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Abstract: This study investigates the system stability of breakwater foundations subjected to earth-
quakes from a probabilistic point of view. A fully probabilistic approach, i.e., a combination of
the Monte Carlo simulation and Bishop’s simplified method, has been developed to evaluate the
system failure probability of foundation damage, one of the prevailing failures encountered during
earthquakes. Twelve sections of perforated caisson breakwaters located around Korea were cho-
sen as case studies. First, the reliability analysis was performed for all the breakwaters at existing
conditions; then, the calibration process involving the estimation of load and resistance factors was
conducted for 12 breakwaters at three levels of the target reliability index. As the performance
function, used in the stability analysis of breakwater foundations, is defined based on an implicit
shape with a high-dimensional space of variables, the calibration process of load and resistance
factors becomes cumbersome and complicated. Therefore, this study has proposed a sensitivity
analysis to be implemented prior to the calibration process to elicit the effects of variables on the
stability of each breakwater, which, thereafter, effectively directs the calibration process. The results
of this study indicate that the failures in the foundation of breakwaters frequently occur in different
modes. Therefore, the failure probability should be estimated considering all possible failure modes
of the foundation. The sensitivity results elucidate that the soil strength parameters are the dominant
variables, contributing to the stability of foundations, whereas the seismic coefficient presents the
negative effect, causing the insecurity of breakwaters. In particular, the deadweights, though directly
contributing to the seismic forces, show a small effect on the stability of foundations. The calibration
shows that the load factors slightly vary with an increase in the target reliability index and set 1.10
for three safety levels. In contrast, the resistance factor exhibits an inverse relationship with the
specified reliability index. Especially when the load factor equals 1.10, the resistance factors are 0.90,
0.85, and 0.80, corresponding to the reliability index of 2.0, 2.5, and 3.0, respectively. Eventually, it
is proved that the sensitivity analysis prior to the calibration process makes the procedure more
efficient. Accordingly, the iteration of simulation execution is diminished, and the convergence is
quickly accomplished.

Keywords: LRFD; load and resistance calibration; breakwater; perforated breakwater; reliability
analysis; bearing capacity analysis; breakwater’s foundation failure; seismic analysis; sensitivity
analysis; Monte Carlo simulation

1. Introduction

Reliability-based design concepts and their applications to load and resistance factor
design (LRFD) have proven to be efficient for cost-saving and material use [1,2]. In general,
there are three levels of reliability-based design. The level III method, the fully probabilistic
approach e.g., Monte Carlo simulation (MCS), derives the failure probability based on the
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requirement of all known probability distributions of all the input variables. However,
the level II method, or the approximation method that includes the mean-value first-order
second-moment (MVFOSM) method and first-order reliability method (FORM), requires
the distributions of the load and resistance instead of all variables, then the safety is defined
in terms of reliability indexes (RIs). RIs may depend on the assumed distribution of loads
and resistances. Finally, in the level I method, or a semi-probabilistic approach, safety is
evaluated based on separate load and resistance factors (LRFs) or partial safety factors
(PSFs), which are forth determined using the two aforementioned methods [2].

Pertaining to standardization, LRFD is the enhancement of the conventional design
approach (CDA) by implicitly considering the uncertainty in the design process. LRFD re-
quires all limit states to be verified using a specified multiple-factor format involving LRFs.
It is philosophically related to the PSF approach. A factored strength approach forms the
basis of the PSF, which is used in Europe and Japan, whereas a factored overall resistance
approach is the basis of LRFD, which is used in North America and Canada. The develop-
ment of LRFD was initiated for structural engineering, which resulted in the publishing of
the Manual of Steel construction, 1994, for steel structures [3] and the American Concrete
Institute (ACI) 318, 1995, for concrete structures [4]. The AASHTO LRFD Bridge Design
Specifications (AASHTO, 1994), which resulted from the NCHRP Project 12–33, introduced
design guidance for the supper-structure of bridges [5]. Contrastingly, considerable effort
has been devoted to the application of LRFD in geotechnical engineering for more than two
decades. However, the adoption of reliability-based design in geotechnical engineering is
more sophisticated compared with that in structural engineering [2].

Partial safety factors were investigated for breakwaters (BRWs) [6,7], where PSFs were
calibrated for several limit states reflecting failure behaviors of BRWs. In Japan, PSFs are
provided for the design of harbor facilities [8]. However, Takenobu et al. [9] examined the
sliding and overturning failure modes of the gravity quay walls and concluded that LFRD
should be applied rather than the partial safety method (PSM) to overcome the limitations
of the PSM and achieve the efficient features of LRFD.

There are some issues related to the PSM, owing to adjustments at the level of basic
variables [9]. First, there are non-linear equations for the verification process, including
the basic variables, e.g., soil parameters; hence, the direct application of PSFs on basic
variables would not properly reflect the safety margin of the structure. For instance, the
critical failure surfaces encountered in slopes using PSF in PSM will be different from those
using CDA. This gap makes it difficult to determine the improvement areas of soils in the
design process. Second, the overall uncertainty, instead of basic variables, can be estimated
but cannot be decomposed into basic uncertainty. The bearing capacity of a pile measured
from loading tests consists of skin friction and tip resistance, and can be considered as
a typical example of overall uncertainties. Moreover, it is easy to deal with in the case
of LRFD, where the same basic variables are considered for both loads and resistances.
The stability of BRW foundations or sliding of caissons on rubble mounds is the problem
reflecting the aforementioned situation, in which deadweights contribute to driving force
as well as resistance. In this case, the PSFs of the deadweights that differ from unity may
not properly reflect the response of the structures.

