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Abstract: As the world’s largest carbon emitter, China is under enormous pressure to decrease carbon
emissions. With the economic development in recent years, China has increased its investment in in-
frastructure, and the construction industry has become an essential source of carbon emissions. Using
the social network analysis (SNA) methodology, this article analyzes the evolutionary characteristics
of the spatial correlation network for carbon emissions in the construction industry from 2003–2017
and its affecting factors. The results of the empirical analysis in this paper are: (1) the spatial associa-
tion of carbon emissions in Chinese inter-provincial construction industry shows an intuitive network
layout and the spatial network has gradually stabilized since 2014; (2) according to the results of
degree centrality, betweenness centrality and closeness centrality, it can be concluded that the regions
with higher level of association with other provinces are the central and the eastern regions (Henan,
Hubei, Hunan, Guangdong, Jiangsu, etc.) and Xinjiang; the linkage of construction-related carbon
emissions was mainly achieved through the regions of Henan, Anhui, Shanxi, Hebei, Guangdong,
and Inner Mongolia; the regions with higher level of construction industry development (Jiangsu,
Henan, Hunan, Guangdong, etc.) are more closely associated with other provinces; (3) geographical
proximity and reduction of difference in energy intensity and in industrial structure have substantial
positive effects on the carbon emission association of the construction industry. Finally, based on the
research results, this article proposes corresponding policy recommendations.

Keywords: construction industry; carbon emissions; social network analysis; spatial correlation

1. Introduction

Global climate governance is of particular relevance as the adverse impact of green-
house gas (GHG) emissions on the ecological environment and the health of residents [1–4].
With rapid economic growth since the 21st century, a considerable number of resources and
energy have been consumed, making China the world’s largest energy consumer and GHG
emitter [5]. Carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas in
the environment [6]. These serious climatic problems and environmental issues triggered
by GHG have aroused the attention of the Chinese government to introduce a series of
carbon emission reduction policies [7]. With the increased investment in infrastructure,
the construction industry has become a significant source of carbon emissions in China
and needs further attention in the development of a low-carbon economy [8–10]. Previous
studies have shown here that the construction sector accounts for much more than 40%
to world energy consumption as well as 36% of global carbon emissions [11]. China’s
construction sector occupies a crucial position in the national economies, consuming
10.5–11.3 billion tons of coal equivalent, contributing as much as 28–30% of the country’s
total carbon emissions [12]. Moreover, due to rapid urbanization and industrialization,
plus economic development, China’s construction industry is facing tremendous carbon
emission reduction stresses. Simultaneously, there is still excellent abatement potential
for this industry [13–16]. Therefore, for both China and the world, the carbon emissions
mitigation in the Chinese construction industry is of substantial implications.
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Regional economic imbalance, low carbon technology level, and other factors lead to
the spatial heterogeneity for carbon emissions and the complexity of spatial associations
in the construction industry, which pose a challenge to regionally coordinated carbon
emission reduction [17]. Furthermore, carbon emissions have spillover effects, which are
not just an ambient issue for a particular district but may also be transported to several
other districts via climate ingredients and economic behavior, including atmospheric flows
and industrial transfer [18,19]. Therefore, a complete understanding of the space network
structure of carbon emissions from the construction industry among Chinese provinces,
determining the roles of different regions in the spatial correlation network and analyzing
the driving factors of CO2 emissions spatial correlation, is necessary. Most of China’s local
policies and allocation targets for carbon emissions are based on each province’s direct
emissions, and the links between regions were seldom considered [20]. The study of spatial
association features and evolution rules of the regional construction industry can help the
devising of regional low-carbon development policies.

The study of the regional system has developed in recent years from regional attribute
analysis to regional network research, with an emphasis on space network correlation
behavior [21,22]. The most used method applied in this analytical framework is social
network analysis (SNA). When representing complex associations in SNA, researchers
usually use an association matrix, which not only exposes the characteristics of the associa-
tion network from an attribute data point of view but also identifies the relationships that
exist between nodes in the network from a relational data point of view [23]. Most of the
traditional spatial measurement methods use attribute data, which are hard to classify in
relation to the entire network structure of a spatial association of carbon emissions, and its
impact can only be studied by “quantity” rather than “relationship” [24]. Due to network
data frequently encountering problems as with multicollinearity and autocorrelation, the
quadratic assignment protocol (QAP) is considered more amenable than other approaches
for the regression analysis of impact variables [25].

This research complements previous studies of the construction industry’s carbon
emissions since we first included SNA into a spatial correlation study among this frame-
work. This method outperforms existing methods in terms of analyzing the correlated
evolution of the spatial associations among emission networks in China’s interprovincial
construction sector and reveals ways of effect by different provinces. The results presented
in this paper are intended to provide a foundation for the regional collaborative reduction
strategies for the construction industry. In this article, we use applicable data from 2003
to 2017 in the different provinces of China and build a modified gravity model to study
the spatial correlation of construction CO2 emissions within China from the perspective of
the social network. Based on the modified gravity matrix, we researched the features of
the spatial correlation network and its driving ingredients. Finally, we make policy recom-
mendations for the collaborative governance of carbon emissions from the construction
industry of each province based on our analysis results.

The article is organized into six sections. The related literature is discussed in Section 2.
The methods used to analyze the carbon emissions spatial association of Chinese construc-
tion are defined in Section 3. The results are summarized in Section 4. We discuss the
research results in Section 5. The research conclusions and the policy recommendations are
presented in Section 6.

