand Response
RES Renewable Energy Sources
EV Electric Vehicle
ISO Independent System Operator
DLC Direct Load Control
PCT Programmable Communicating Thermostat
ADR Automated Demand Response
HVAC Heating, Ventilation, and Air Conditioning
SASM Smart Adaptive Switching Module
EH Electricity Heating
WH Water Heater
ToU Time-of-Use
h ∈[hPEAK_START, hPEAK_STOP] Hour
hPEAK_START Peak start hour
hPEAK_STOP Peak stop hour
Wf Flexible capacity;
∝f Flexibility coefficient;
CEH Consumption of electricity heating
CWH Consumption of water heater
CHVAC Consumption of HVAC
S Savings from flexibility usage
tPEAK Tariff rate at peak hours
tOFFPEAK Tariff rate at off-peak hours
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