In LRFD, the limit state equation has been defined in Equation (1), where η, whose
value is between 0.95 and 1.0 [10], is the load modifier that accounts for ductility, redun-
dancy, and operations important for the designed structures. The nominal load components,
Qi, are multiplied by load factors, γi, which are generally larger than unity, implying a
higher percentile probability of the load effect, whereas nominal resistance, Rn, is reduced
by the resistance factor, ϕ, which is normally lower than unity, implying a lower percentile
probability of resistance. If the nominal resistance associated with nominal loads acting on
components and connections in the structures are properly designed so that the limit state
(Equation (1)) is satisfied, then a prescribed target probability of failures will be implicitly



Sustainability 2021, 13, 1730 3 of 18

achieved. In other words, the RI of the designed structures will be larger than the RI that
forth stipulated in the calibration process of LRFs [11].

φRn ≥ η∑
i

γiQi, (1)

Currently, factors in Equation (1) are calibrated using a general closed-form solution
(CFS) of an approximated linear equation comprising load and resistance terms. The load
terms are commonly assumed as the normal distribution, and the resistance component is
assumed as the lognormal type [12]. Statistical insights of load and resistance are repre-
sented throughout their bias factors, which account for the difference between the actually
measured and the predicted (nominal) values. The mentioned LRFs were calibrated using
the level II probabilistic approach, e.g., MVFOSM or FORM [5,12,13]. The calibrated LRFs
using CFS are dependent on the approximation process adopted for estimating statistical
properties of the load and resistance bias factors [12]. This approach is applicable for the
cases where the measured loads and resistances are available as structural components [5],
spread footings [14], soil nail walls [11,12,15], or driving piles [1,16]. However, in the case
of the bearing capacity of the BRW’s foundations, the measured bearing capacity in terms
of circular slip is rarely available and, sometimes, impossible to implement [17]. In this
context, the MCS become the applicable choice to derive reliable LRFs.

With regard to port facilities, there are two types of environmental loading: wave
loadings and earthquakes. The damages of BRWs under the environmental loading are
classified as the overall and local failure modes [18]. The sliding and overturning damages
are representative for the overall failures of the superstructure. Whereas, settlements and
shear failure due to the insufficient bearing capacity are common overall failure shapes
occurred in the foundation. The dynamic stability of BRWs during earthquakes and wave
impacts was further investigated [19–22]. The sliding of caisson structures along the
rubble mound surface caused by breaking wave loads was investigated using Newmark’s
method [20]. In their study, caissons were modeled as a mass-spring dash-pot linked to the
ground. The effect of parameters, such as the mass, stiffness, and damping coefficient, on
the dynamic response, as well as horizontal and rotational displacement of caissons were
investigated and validated based on the large-scale model test. In addition, the dynamic
response of the upright BRW subjected to impulsive breaking wave forces was studied and
verified with the small-scale test of the pendulum [21]. Moreover, the dynamic response
of caisson structures, located in the array, was studied [19]. Their study examined the
response of caissons considering the effects of adjacent caisson blocks under the wave
impact loading. Furthermore, the sliding and overturning stabilities of caisson blocks
under the combined effect of earthquake and tsunami were investigated [22].

Furthermore, the historical failure observations revealed that BRWs were mainly
damaged owing to their foundation failures when they were found to be vulnerable during
earthquakes [23]. However, behaviors of a BRW under the wave effect were more attractive
to study than those relating to the seismic excitation. In addition, previous studies mainly
concentrated on the stability of caisson blocks, i.e., sliding or overturning failure modes
within the CDAs. In contrast, the foundation stability of BRWs subjected to earthquake has
been barely examined.

To evaluate the stability of the slopes, several methods can be applied, e.g., the strength
reduction method, and limit equivalent method (LEM). Recently, the method of shear band
propagation has proved to be the most appropriate approach to evaluate the safety factor of
the cut slopes that consist of weak clay layers [24–26]. Oumeraci et al. [7], developed several
equations corresponding to the predefined failure surfaces in the BRW foundation using
the upper bound theory. These equations with simplifying hypotheses were expressed
in the explicit definitions implying the convenient estimation of the derivatives of the
performance function in the reliability analysis. However, the predefined failure surfaces
might not be representative for all possible failure surfaces that occurred in the foundation.
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Among the LEMs, Bishop’s simplified method (BSM) is recommended as the suitable
approach for verifying the stability of the BRW foundation [8,17].

Based on the aforementioned concepts, this study aims to investigate the foundation
stability of BRWs subjected to seismic loading using the fully probabilistic approach. Safety
in terms of RI or failure probability (PF) was investigated for 12 BRWs around Korea.
Moreover, LRFs were calibrated for three levels of target RIs (2.0; 2.5, and 3.0) using
the MCS. The fully probabilistic procedure proposed in our previous study [27], which
comprises BSM and the MCS, evaluated the probability of failures in the reliability analysis.
Based on the fully probabilistic approach, the calibrated LRFs are expected to provide an
efficient solution in the design process of new BRWs. The rest of the paper is set as follows:
First, the seismic analysis approaches are discussed to opt for the appropriate method. The
stability of the BRW foundation should be considered as a system, including all possible
failure modes as described in Section 3. In Section 4, the sensitivity analysis is carried
out to discover the prominent variables showing dominant effects on the stability of each
BRW. Section 5 illustrates the MCS for the PF evaluation of the BRW foundation-induced
earthquakes. Section 6 surveys the target reliability index. Section 7 presents the calibration
process of LRFs by incorporating a sensitivity analysis. Section 8 discusses the results of
the study. Section 9 concludes the paper.