2. Literature Review

Spatial analysis is becoming the mainstream method used to provide a scientific
basis for regional low-carbon policies. Through the growth of spatial econometric re-
search and SNA, more and more academics are paying attention to the spatial correlation
characteristics of connected networks from these two perspectives.

First, some studies used spatial correlation to assess the spatial econometric effects of
pollutants. Although spatial weight matrix was incorporated in these studies, the other
underlying data were attributed data. Except for the spatial weight matrix which represents
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the geographical relationship among provinces, other variable data cannot describe the
inter-provincial correlation effect properly [26]. For instance, by introducing the global
and the local Moran I exponents, researchers notice the evident positive spatial association
between Chinese regional CO2 emissions, and spatial agglomeration features exist [27–33].
However, Han et al. (2018) concluded that a gravity model combining geographic and
economic distances presented significantly higher spatial correlations of carbon emissions
than a simple matrix of geographic and economic distances [18]. Therefore, for carbon
emission, we are more likely to see a significant correlation in areas that are geographically
close and economically interconnected.

Second, the other category of studies employs the SNA approach to analyze the carbon
emissions spatial correlation properties [34–38]. These studies define the spatial association
between sample regions by the vector autoregression (VAR) approach or the gravity model,
then create a network of spatial associations across all regions and investigate the features
of CO2 emissions spatial associations. Relational data are utilized in this method to study
the interrelationships that exist between provinces and the spatial correlation from the
perspective of the system’s structure rather than a single region. This approach takes into
consideration both holism and individualism, of which the whole configuration of the
network and the unique features of the regions may be investigated. For instance, Wang
et al. (2018) used this approach to research particularly the structure of the CO2 network in
Chinese regions and the ingredients affecting the CO2 emissions spatial correlation; findings
show that regional emissions of carbon are an intuitive network of spatial connections [39].
He et al. (2020) conducted SNA to research the spatial network structure and the spatial
correlation effects of carbon emissions from the electricity sector in China from 2005 to
2016; the results indicate that the space network structure of CO2 emissions from the
electricity sector presents an apparent network structure and the spatial correlation of
carbon emissions is relatively stable, and regions are closely connected [24].

The two kinds of research mentioned above are essential to the comprehension of
the spatial correlation properties for carbon emissions. While both approaches could
be applied to spatial interaction research, SNA occupies distinct advantages. First, the
SNA approach is mainly based on relational data instead of attribute data to describe the
relationships in space, and it studies the relationships between objects in the network rather
than individual characteristics. Relational data have the advantage of directly reflecting
association features, which is beneficial to the construction of spatial correlation networks
and can give concise and intuitive visual analysis. Second, the QAP analysis method
in SNA allows correlation analysis among the spatial association matrix and possible
driven ingredients, which facilitates the identification of influence factors that significantly
affect spatial associations [36]. It is worth mentioning that QAP obtains the estimation
results by multiple permutations of the random permutation matrix, thus avoiding the
multicollinearity problem that often occurs when using the traditional ordinary least
squares (OLS) method [40]. Additionally, methods for spatial econometric analyses are
highly spatial weight matrix-based, but different matrices of spatial weight can result in
different results. Similarly, SNA does not necessarily involve using a specific method for
constructing a spatial association matrix. Errors also occur when building correlations
based on gravity models. However, the procedure for modification of the model using the
geometric average value could significantly minimize the influence of an individual index
on the entire results and can be used to obtain the network structure’s evolution trend.

Based on previous studies, the main contributions of this paper are as follows. By
introducing the SNA method, we analyzed the evolution of the spatial association of inter-
provincial construction industry emissions in China and revealed the influence pathways
of the inter-provincial emission association network, thus providing a scientific basis for
the formulation of regional collaborative emission reduction policies for the construction in-
dustry in China. Specifically, this paper first obtains the carbon emission spatial correlation
matrix by constructing a modified gravity model. Second, the SNA method is introduced
into the analysis of the spatial association of CO2 emissions from the construction sec-
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tor, and the structure of the CO2 emission association network can be presented more
intuitively through social networks. In addition, we applied the QAP regression analysis
approach to research the driving ingredients for the carbon emission spatial network, essen-
tially avoiding the problem of multicollinearity caused by multiple independent variables,
providing a more scientific and reasonable analysis.

3. Methodology and Data

China’s inter-provincial construction CO2 emission spatial association network gathers
all inter-regional CO2 emission spatial connections [41]. In the network, each node refers to
a different province, and the connections between nodes represent the spatial correlation of
inter-provincial construction industry carbon emissions. The research steps of this article
are as follows: first, by constructing a corrected gravitational model, we obtained the
spatial correlation network matrix and used UCINET software to research the features of
the network as a whole and individual provinces; second, based on the constructed spatial
association network matrix and the graph theory, we calculated degree, betweenness, and
closeness centrality of each node. Then, QAP correlation and regression analyses were
used to determine the significant affecting factors of the spatial correlation network.

The SNA method enables the analysis of a region as a whole by establishing an
association network between actors and also by conducting a comparative study of the
individuals in the network from a partial perspective [42]. The spatial correlation analysis
can help identify which factors better explain the complexity of carbon emission correlation
networks. Therefore, the SNA method was used in this study because of its advantages
over traditional measures in analyzing interprovincial differences.