2. Seismic Analysis in Reliability Assessment

There are some cases in which the earthquake-induced stability verification is omitted
during the performance assessment of BRWs. However, if BRWs are located in deep water
and the design wave height is small, then the actions associated with seismic excitation
can become the dominant factor [8]. For deep-water sites, perforated caisson BRWs,
including wave absorbing chambers, can considerably mitigate wave impacts, becoming a
reasonable design choice. However, owing to the presence of wave chambers, the structures
become more eccentric with regard to its deadweight, which result in a more unstable state
compared to the upright caisson sections [28]. Therefore, the investigation of the overall
stability in terms of foundation stability supporting perforated caisson sections has been
conducted in this study. Figure 1 illustrates the typical section of the perforated caisson.
Their overall design conditions are listed in Table 1.

Table 1. Dimensions and environmental characteristics of the breakwaters.

No. Breakwater Location
Geometry Parameter Ocean Condition

Hc Bc b hr h h’ D d’ WL

1 Donghae 1 Eastern 31.5 24.0 5.8 11.0 33.45 22.45 20.65 6.95 0.23
2 Donghae 2 Eastern 31.5 24.0 6.3 6.0 28.45 22.45 20.85 6.95 0.23
3 Pohang 1 Eastern 30.1 31.0 13.0 1.6 23.02 21.40 19.10 7.90 0.20
4 Pohang 2 Eastern 22.5 22.2 10.0 4.7 21.91 17.25 15.65 6.75 0.12
5 Pohang 3 Eastern 23.5 18.5 7.0 4.8 19.55 14.75 13.25 6.45 0.12
6 Ulsan 1 Eastern 28.4 23.1 6.8 1.5 20.56 19.06 17.06 9.46 0.33
7 Ulsan 2 Eastern 33.9 33.0 10.2 2.5 24.16 21.66 19.16 10.36 0.33
8 Ulsan 3 Eastern 35.5 32.5 5.6 6.3 28.89 22.59 20.09 10.09 0.30
9 Ulsan 4 Eastern 32.0 31.5 6.6 6.1 26.41 18.44 15.94 9.44 0.22

10 Gamcheon Eastern 27.2 26.8 5.7 2.4 19.80 17.44 14.94 6.94 0.72
11 Hongdo Western 26.7 32.7 8.3 4.0 19.46 15.46 13.16 10.46 1.73
12 Jeju Southern 22.0 20.0 6.0 3.0 16.95 13.95 12.15 8.85 1.48

Notes: dimensions in meters.

To analyze the structure behavior-induced earthquakes, three methods of earthquake
engineering, which are widely accepted and applied to the port facility structures, are the
pseudo-static method, Newmark’s method, and dynamic analysis. In the pseudo-static
approach, or seismic coefficient method, the cyclic nature of the earthquake is ignored,
and seismic forces are treated statically, i.e., the equivalent static components of the seis-
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mic force are applied to the centroid of the sliding mass that acts along the out-of-slope
direction. The seismic coefficient is converted based on the acceleration time history of an
earthquake, considering the seismic response of the ground. Owing to the transient nature
of earthquakes, the effective seismic coefficient, used in the pseudo-static approach, should
be a fraction of the ratio between the peak ground and gravity accelerations rather than the
full ratio. This fraction depends on the peak ground acceleration, and the average ratio of
0.6 was proposed [29,30].

Figure 1. Typical cross section of a perforated caisson breakwater.

Based on Newmark’s method, known as simplified dynamic analysis, permanent
deformations of BRWs are evaluated for the cases where pseudo-static safety factors during
an earthquake are less than unity. The acceleration at which the failure occurs is defined as
the threshold seismic value. During an earthquake, the deformations of the sliding mass
are accumulated, at which the acceleration is larger than the threshold value. In general,
the dynamic analysis uses finite element or finite difference approaches in which the local
site effects are often treated as part of the soil–structure interaction analysis. First, the soil
foundation is considered as equivalent linear, non-linear total stress, or effective stress
model. Then, the seismic performances are evaluated. Fairly comprehensive results can be
obtained from dynamic analysis, such as the failure modes of soil–structure systems, extent
of deformation, stress–strain states in soil, and structural components. However, seismic
responses based on Newmark’s method and dynamic analysis are sensitive to the input
accelerations. Moreover, BRW behaviors depend on the characteristics of earthquakes such
as intensity, magnitude, duration of excitation, and frequency, as well as the features of
structures, i.e., the stiffness or self-weight of structures.

Historical observation reveals that the highest magnitude of the earthquake that
occurred in Korea is about 7.5. In the Korean standard [31], there are two basic specified
seismic zone factors, i.e., 0.11 and 0.07 with 500 years of return period to account for the
different local sites. Based on the specified seismic zone factors, the seismic design spectrum
will be determined with respect to the ground soil type, and the importance of the designed
structures. When earthquake is considered, seismic forces can cause dynamic effects in
three directions: two horizontal and one vertical. The BRW structures are known to be
comparatively rigid structures, leading to small vibrations during earthquakes compared
with seismic excitations. In addition, their fundamental period is short, and the damping
factor is large. Therefore, except for BRWs located near the seismic center, the influence
of the vertical seismic component is not as high as that of the horizontal component [30].
Hence, in this study, the seismic responses owing to horizontal excitation are further
investigated using the seismic coefficient method within the time-consuming approach of
the MCS.

3. System Reliability Analysis

As described in the previous studies, the location of critical failure slip surfaces in
slopes depends on the soil stratigraphy and soil strength properties [32,33]. Cho [33]
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analyzed the stability of two soil slopes consisting of two clay layers using multipoint first-
order approximations. His study demonstrated that although there is one deterministic
failure surface, the results of the probabilistic analysis present two different failure surfaces
that can be encountered: one crossing path at the upper layer and the other at the upper
and lower layers. Moreover, several soil slopes were examined by Zhang et al. [32]. In
their study, the most critical failure slip surfaces were located as the representative failure
modes based on the reduced shear strength parameters. Thereafter, the safety factor (FS)
of each failure surface was depicted by a second-order polynomials using the response
surface approach combined with Hassan and Wolf algorithm [34]. Then, the system PF
was evaluated using the MCS based on the fitted second-order polynomials.

In this study, the system reliability analysis is investigated using the MCS rather than
the approximated multi-point FORM or response surface approach where the achieved
PFs are mainly dependent on the identified major failure modes. The results of the MCS
show that there are some cases where the failure surface is represented by one slip surface.
Alternatively, some problems show several representative slip surfaces. The system PF
is, hence, calculated as the ratio of the total number of failures of all representative slip
surfaces to the total size of the simulation.

Figure 2 presents the results of the MCS for Port Nine. The foundation of Port Nine
consists of four soil layers where layer one is 7 m of the artificial rubble mound arranged
above three sediment sand layers. The thicknesses of the three soil layers are 2 m, 8 m
and 11.6 m, and the friction angles of the layers are 32◦, 33◦, 34◦, respectively. The shear
strength properties of the rubble mound were comprehensively investigated in the study
of Kobayashi et al. [17]. By following that, OCDI 2009 [8] specified the shear strength
parameters as 20 kN/m2 for the apparent cohesion and 35◦ for the internal friction angle as
the standard values of rubble mounds. The failure modes are affected by the soil properties
of the soil foundation. Generally, the rupture surfaces intend to occur in the soil having
relatively low shear strength [24,33]. In the foundation of Port Nine, the shear strengths
of sand layers are quite similar, hence, the failure modes would potentially cross path
any layers. The dashed red line in Figure 2a illustrates the critical failure surface using
CDA, whereas the blue and black lines depict the possible failure modes resulted through
the MCS. There are two potential failure modes in the MCS. The first failure surface, the
black line, crosses four upper layers, and the second failure mode, the blue line, occurs in
two upper layers. The two bundles of driving loads and resistances (shown as scattered in
Figure 2b) are associated with two failure modes. It should be noted that if one considers
only the most representative failure mode, i.e., mode one (gray circles in Figure 2b), then
the PF would be merely determined by the number of failure points that belong to the mode
one realization. It implies that the failure cases belonging to mode two were neglected.
Therefore, the result of PF, based on the representative failure mode, would be smaller
than the actual system PF. Although the PF of a representative failure can be a good
approximation for a homogenous slope, the system PF can be significantly larger than that
of the most critical failure mode in the foundation including layered soils.

Figure 2. Results in the Monte Carlo simulation (MCS) at the initial condition of Port 9 (a) Representative failure modes and
(b) Scattering of loads and resistances. CDA: conventional design approach.
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4. Sensitivity Analysis

To make the calibration process effective, the effect of random variables on the stability
of the structure should be surveyed. The sensitivity of the variables exhibits the extent
of their influence on the safety level. Several methods can be applied in the structure
sensitivity analysis [35–37]. Especially, the perturbation technique was applied to derive the
boundary value problems and the system of equations based on which of the sensitivities,
i.e., the partial derivatives of the objective function with respect to all the parameters, can
be analytically obtained [35].

Alternatively, for a problem including a large number of variables, the tornado dia-
gram method is commonly used. The tornado diagram depicts the relative sensitivities
of input variables on performance functions as “swings,” where the larger the swings are,
the effect of the variables will be more significant on the performance function. The swing
of each variable is constructed based on its upper bound and lower bounds. For slope
problems, the safety factor, defined as the ratio of the shear strength to the stress along the
slip surface, reflects the stability of the slope under driving forces, such as surcharge load,
self-weight, and seismic load. Few well-known approaches proposed by Bishop, Spencer,
and Morgenstern-Price based on the LEM have been applied for slope stability analysis [38].
However, those methods define the safety factor in an implicit manner. Therefore, it is
difficult to directly calculate the analytical derivatives of the objective function with respect
to variables.

In 1999, Hassan and Wolf proposed the algorithm (HWA) to estimate the RI of slopes
based on the MVFOSM [34]. In HWA, the partial derivative of the safety factor with respect
to each variable is numerically approximated by determination of FS using parameter
values that are greater or less than its mean by several times (m times) of its standard
deviation. The sensitivity of variable Xi is determined using Equation (2). Derivatives
estimated using Equation (2) reflect the slope at the mean point of the performance function
with respect to each variable in the hyperspace of input variables.

∂FS
∂Xi

=
FS+

i − FS−i(
µXi + mσXi

)
−
(
µXi −mσXi

) =
FS+

i − FS−i
2mσXi

, (2)

where FSi
+ and FSi

− correspond to safety factors estimated considering the upper and
lower values of the variable Xi, while the other variables are maintained at their means,
µ. The increment times, m, larger than or equals to unity are concluded to have a minor
influence on relative sensitivities; hence, it is considered as 1.0 in this study. The safety
factors in Equation (2) are determined using BSM as shown in Equation (3) in Section 5.