3.1. The Modified Gravity Model

The study of the SNA is based on the matrix of correlation between the nodes that are
often calculated via the causality test of Granger on the basis of the VAR approach or by
the gravity model. VAR’s susceptibility to time lag makes it only suitable for data spanning
a long time, thus VAR should not be applied to cross-sectional data or to expose different
evolution characteristics of the network architecture [40]. The gravity model overcomes
this shortcoming and is more conducive to portraying the evolution pattern of the spatial
association network of CO2 emissions in the construction industry. This study incorporates
the gravity model in the area of CO2 emissions for the construction sector based on the
abovementioned considerations:

Gij = k
MiMj

Db
ij

(1)

where Gij is the gravitational value between objects i and j, Mi and Mj are their “mass”, Dij
is the specific distance between i and j, b is the distance attenuation coefficient; additionally,
k is a constant based on experience.

Geographical proximity and economic importance are critical variables that have an
impact on the spatial structure of economic operations, contributing directly to a growth
of the demand for energy and producing large emissions of CO2 [43]. Therefore, geo-
graphic proximity and economic proximity should both be considered when establishing
the correlation network of CO2 emissions for the construction sector, and the “mass” of
construction CO2 emissions for the gravity model is modified. We refined the conventional
gravitational model on the basis of the associated variables so that it can be applicable to
the development of CO2 emission linkages in the construction industry. As follows, the
basic model is:

cij =
Ti(

Ti + Tj
) × 3
√

Pi × Ti × Ei × 3
√

Pj × Tj × Ej

Dij
2 (2)

where cij represents the correlation between carbon emissions from construction in province
i and province j, T is the total carbon emissions from the construction industry, P is the
population size, E is the regional GDP, Dij is the geographical distance between provincial



Sustainability 2021, 13, 1728 5 of 19

capital i and j; for the choice of distance centers, in addition to referring to previous studies,
we justified the choice by analyzing the carbon emission data of cities in each province
(see Appendix A). k = Ti

(Ti+Tj)
is the empirical constant, expressed by the proportion of

carbon emissions in construction of province i to the sum of construction carbon emissions
of provinces i and j, which represents the structural difference in CO2 emission control
between regions [34].

The gravitational matrix between the 30 provinces can be obtained from model (2):

Gij = G30×30 =


c1,1 c1,2 . . . c1,30
c2,1 c2,2 . . . c2,30
. . . . . . . . . . . .

c30,1 c30,2 . . . c30,30

 (3)

After obtaining the gravity matrix (G = (Gij)), the average value of each row of the
gravity matrix is calculated as the threshold value. If cij is smaller than the line average,
the CO2 emissions of provinces i and j are not correlated. On the other hand, if cij is greater
than the row average, there is a link between the CO2 emissions of provinces i and j, and
the position of the line in the spatial network can be drawn from province i to j. If the value
of gravity between the two provinces is greater than this threshold, it means that there is
a strong correlation of carbon emissions between the two provinces, and the value is 1;
otherwise, the value is 0.

3.2. Network Characterization Index

Identifying the most influential nodes in the network and evaluating the centrality
of the network are two main objectives of SNA [33]. In terms of the overall network
features, centrality and spatial clustering, the network can be evaluated, and the methods
used in this section are based on Scott’s book, “Social Network Analysis: A Handbook”
(2007) [40]. Network access represents the network structure’s robustness and weakness.
For connectedness, the calculation formula used is:

C = 1− V
N× (N− 1)/2

(4)

where C is the connectivity, V is the number of unreachable pairs of points in the network,
and N is the number of network nodes.

The network density indicates how tightly connected the spatial network is, and the
higher the network density is, the greater the correlation of the network is. The formula
here is:

D =
L

N× (N− 1)
(5)

where D is the network density, L is the number of network relationships, and N(N-1) is
the maximum number of possible network relationships.

Network efficiency reflects the degree of redundancy of inter-provincial network
connections—the lower the efficiency of the network is, more frequently do the inter-
provincial connections occur and the smaller the room is for CO2 emissions. The calculation
formula is as follows:

E = 1− M
max(M)

(6)

where E is the network efficiency, M is the number of redundant lines in the network, and
max (M) is the actual number of lines that can be redundant in the network.

The hierarchy of the network represents the supremacy position of the network
members in the network. The higher the value is, the more nodes in the edge position are
present. The formula here is:

H = 1− K
max(K)

(7)
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where H is the network hierarchy, K is the number of symmetrically reachable node pairs
in the network, and max (K) is the maximum number of symmetrically reachable node
pairs in the network.

3.3. Centrality Analysis Index

Centrality is a valid index that measures the position and the function of individuals in
a network and is widely used in social network analysis, which can help better understand
the importance of the roles played by individual provinces in the associated network and
thus help formulate regional policies accordingly. Centrality represents the position and
the function of each network node and what kind of central position it occupies, including
degree centrality, betweenness centrality, and closeness centrality. In the network centrality
analysis, the centrality of each node measures the “power” of an individual in the whole
network, and the larger the value is, the more a province is related to other regions in the
network, and the greater the network is constructed around this province.

The degree centrality of each node in the network is the number of other points that
are directly connected to that point. If a point has a high centrality, it means that a province
is directly connected to several provinces in the CO2 emission correlation network and is
closer to the center of the network. It is expressed as follows:

De =
n

N− 1
(8)

where De is the degree centrality of the province, n is the number of regions directly
connected with the target region, and N is the number of entire regions in the network.