The sensitivity analysis results are plotted in Figure 3 for Port One. The foundation of
Port One includes the 11 m thickness of rubble mound sitting on the sand layers (with 6.1 m
of thickness) above another sandy gravel layer. The effective friction angles of sand and
sandy gravel layers are 30◦ and 40◦, respectively. In Figure 3a, the dashed black line, or the
baseline, shows the mean values of safety factors that are calculated using the mean of all
the input variables. The input variables are presented later in Section 5. The blue and red
lines denote the safety factors estimated at the upper and lower bounds of each variable,
respectively. It is perceived that when the lower bound of the soil strength parameters or the
upper bound of the seismic forces is applied, the safety factor will be reduced and vice versa.
The variation of safety factors in the sensitivity analysis depicts the extent of the sensitivity
of the variable as demonstrated in Figure 3b. The red square markers in Figure 3b illustrate
the variables having adverse effects, whereas the blue diamond markers demonstrate those
having positive effects on the stability. The larger the sensitivity of the variable, the more
would be the influence of the variable on the foundation stability. Furthermore, the weight
components exhibit small adverse sensitivities, whereas the seismic coefficient presents
a considerable influence on the insecurity of the BRW foundation, although they both
contribute to the seismic force.
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Figure 3. Effect of variables on BRW’s foundation stability (a) Safety factor (b) Sensitivity.

5. MCS Approach

The MCS is a robust and consistent method to simulate the problems by considering
uncertainty variables to evaluate the PF. The MCS is the best solution for problems in
which the objective function is modeled based on a large dimension, exhibits nonlinear
behavior or is defined based on the implicit aspect. Uncertainties are introduced into the
MCS to reflect the inherent randomness of a natural process. In the case of soils, even in the
nominally homogeneous soil layers, soil properties may exhibit considerable variation from
one point to another. This phenomenon is inherent and known as the spatial variability
of soil. In reality, stratigraphy and soil parameters are mainly dependent on the overall
process comprising four stages: weathering, erosion, transport, and deposition. Therefore,
uncertainties reflect the lack of insights owing to the lack of necessary information. In
this study, the geometry of the sections of BRWs is assumed to be similar to the designed
manner. The concerned uncertainties are related to soil properties; tide variation; seismic
excitation; and construction work, i.e., the unit weights of materials and armor layers.
The statistical parameters of the input variables are listed in Table 2. The shear strength
parameters of soils are more variable compared to the weights. The coefficient of variation
(COV) of 6% is specified for the shear strength properties in OCDI 2009 [8] to develop the
PSFs. In principle, the COV of variables reflects the degree of the site understanding, and
the low variability of the shear strength of soils is reported in the range of 10% to 30% [39].
In this study, the COV of 10% is proposed in the reliability analysis. The filling material
are mostly dependent on the construction work at the field, hence, its weight presents the
most variation among the considered participation weights.

Table 2. The statistical properties of the uncertainties [8].

No. Notation Mean of Bias COV of Bias Distribution Random Variable

1 Wc 1.02 0.02 Normal Weight of concrete
2 Wrc 0.98 0.02 Normal Weight of reinforced concrete
3 Wf 1.02 0.04 Normal Weight of filling material
4 War 1.00 0.03 Normal Weight of armor layer
5 kh 1.00 0.10 Normal Seismic coefficient
6 W 1.00 COV 1 Normal Tidal level
7 tanϕ 1.00 0.10 Normal Internal friction angle
8 c 1.00 0.10 Normal Cohesion force

9 γ 1.0

0.10 Normal Saturated soil density of Armor
0.03 Normal Saturated soil density of Sand
0.02 Normal Saturated soil density of Clay
0.02 Normal Saturated soil density of Rock

1 COV: 0.05/0.12/0.20 correspond to the west/south/east locations.



Sustainability 2021, 13, 1730 9 of 18

BSM is a widely accepted method based on LEM, in which the slip surface is assumed
to be circular, and the safety factor is determined with the equilibrium of moments around
the slip center [8,17]. The procedure to combine the MCS and BSM to estimate the safety
factor, as well as RIs, was successfully investigated in the previous study [27]. In this study,
the same procedure is applied considering the horizontal seismic force in the denominator
of Equation (3) to estimate the safety factor, FS. The horizontal seismic force is the product
of the seismic coefficient and net deadweight without deducting buoyancy. Then, the
performance function, g is defined in Equation (4).

FS =
∑
[
{cs+(w′+qExs) tan ϕ} sec θ

1+tan θ tan ϕ/FS

]
∑{(w + qExs) sin θ}+ ∑ aFEq/R

, (3)

g(X) = FS− 1, (4)

where w’ and w are the effective weight and total weight of the comprising slice segment,
respectively. qEx is the surcharge load distributing on the slice along the vertical direction.
FEq and a correspond to the horizontal seismic force and its lever arm about the failure
center. R is the radius of the considered failure surface. c is the apparent cohesion of the
soil (or undrained shear strength in the case of cohesive soil), and ϕ is the friction angle
of the soil along the base surface of each slice. s is the width of each slice. Finally, θ is the
inclination angle, horizontal to the base surface. The horizontal seismic force increases the
stress along the failure slip; hence, the safety factor is decreased.

In Equation (4), vector X includes the considered constant and uncertainty variables.
For each sampling, the performance function g is determined, and the number of failure
cases is accumulated (for the case that g is less than zero) as Nfail. Then, the probability
of failure, Pf, is determined as the ratio of total failure cases to the size of simulation, N
(Equation (5)). The associated RI and probability of failure are expressed in Equation (6).

Pf =
1
N

N

∑
i=1

I(g(Xi) < 0) =
N f ail

N
, (5)

β = −Φ−1
(

Pf

)
= Φ−1

(
1− Pf

)
, (6)

The result of Pf in the MCS is known to be sensitive to the simulation size; therefore,
the number of realizations should be surveyed before conducting a simulation. In general,
the size of simulation should be greater than ten times the reciprocal of Pf (i.e., N > 10/Pf),
so that the coefficient of the variation of Pf (COVPf), estimated based on the different
MCS runs, is less than 0.3 [27]. The relative error, ε, with a 95% confidence interval of the
binomial distribution of each simulation cycle is evaluated using Equation (8) [40].

COVPf =

√
1− Pf

NPf
≈ 1√

NPf

, (7)

ε% = (200%)

√
1− Pf

NPf
, (8)

For example, if the maximum target RI is set as 3.0 (or equivalent Pf of 0.0013), then
the minimum size of simulation, N, estimated by Equation (7), should be 2500 to reach
a COV lower than 0.3. In this study, PFs are evaluated using the simulation of 200,000
samplings. Considering the simulation size of 200,000, the maximum error with 95%
confidence interval is expected to not larger than 0.12%. In this study, this size in the MCS
has been used to evaluate the RI of the existing structures and to calibrate LRFs with respect
to the specified target RIs. Within the MCS of the existing structures, if there is no failure
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event encountered, the PF is estimated based on the approximated distribution function of
FS that is fitted based on its MCS outcome.

6. Target Reliability Index

It is given that LRFD, if applied, would provide a uniform and consistent safety level.
As a result, LRFD is assured to generate a safe and economical class of structures. However,
prior to the calibration of LRFs, the target RI, βT, should be appropriately specified. In
principle, the specified safety levels may directly affect the design process, i.e., the type of
structure, applied material, and cost of investment. Therefore, the specified safety level
should be linked to the potential consequences of failure. In general, for more important
structure, the higher safety level should be specified. The safety level used in LRFD codes
should be at least specified to yield those applied in earlier codes. Pertaining to AASHTO
LRFD Design Specifications, the LRFs for strength I limit state have been calibrated for
a target RI of 3.5 during a 75-year design life of a bridge [10,15]. However, the stability
design of bridge substructures (i.e., slopes and foundations) is categorized into the service
I limit state, leading to a load factor of 1.00. The associated resistance factors are calculated
by fitting into FS in CDA codes.

The range of the target PF for slopes was set between 0.001 and 0.01 (related to RIs of
2.3–3.1). A value of 0.01 is for low potential risk of designed slopes, whereas 0.001 is for
high potential risk [41]. The sliding failure mode of caisson blocks along the rubble mound
surface was investigated [42]. The target RI was obtained using the statistical information
of the safety factors based on the deterministic approach. The target RIs, close to the
specified values of 2.367 and 2.433 in OCDI 2009 [8] corresponding to the consideration
of the normal or lognormal distribution of the target RI, were derived. Besides, several
internal failure modes of BRWs where the deep mixing method was applied to improve
foundations were investigated [43]. The value of 3.1 was specified as the system target
RI with respect to internal failure modes. Moreover, sliding and overturning failures of
gravity quay walls were examined for 30 different design conditions [9]. The target RI was
set as the minimum RI among 30 considered quay walls. To investigate the trend, although
the minimum RI is 2.32 for Port Five in this study, three levels of target RIs are chosen as
2.0, 2.5, and 3.0 to calibrate LRFs.

7. MCS for the Calibration Process

Previously, LRFs were mainly calibrated using FORM based on a general closed-form
solution [1,11,16]. However, FORM cannot be directly implemented in this study because
highly non-linear implicit function evaluations are needed in the process [9]. Moreover,
there is no analytical function that can exactly reflect all the failure modes of a system to
adopt FORM. Alternatively, MCSs were successfully applied in the calibration process
of load and resistance factors in the slope and retaining wall problems [44,45]. In the
calibration process of LRFs using the MCS, system characteristics are adjusted so that the
safety level of the system meets the given target RI. In other words, the nominal values
of the variables of the system are iteratively changed in their spaces, and then, the PF is
evaluated and compared with the target PF to verify the convergence [9,44]. In principle,
several combinations of input variables produce the target RI, especially for the case of
a high-dimensional and non-linear problem, such as the BRW foundation stability that
includes uncertainties in the multilayered subsoil and superstructure components.

To effectively perform the MCS for the calibration of LRFs, the sensitivity analysis has
been proposed to analyze the insight of variables on the performance function, as described
in Section 4. Based on the sensitivity analysis, the input variables that have minor effects
on the safety factor are retained for the initial condition. Meanwhile, variations have
been iteratively applied to variables that have a dominant effect on the objective function.
Then, the PF is evaluated for each searching iteration. The searching converges until the
difference of the PF of the adjusted system and the target PF falls within 5% [44]. This
procedure neglects variations applied to the variables that have a minor effect, and results
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in a more efficient calibration process thanks to the insight about variables affecting the
performance function.

The calibration process for Port 12 at a target reliability index of 2.0 is depicted in
Figure 4. The load and resistance components are plotted as gray circles for the initial
condition. It can be seen that within the 200,000 sampling of the MCS no failure event
was found in the figure. It means the resistance values are always greater than those of
load in the MCS at the initial condition. In this situation, the PF is approximated using
the analytical probability density function of the safety factor, which is fitted to the results
of the MCS. During the calibration process, the nominal values of the dominant input
variable (the horizontal seismic coefficient in this case) has been increased, and the others
are retained. Load and resistance values resulting from the variation of dominant variables
for the target RI of 2.0 are scattered, as shown by blue dots in Figure 4. The realizations in
the calibration process are mainly transmitted toward the vertical direction, which implies
that the loads are considerably enlarged, whereas resistances are slightly increased. Both
loads and resistances correlated to the weight of the sliding mass have been increased,
implying that the critical slip surface is extended in the soil foundation when the seismic
coefficient is increased. Furthermore, the statistical characteristics, i.e., the mean and
variance of the load, as well as the resistance, are varied during the calibration process.
This phenomenon reflects the non-linear behavior of the performance functions represented
by the implicit function [27].