Betweenness centrality is defined as the degree to which a node controls the rela-
tionships between other nodes. Specifically, if a province is on a geodesic (shortest path)
between many other provinces, that point has a high degree of betweenness centrality.
The greater its importance is, the greater are the province’s superiority and its power to
regulate ties with other provinces. The formula here is:

CABi =

2
n−1
∑

j=1

n
∑

k=2
bjk(i)

n2 − 3n + 2
, j 6= k 6= i, and j < k (9)

where CABi is the betweenness centrality of province i, bjk(i) denotes the ability of province
i to control the association of two points in province j and province k, and is equal to
the probability that province i is on a shortcut between province j and province k, i.e.,
bjk(i) = pjk(i)/pjk, where pjk(i) represents the number of shortcuts that exist between
province j and province k through province i.

In addition to degree centrality and betweenness centrality, another indicator that
portrays the central position of a point is closeness centrality. The centrality of the closeness
measures the sum of the shortcut distances between a node and all other nodes in the
network. In our carbon emission correlation network of the construction industry, if the
“distance” between a province and all other provinces is very short, it can be considered
that the province has a high degree of closeness centrality. The expression is as follows:

C−1
APi =

n

∑
j=1

dij (10)

where C−1
APi is the closeness centrality of province i in the association network, and dij is the

shortcut distance between province i and province j (i.e., the number of edges contained in
the shortcut).
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3.4. QAP Relationship Hypothesis Testing

In order to analyze the affecting factors of the spatial correlation of carbon emissions
for the Chinese construction industry, we introduced QAP correlation analysis and re-
gression analysis methods. The specific calculation is divided into two steps. Firstly, the
correlation between the dependent variable and the influencing factor is analyzed, and
the influencing factors with significant correlation are obtained; secondly, the significant
variables obtained by the correlation analysis are brought into the QAP regression analysis
model, and each row and column of the dependent variables is stochastically replaced
at the same time; finally, the regression result of the related influencing factors of the
construction industry carbon emission spatial association matrix is obtained.

The construction sector’s spatial carbon emissions are impacted by several factors,
and it is also critical that policymakers recognize influencing factors and implement more
focused strategies to minimize provincial pollution. Lu et al. (2020) demonstrated that there
is a spatial spillover effect of carbon emissions from the construction industry in China
through a spatial econometric regression model and that factors such as economic level,
energy intensity, industrial structure, and industrial agglomeration level have observably
spatial spillover effects on CO2 emissions from the construction industry [17]. Yang
et al. (2019) analyzed the spatial data to conclude that air pollution in China exhibits
significant spatial spillover effects and spatial agglomeration characteristics, and the input
of environmental management has a significant inhibitory effect on air pollution [44].
According to the related research and data availability, we set up the model on the basis of
the analysis above:

T = f(D, ∆PGDP, ∆EI, ∆IS, ∆IA, ∆ERI) (11)

where T represents carbon emissions spatial correlation matrix for the construction industry
in China, which can be obtained by symmetrizing the spatial gravity matrix; D refers to
the geographical adjacency matrix of provinces; ∆PGDP is the difference in economic
development, which is expressed by the difference in GDP per capita of each province; ∆EI
refers to the interprovincial differences in energy intensity of the construction industry;
∆IS is the difference of industrial structure in the construction industry by provinces; ∆IA
refers to the interprovincial differences in construction industry agglomeration; rep ∆ERI
resents the difference in environmental regulation intensity in the construction industry
by provinces. The detailed definition and calculation method of relevant variables in the
model are shown in Table 1.

Table 1. Variables and data definitions.

Variable Description Definition

T carbon emission spatial correlation Spatial correlation matrix obtained by the modified
gravity model

D Geographical Adjacency If there are two neighboring provinces, its value is set to 1; if
there are no adjacent provinces, its value is set to 0

∆PGDP Difference in Economic Development PGDP = GDP of each province/total population in
each province

∆EI Difference in Energy Intensity
EI = energy consumption in each province’s construction

sector/total output value in the construction sector of
each province

∆IS Difference in Industrial structure IS = construction sector output of each province/total
national output value of construction industry

∆IA Difference in Industrial agglomeration

IA = (c/q)/(cT/qT), where c represents the construction
industry output value of each province, q refers to each

province’s total output, cT represents national construction
industry total output, qT represents the total national output

∆ERI Difference in Environmental Regulation Intensity
ERI = R/c, where R represents the total pollution control

investment of each province, c refers to construction
industry output value in each province
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3.5. Data Sources