Figure 4. Load and resistance of the existing model (EM) and adjustment model in the calibration
process of βT = 2.0 (CP2.0).

The number of failure cases, i.e., the number of points in the failure zone, is
4496 considering the variations; the system PF become 0.0225 (i.e., 4496/200,000). Thus, PF
falls within a 5% difference compared with the target PF of 0.02275 (corresponding to the
RI of 2.0), implying that the searching process is converged. The limit state points (points
approximately lying on the limit margin (R = Q), presented as brown points in Figure 4)
are singled out to evaluate LRFs using Equation (9) [9,44].

LF =
Q|LS
Q|n

; RF =
R|LS
R|n

, (9)
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where Q and R correspond to loads and resistances. LF and RF are the calibrated load and
resistance factors, respectively. The subscript n is abbreviated for nominal components,
whereas LS stands for the limit state points. The statistical features of limit state points
(similar to the most probable point or the design point in FORM) are discussed in Section 8.
Then, the calibration process is implemented for all ports at three levels of target RIs, and
the calibrated LRFs are presented in the next section.

8. Results and Discussion

In Figure 5, the initial safety factors based on CDA and corresponding RIs resulted
from the MCS are presented. The smallest CDA safety factor is 1.274 associated with the
lowest RI of 2.32 in the case of Port Five. The existing structures were designed to meet the
requirement of the minimum stipulated safety factor of 1.0, in the current standard [31],
for earthquake verification. Hence, the minimum safety factor of all the existing BRWs is
not lower than unity. The linear regression line is approximated at a high coefficient of
determination (R2 = 0.863). Based on the regression line, the associated RI corresponding
to the CDA safety factor of the existing BRW can be approximated. For example, if the
safety factor based on CDA is 1.0, the associated RI can be estimated as 1.05. The COV at
the initial condition of safety factors and RIs are 0.17 and 0.36, respectively. This implies
that the safety level of the existing structures presents a large variation in the probabilistic
point of view.

Figure 5. Safety factor, FS, and associated reliability index, β, at initial condition.

Figure 6 shows the distributions of safety factors for Ports Five and Six. Although
the CDA safety factors do not differ much (~1.15 times), the PF (PF when safety factor is
lower than unity, the area of the histogram on the left side of FS = 1 margin) for Port Five
are 340 times larger than that for Port Six. This implies that pertaining to the probabilistic
point of view, the results of the safety factors using CDA do not reflect a uniform safety
level, which should be an accomplished objective to reach an economical and consistent
design of structures. Hence, the traditional CDA should be progressively converted to
probabilistic approaches, e.g., LRFD, to achieve a consistent and uniform safety level.

Figure 7a depicts the distribution of load and resistance at limit states (LSs) where the
safety factors closely equal unity (brown points in Figure 4). The bottom part of Figure 7a
illustrates that the safety factor at the limit state exhibits a uniform distribution. Moreover,
the major overlap at the top part of Figure 7a exhibits the most similar distributions of
load and resistance at the limit state. This proves that the chosen range of safety factor as
the limit state (FS within 0.99 and 1.01) is sufficient enough to approximate limit points.
In addition, the histograms of loads and resistances lying on the limit state margin are
identical to the normal distribution; hence, the estimated LRFs using the means of load
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and resistance denote the most probable points. Figure 7b depicts the histograms of
loads and resistances pertaining to the MCS. The limit state points of load and resistance
represented by their mean values are identically placed at the same value denoted by the
solid black line. The limit state points are located between the nominal load and resistance.
Therefore, the load factor will be greater than unity, and the resistance factors will be less
than unity (Equation (9)). The calibrated LRFs for 12 ports at three safety levels are listed
in Table 3. Based on the small variation of the achieved RIs (~0.2% for three levels) during
the calibration process, the variation of calibrated LRFs is less than 7%, implying a good
convergence during the calibration process.

Figure 6. Distributions of the safety factor for Ports 5 and 6 at the initial condition.

Figure 7. Calibrated load and resistance factors for Port 5: (a) Safety factor, loads, and resistances at limit state (LS); (b)
Histogram of the calibrated loads and resistances.

In Figure 8, the resistance factors, normalized with associated load factors, are plotted
with nominal safety factors for all ports at all three target safety levels. The nominal safety
factors, shown in Figure 8, are safety factors evaluated with respect to obtained nominal
values that meet the requirement of the specified target RIs. The normalized resistance
factors are linearly inversely related to the nominal safety factor. The high regression
coefficient of 0.982 implies a strong correlation between the nominal safety factors and
normalized resistance factors after the calibration process. Based on the regression line, the
equivalent normalized resistance factors associated with the specified safety factors can be
derived. For example, if the existing safety factor is specified as 1.0, then the associated
normalized resistance factor should be 0.96. During the calibration process, the nominal FS
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varied as the input variables were adjusted to meet the specified target RIs. For instance,
the RI at the initial condition of Port Five is 2.32, which is smaller than the target RI of 3.0.
Therefore, the nominal safety factor is increased from 1.274 at the initial condition to 1.373 to
reach the target RI of 3.0. Alternatively, the initial RI estimated as 4.05 for Port Six is larger
than the target RI of 3.0; hence, the safety factor should be reduced from 1.459 to 1.343 to
reach the target RI of 3.0.

Table 3. Calibrated load and resistance factors.

Case
Target βT of 2.0 Target βT of 2.5 Target βT of 3.0

β LF RF β LF RF β LF RF

1 1.998 1.024 0.878 2.492 1.026 0.843 3.000 1.029 0.808
2 2.000 1.052 0.894 2.508 1.052 0.857 3.000 1.054 0.822
3 2.001 1.075 0.916 2.501 1.081 0.879 2.994 1.100 0.859
4 2.001 1.015 0.829 2.507 1.020 0.793 2.995 1.018 0.754
5 1.996 1.107 0.910 2.502 1.121 0.877 3.001 1.119 0.830
6 1.997 1.136 0.938 2.509 1.157 0.916 3.005 1.176 0.895
7 1.993 1.077 0.930 2.509 1.091 0.911 2.997 1.102 0.892
8 1.996 1.082 0.944 2.499 1.086 0.920 2.995 1.100 0.904
9 1.993 1.047 0.873 2.501 1.047 0.835 3.005 1.037 0.790

10 2.001 1.103 0.912 2.498 1.103 0.876 2.990 1.095 0.832
11 1.990 1.194 0.979 2.492 1.211 0.962 2.994 1.223 0.944
12 2.005 1.098 0.877 2.506 1.125 0.849 3.002 1.140 0.816

Mean 1.998 1.084 0.907 2.502 1.093 0.877 2.998 1.099 0.846
COV 0.002 0.046 0.044 0.002 0.051 0.052 0.002 0.055 0.064

Figure 8. Nominal safety factor and normalized resistances factor in calibration process.

Safety factors based on CDA at the initial condition are sorted and plotted as a
dashed black line in Figure 9. In addition, the resistance factors, normalized with the
associated load factors, are illustrated for three safety levels. If a higher safety level
is specified, a lower resistance factor should be used. The safety factors show a larger
variation (COV of 0.17) compared with the results of the resistance factors (highest COV
of 0.04). Moreover, although safety factors, which are sorted, present the increasing trend,
the corresponding normalized resistance factors do not exhibit a clear trend. It implies
that the resistance factors slightly rely on the characteristics of the chosen initial structures.
In other words, the chosen structures comprising different nominal parameters do not
influence the calibrated resistance factors. The reason for this can be demonstrated using
Equation (9), where the load and resistance forces at the limit state are normalized with
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their nominal values, making the calibrated LRFs slightly dependent on the initial nominal
safety factors. This phenomenon illustrates the same behavior with LRFs for bridge design,
in which the resistance factors are not dependent on the magnitude of live load and dead
load components, but the ratio of the components [5,13].

Figure 9. Relationship of initial safety factor and normalized resistances factor, RFN, for three target
reliability indexes (βT).

To propose effective factors for the design of new structures, LRFs should be validated.
First, LRFs were rounded to the nearest value of 0.05 [46]. Then, the calculated resistance
factor was verified for the initial structures, and the safety condition was again evaluated.
The proposed LRFs considers the average of 12 ports and are listed in Table 4. Figure 10a,b
illustrate the verification results for Port Five using proposed LRFs at target reliability
values of 2.0 and 2.5, respectively. The red color depicts the load effects; the blue color
represents the resistance components. Nominal results are derived from the stability
analysis with regard to the nominal (design) input values. Factored components are
products of terms with their factors, and the limit states were verified using Equation (1).
As shown in Figure 10a, the limit state equation is satisfied for the target RI of 2.0. However,
when the proposed LRFs at the safety level of 2.5 are applied, the limit state equation is
not satisfied as demonstrated in Figure 10b. This implies that the failure probability of
foundations may be greater than 0.0062 and smaller than 0.023. This situation is figured
because the initial RI of Port Five lies between 2.0 and 2.5.

Figure 10. Verification for Port 5 using the proposed load and resistance factors: (a) for the reliability index of 2.0 and (b) 2.5.
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Table 4. Proposed load and resistance factors.

Target β Target PF
LF RF Propose Factor

Mean COV Mean COV LF RF

2.0 2.3% 1.084 0.046 0.907 0.044 1.10 0.90
2.5 0.62% 1.093 0.051 0.877 0.052 1.10 0.85
3.0 0.13% 1.099 0.055 0.846 0.064 1.10 0.80

9. Conclusions

This study considered the earthquake-induced stability of BRW foundations using a
fully probabilistic approach, i.e., a comprehensive approach combining BSM and the MCS.
The stability of BRW foundations with regard to the PF or reliability index was examined
as a system safety assessment. The sensitivity of variables was analyzed using HWA,
where the sensitivities were numerically evaluated based on the relative variations of safety
factors corresponding to the increment or reduction of one standard deviation from the
mean of each variable. The sensitivity analysis illustrates that the shear strength properties
of the soil foundation are the most important factors keeping the structure stable, whereas
the seismic coefficient is the most adverse component causing the failure of foundation.

The minimum system reliability index of 2.32 was evaluated for Port Five. Based on
that, three reliability indexes of 2.0, 2.5, and 3.0 were recommended, and the calibration
process was performed to obtain the associated load and resistance factors using the MCS.
The calibrated LRFs, validated with the CDA, were proposed to design new BRWs using
the LRFD approach. The results of this study implied that LRFD provides a consistent and
uniform safety level, demonstrated by small COVs of RFs compared with those belonging
to the safety factors of CDA. Therefore, the LRFD should be progressively applied rather
than CDA while designing new BRWs. It is expected that the proposed LRFs would be
applied in the design process of new BRWs.

Furthermore, the failure modes in BRW foundations can be altered with the variation
in soil properties or external excitations. Therefore, the system PF should be investigated
using the MCS to properly examine all the possible failure modes instead of FORM or
general closed-form solutions. Finally, with the implementation of sensitivity analysis prior
to the calibration process to elicit the dominant input variables, the calibration process has
become directional and efficient owing to the reduction of time for the analysis of the MCS.
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