This paper researched the spatial correlation network of CO2 emissions in the con-
struction industry from 2013–2017 using Chinese provinces as network nodes. Considering
the availability of data, the study only included 30 provinces; Tibet, Hong Kong, Macao,
and Taiwan were not included. The relevant data needed for this analysis were mainly the
CO2 emissions from the construction sector in each province, the geographical distance
between provincial capitals, the GDP of each province and country, the population size
at the end of the year, the total output of the construction sector in each province and
country, the energy consumption, and the environmental management inputs. The data
were mainly obtained from China Statistical Yearbook, China Energy Statistical Yearbook,
and China Environmental Statistical Yearbook in previous years. Moreover, GDP and gross
construction output were adjusted to 2003 prices to erase the effect of price variation. China
officially does not have an official statistics body that specifically issues data on carbon
emissions from construction. Therefore, in academia, top-down and bottom-up methods
have generally been used to measure construction carbon emissions. Since the bottom-up
method needs full details, we take the top-down method to measure CO2 emissions from
construction based on the final use of energy in the construction industry. Taking into
account the key fuels in the construction sector and the 2006 IPCC (Intergovernmental
Panel on Climate Change) Recommendations for National Greenhouse Gas Inventories,
CO2 emissions were measured using the following equation:

c =
8

∑
i

ei × vi × cei × r (12)

where c is the total CO2 emissions from the construction industry, i is the type of fuel
consumed, e is the fuel consumption, v is the average low fuel calorific value, ce is the
fuel CO2 emission factor, and r is the carbon oxidation rate. The China Energy Statistical
Yearbook (2004–2018) provides consumption and average low heat value for diverse fuels,
while the IPCC 2006 National Greenhouse Gas Inventory recommendations give carbon
emission factors for different fuels. Furthermore, in accordance with current research
practice, the oxidation reaction is assumed to be complete; therefore, here r = 1. The CO2
emission coefficients and the overall low heating values of the different fuels are referenced
in Table 2.

Table 2. Carbon emission calculation related coefficient.

Fuel Carbon Emission Coefficient Average Low Calorific Value Conversion Coefficient of Standard Coal

Raw coal 25.8 20,908 0.714
Coke 29.2 28,435 0.971

Crude oil 20.0 41,816 1.429
Fuel oil 21.1 41,816 1.429

Gasoline 18.9 43,070 1.471
Kerosene 19.6 43,070 1.470
Diesel oil 20.2 42,652 1.457

Natural gas 15.3 38,931 1.214

Notes: (1) The units of CO2 emission coefficient and average low calorific values are kg/GJ and KJ/kg for all fuels except natural gas,
which is m3/GJ and KJ/m3, respectively. (2) The CO2 emission coefficients of different fuels were obtained from the 2006 “IPCC National
Greenhouse Gas Inventory Guidelines”, and the average low calorific value and conversion coefficient of standard coal refer to the “China
Energy Statistical Yearbook” (2004–2018).

4. Results
4.1. Structural Properties of the Spatial Association Network

To capture overall structural characteristics of the spatial correlation network for
China’s construction industry, we calculated carbon emissions connection values between
different provinces on the base of the modified gravity model and established the inter-
provincial correlation matrix after the binary process. Next, binary correlation matrixes
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were imported into the NetDraw, a tool of visualization in UNICET, to intuitively exhibit the
spatial correlation status of the Chinese regional CO2 emissions network for construction,
and the network maps of every five years (2003, 2008, and 2017) were presented to show
the evolution rules (see Figure 1). In the figure, the scale of the nodes represents the
number of radiation connections they have, that is, the bigger the node is, the more regions
it radiates. It should be noted that arrows indicate a significant transfer of construction
carbon emissions from one province to another, while the absence of arrows and sides
indicates no significant spatial transfer of construction carbon emissions between the two
provinces. From that, we can see intuitively that the structure of spatial association presents
a typical network morphology.
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Figure 1. The carbon emissions spatial association network.

As shown in Figure 1, in 2003, the spatial association of China’s construction industry
showed an obvious “core-periphery” network structure, with Henan, Jiangsu, Hunan, and
Guangdong as the network center and the rest of the provinces generally at the edge of the
network. The overall distribution of carbon emissions association was unbalanced. How-
ever, the distribution of network associations became more even in its evolution from 2008
to 2017, as more provinces shifted from the periphery to the center, and fewer provinces
became marginal. The network includes 215 associations within 30 provinces, and several
spatial associations exist in each province, indicating a typical spatial association of CO2
emissions in each province of China’s construction industry and the existence of a stable
spatial association structure.

It can be seen from Figure 2 that network efficiency has shown a certain cyclical
change, with rapid growth from 2003 to 2009, an upward trend from 2012 to 2014, and a
significant decline in 2010–2012 and 2015–2017. This result indicates that interprovincial
network connectivity first tended to fluctuate and weaken, and after 2014, it tended
to strengthen and stabilize. Moreover, these cyclical characteristics are opposite to the
evolution of network density during the same period. The decline in network density,
and the increase in network efficiency in the previous period can be attributed to the
unbalanced regional development of infrastructure and residential construction and the
outflow of labor from the backward to the developed regions. However, under the impact
of government policies to strengthen infrastructure construction in backward regions
and balanced regional economic development, high and low inflection points in network
density and network efficiency were observed in 2014, respectively. From the perspective
of national policies, China has proposed strategies to promote the rise of the central
region and the development of the western region during the 11th and the 12th Five-Year
Plans. Furthermore, to answer the international financial crisis in 2008, a “four trillion
yuan” stimulus program was launched by the Chinese government, and a substantial
amount was invested in infrastructure construction. The introduction of these policies has
promoted balanced regional economic development and accelerated the urbanization of
the undeveloped regions as well as the return of labor. As a result, network density and
efficiency of the spatial correlation network exhibit certain cyclical features.
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emissions for the Chinese construction industry from 2003 to 2017.

The calculation results indicate that network connectedness and hierarchy were 1
and 0.2598, respectively, from 2003 to 2017. When the importance of network connectivity
is 1, according to Scott (2007) [40], it means that the two provinces in the network can
establish spatial connections directly or indirectly, such that there are no independent
entities within the network, so that the whole network has a significant spatial association
effect. Moreover, network hierarchy has remained the same, suggesting that the hierarchy
of spatial associations has not changed significantly.

4.2. Centrality Analysis

According to the method in Section 3, we consider each province to be a social actor
in order to measure the “power” of nodes in a network from a “relation” perspective and
analyze their capacity to regulate and manipulate other actors in terms of degree centrality,
betweenness centrality, and closeness centrality. With the average of original data from 2003
to 2017, we calculated each kind of centrality index for the Chinese regional construction
CO2 emissions spatial association network. The distributions of the centrality indices are
displayed in Figure 3.

Figure 3a shows that the regions in the first-degree centrality gradient are primarily lo-
cated in central and eastern China, specifically Jiangsu, Henan, Hubei, Hunan, Guangdong,
and Beijing, as well as the western provinces Xinjiang and Shaanxi. The reasons may be
related to the fact that central and eastern provinces have a superior economic base, high
technical level, and advantageous location conditions. However, the number of receiving
relationships in Xinjiang is much lower than the number of sending relationships, indi-
cating its stronger dependence on other provinces, and its carbon spatial correlation with
other regions is mainly due to its rapid development and increasing energy consumption
level in recent years, which is consistent with the conclusion of Yang and Chen (2019) [44].
For another, the provinces in the fourth-degree centrality gradient are Heilongjiang, Jilin,
Inner Mongolia, and Hainan, mostly sited on the periphery of the geographical range in
China with fewer associations with other regions.
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Betweenness centrality measures the extent to which a point is located in the middle of
the connection between two other points in the network; if a point has a greater degree of
betweenness centrality, it is likely to play an important “bridge” role and is therefore at the
center of the network. The average betweenness centrality of the 30 provinces was 4.536,
with a sum of 136.085. The above-average provinces included Shaanxi, Shanxi, Hebei,
Henan, Anhui, Liaoning, Inner Mongolia, and Guangdong (see Figure 3b). According
to the National Bureau of Statistics of China, by 2017, the population of Henan was
95.59 million, ranking the third in China. The development standard of its economy,
however, is comparatively backward. For the year 2017, the per capita GDP of Henan was
46,674 yuan/person, ranking 19th in China. However, its adequate workforce does not
balance its degree of economic growth. Meanwhile, located in the western region center,
Shaanxi’s population mobility is also very high. Hebei, Shanxi, and Anhui export a large
amount of labor to the Beijing-Tianjin-Hebei region and the Yangtze River Delta region.
The massive population migration necessarily brings about a growth in construction
carbon emissions and underlines these regions’ central role among the network of spatial
correlation. It should be mentioned that the energy intensity for the construction industry of
Inner Mongolia was 3.24 in 2017, while no other provinces exceeded 1. The backwardness
of the technical level in the construction sector and the large consumption of energy are
the reasons for the high betweenness centrality of Inner Mongolia in the carbon emissions
association network.

Closeness centrality is a measure that represents the reachability of a node with other
network nodes. If a point has a high overall centrality, its distance from all other points in
the networks is short. As seen from Figure 3c, the closeness centrality of Henan, Jiangsu,
Hunan, Guangdong, Shaanxi, and Xinjiang is higher than the average and is situated on
the first gradient. Most of these provinces have a high demand for construction and a
high level of construction industry development. The exponential expansion of industry,
the rise in people’s housing needs, and the heavy use of coal and other resources have
contributed to severe carbon emissions. Xinjiang also showed remarkable spatial correlation
characteristics, at which time its closeness centrality was higher than the surrounding
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provinces. This appearance has a close connection with economic growth, development of
resources, and industrialization of Xinjiang [44].

4.3. Influencing Factors Analysis by QAP

For this article, 5000 random permutations were chosen to acquire the spatial cor-
relation coefficient between the spatial correlation matrix of the construction industry
and the driving factors with the UCINET software, as shown in Table 3. “Average” and
“Std. Dev” represent the mean value and the standard deviation of the coefficients for
5000 permutations. “Minimum” and “Maximum” are the minimum and the maximum
values of the coefficients, respectively. Furthermore, “Prop ≥ 0” denotes the probability
that all coefficients obtained by the matrix permutation are greater than or equal to the
actual coefficient, whereas “Prop ≤ 0” suggests the reverse probability. At the 1% level, the
correlation coefficient between geographic adjacency and the matrix of spatial relationships
is highly positive, meaning that they have a positive correlation. The correlation coefficient
between the difference in industrial structure and the spatial correlation is substantially
negative at the 1% level. At the 5% level, the correlation coefficients between energy
intensity differences and industrial agglomeration differences and spatial correlations are
all significantly negatively correlated. The correlation coefficients between environmental
regulation intensity differences and spatial correlation are significant at the 10% level and
are negative. The interprovincial differences in economic development did not pass the
significance test, indicating that the variable is not correlated with spatial correlation. The
above results are based only on correlation analysis, and the QAP regression analysis
should be applied to verify the preliminary results.

Table 3. Results of quadratic assignment protocol (QAP) correlation analysis.

Coefficient Significance Average Std Dev Minimum Maximum

Geographical Adjacency 0.492 *** 0.000 0.001 0.042 −0.148 0.153
Difference in Economic Development −0.022 0.310 0.000 0.045 −0.205 0.146

Difference in Energy Intensity −0.081 ** 0.042 0.000 0.046 −0.162 0.151
Difference in Industrial structure −0.120 *** 0.005 0.000 0.043 −0.163 0.132

Difference in Industrial agglomeration −0.077 ** 0.048 0.000 0.044 −0.190 0.143
Difference in Environmental Regulation Intensity −0.069 * 0.068 0.000 0.047 −0.187 0.146

Notes: *** Significance at 1% level; ** Significance at 5% level; * Significance at 10% level.

The purpose of QAP regression analysis in this paper is to study the regression
relationship between multiple influence factor matrices and the spatial correlation matrix.
Based on the QAP correlation results, this study removes the variable of difference in
economic development and chooses the remaining six influencing factors with remarkable
coefficients as the independent variables for QAP regression analysis. The results of the
data randomly permuted 2000 times calculated from UCINET are shown in Table 4.

Table 4. Results of QAP regression analysis.

Independent Unstandardized Coefficient Standardized Coefficient Significance Proportion as Large Proportion as Small

Geographical Adjacency 0.595 0.489 *** 0.001 0.001 1.000
Difference in Energy Intensity −0.055 −0.054 * 0.087 0.914 0.086

Difference in Industrial structure −0.057 −0.066 ** 0.042 0.958 0.042
Difference in

Industrial agglomeration −0.004 −0.005 0.426 0.574 0.426

Difference in Environmental
Regulation Intensity −0.011 −0.012 0.365 0.635 0.365

Intercept 0.159 0.000 - - -

Notes: *** Significance at 1% level; ** Significance at 5% level; * Significance at 10% level.
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In Table 4, “Proportion as large” conveys that the absolute value of the random re-
placement determination coefficient is not less than the determination coefficient observed,
and “Proportion as small” describes that the absolute value of the determination coeffi-
cient generated by stochastic replacement is not greater than the obtained determination
coefficient. The outcomes indicate that the geographical adjacency and the differences in
industrial structure and in energy intensity have significant effects on the spatial correla-
tion network formation. The coefficient of the geographical adjacency matrix is strongly
positive at the 1% level, suggesting that the geographical adjacency assumes a crucial
role in the development of the spatial correlation network. The explanation for this is
because business contact as well as resource transport between geographically neighboring
provinces are more common, reinforcing the spatial connection. However, the differences
in industrial structure and energy intensity are significantly negatively correlated at the
levels of 5% and 10%, respectively, indicating that the differences in industrial development
level and energy saving technologies in the construction industry in different regions are
not conducive to the formation of spatial associations. The differences in the industrial
agglomeration and the environmental regulation intensity are not significant, suggesting
that differences in the degree of agglomeration and environmental policy management
in the Chinese construction sector do not have a significant impact on the formation of a
spatial association network of carbon emissions from the construction industry.

5. Discussion

This paper provides a new perspective on the spatial analysis of carbon emissions
of the inter-provincial construction industry in China. First, using the gravity model, this
study overcomes the limitation of the time lag of the traditional VAR model and can analyze
the evolutionary characteristics of the network structure through cross-sectional data, while
the modified gravity model takes into account the geographical adjacency and the main
factors affecting construction emissions (carbon emission scale, population scale, and eco-
nomic level) and is more able to reflect the spatial characteristics of construction emissions.
Bai et al. (2020) verified the reliability of the modified gravity model by demonstrating the
significant correlation between the modified carbon emission spatial association matrix
and the related variables in the analysis of the spatial correlation data over the years [26].
Yang and Liu (2020) studied the spatial association of low carbon innovation in China by
using a modified gravity model through the analysis of manufacturing patents data [36].
In this paper, a construction carbon emission network was constructed by constructing a
spatial correlation matrix obtained from a modified gravity model. Second, in the analysis
of the overall structure and the characteristics of the spatial association networks, the SNA
also has advantages over traditional measurement methods, which can visually present
the structural state of the spatial association networks, and the characteristics of both
individuals and the whole in the network can be detected [37]. This paper constructed a
spatial association network as the object of social network research through a modified
gravity model, which can intuitively and completely analyze the evolution pattern of
inter-provincial construction carbon emission network characteristics in China. Third, the
QAP method can overcome the problems of multicollinearity and autocorrelation, thus
this paper applied this method to correlation as well as regression analysis of the factors
influencing the spatial association of carbon emissions in the construction industry and ob-
tained similar conclusions as Lu et al. (2020) [17], that is, inter-provincial carbon emissions
in the Chinese construction industry have significant spatial correlation characteristics, and
spatial adjacency, energy intensity, and industrial structure have significant effects on them.

Moreover, the result of network density and efficiency shows that the closeness degree
of spatial correlations tended to increase, with a high and a low inflection point for network
density and network efficiency, respectively, and network connections tended to stabilize in
2014. This result is also reasonable considering that the global economic crisis in 2008 and
the economic development afterward made the construction carbon emissions decrease
and then increase. Lu et al. (2020) [17] and Du et al. (2018) [28] have come to a similar
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conclusion. According to the findings of the QAP regression, it can be found that the spatial
association of CO2 emissions for the construction sector would be significantly influenced
by geographical adjacency and the differences in energy intensity and industrial structure.
Qin et al. (2019) [22] and Yang and Liu (2020) [36] showed that geographical proximity
is the main factor of spatial relationships, and industrial structure, technology level, and
other factors also significantly affect spatial correlation.

6. Conclusions and Policy Recommendations

This paper used SNA to analyze the structural characteristics and the influencing
factors of the spatial network for the Chinese construction industry. A modified gravity
model was utilized to build up the interprovincial carbon emissions spatial association
matrix and discover the overall characteristics and the centrality characteristics of the
spatial correlation network based on this matrix. Finally, QAP correlation analysis and
regression analysis were applied to investigate the ingredients impacting the spatial cor-
relation of carbon emissions for the construction sector. The conclusions and the policy
recommendations were drawn based on the results of the above analyses.

First, as network efficiency shifted from cyclical fluctuations to an overall downward
trend, network connections tended to strengthen and stabilize after 2014. The connected-
ness and the hierarchy of the network, however, were invariably 1 and 0.2598, respectively.
In general, the spatial association’s closeness degree indicated a growing pattern, and
network connections appeared to be more stable. The intuitive spatial correlation network
structure of the Chinese inter-provincial construction industry’s CO2 emissions implies that
the Chinese government should pay attention to the spatial CO2 emissions correlation in the
inter-provincial construction sector and introduce coordinated cross-regional governance.

Second, from the degree centrality results, it can be concluded that the central region
(Henan, Hubei, Hunan, Shaanxi), the developed regions (Beijing, Guangdong, Jiangsu),
and Xinjiang have a high level of provincial construction carbon emissions association;
regional synergistic emission reduction can be carried out by adjusting the energy structure,
improving industry emission reduction standards, and carrying out market interventions
in these regions. The result of the betweenness centrality shows that the regions above
the average are Henan, Anhui, Shaanxi, Shanxi, Hebei, Guangdong, Liaoning, and Inner
Mongolia, etc., and the spatial carbon emissions of the construction industry can be con-
trolled by improving the industrial structure and the energy efficiency in these regions.
The results of closeness centrality indicate that regions with closer connections to other
provinces are mainly concentrated in regions with higher levels of construction industry
development (Henan, Jiangsu, Hunan, Guangdong, Shaanxi, and Xinjiang). For these
regions, the transmission flow of carbon emissions from the construction industry in the
network can be enhanced through market cooperation and the establishment of regional
development mechanisms.

Third, QAP regression analysis indicates that the reduction of industrial structure
and energy intensity differences can significantly facilitate the spatial association of carbon
emissions for the construction industry. Therefore, the Chinese government should put
forward a reasonable development program for the construction industry to continuously
reduce the differences in the industrial structure and the energy intensity of the construction
industry within various provinces. Specifically, the government can increase investment
in infrastructure construction in backward regions, promote low-carbon development
in the construction industry, encourage technological upgrading and innovation in less
developed regions, as well as introduce high-tech enterprises through preferential policies
so that the industrial structure can be optimized and energy intensity can be reduced, thus
narrowing the gap between them and developed regions.
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Appendix A

In principle, the counties or the cities with the biggest construction carbon emission
should be used to calculate proximity. Therefore, we used higher resolution data of
182 cities from the CEADs website (https://www.ceads.net/data/city/) to conduct a
detailed analysis. By collating data on carbon emissions from the construction industry
in 182 cities, it can be seen that most of the provincial capitals in 29 provinces (Hainan is
an island and its statistics are generally as a whole) are the areas with the highest carbon
emissions, except for a few areas where the provincial capitals are not the highest but are
also in the upper reaches. The specific results are shown in Table A1.

Table A1. Emissions from the construction industry in provincial capitals.

Rank within the Province If Provincial Capitals Have the Highest Carbon Emissions

Beijing 1/1 yes
Tianjin 1/1 yes
Hebei 2/4 no
Shanxi 1/7 yes

Inner Mongolia 4/7 no
Liaoning 2/5 no

Jilin 1/6 yes
Heilongjiang 1/9 yes

Shanghai 1/1 yes
Jiangsu 3/13 no

Zhejiang 1/10 yes
Anhui 1/16 yes
Fujian 1/7 yes
Jiangxi 1/11 yes

Shandong 2/8 no
Henan 1/14 yes
Hubei 1/11 yes
Hunan 1/11 yes

Guangdong 1/12 yes
Guangxi 1/4 yes

Chongqing 1/1 yes
Sichuan 1/5 yes
Guizhou 1/2 yes
Yunnan 1/1 yes
Shaanxi 1/4 yes
Gansu 1/4 yes

Qinghai 1/1 yes
Ningxia 1/1 yes
Xinjiang 1/5 yes

Table A1 shows that most of the provincial capitals have higher carbon emissions
from construction than other cities and are the highest carbon emitters in the province.
However, there are five provinces (Hebei, Inner Mongolia, Liaoning, Jiangsu, Shandong)
where the provincial capitals do not have the highest carbon emissions. Next, we will

https://www.ceads.net/data/city/
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further discuss whether it is reasonable to use their provincial capitals as distance centers
for those five provinces.

By further analyzing the data, we found that, for Hebei, Liaoning, Jiangsu, Shandong,
and Sichuan, carbon emissions from the provincial capitals’ construction industries are very
close to the highest values. However, the carbon emissions of the construction industry in
Hohhot, the capital of Inner Mongolia, differed significantly from the emission maximum.
In general, the use of provincial capitals as distance centers has a high reference value for
most studied provinces.
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