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Abstract: The daily life-log routines of elderly individuals are susceptible to numerous complica-

tions in their physical healthcare patterns. Some of these complications can cause injuries, followed 

by extensive and expensive recovery stages. It is important to identify physical healthcare patterns 

that can describe and convey the exact state of an individual’s physical health while they perform 

their daily life activities. In this paper, we propose a novel Sustainable Physical Healthcare Pattern 

Recognition (SPHR) approach using a hybrid features model that is capable of distinguishing mul-

tiple physical activities based on a multiple wearable sensors system. Initially, we acquired raw data 

from well-known datasets, i.e., mobile health and human gait databases comprised of multiple hu-

man activities. The proposed strategy includes data pre-processing, hybrid feature detection, and 

feature-to-feature fusion and reduction, followed by codebook generation and classification, which 

can recognize sustainable physical healthcare patterns. Feature-to-feature fusion unites the cues 

from all of the sensors, and Gaussian mixture models are used for the codebook generation. For the 

classification, we recommend deep belief networks with restricted Boltzmann machines for five 

hidden layers. Finally, the results are compared with state-of-the-art techniques in order to demon-

strate significant improvements in accuracy for physical healthcare pattern recognition. The exper-

iments show that the proposed architecture attained improved accuracy rates for both datasets, and 

that it represents a significant sustainable physical healthcare pattern recognition (SPHR) approach. 

The anticipated system has potential for use in human–machine interaction domains such as con-

tinuous movement recognition, pattern-based surveillance, mobility assistance, and robot control 

systems. 

Keywords: deep belief networks; hybrid-features; restricted Boltzmann machines; sustainable 

physical healthcare pattern recognition; wearable sensors system 

 

1. Introduction 

The global elderly population is increasing every day, which requires an independ-

ent and aging-in-place lifestyle [1]. Research on Sustainable Physical Healthcare Pattern 

Recognition (SPHR) has a long tradition, because physical activity recognition can deliver 

great benefits to society. However, complex SPHR remains a challenging and active re-

search area. A commonly-used strategy is to acquire, analyze, and classify the data for 

physical activity recognition [2]. It has a wide range of applications, including video sur-

veillance systems, healthcare monitoring, uncertain event detection, interactive 3D games, 

and smart homes [3]. In order to examine the effectiveness of SPHR for indoor/outdoor 

environments, the major systems are categorized into two types of data retrieval devices, 

namely, vision-based and wearable-sensors–based [4]. In vision-based systems, SPHR is 

relatively prominent, and has been studied extensively, providing acceptable recognition 
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rates. It is challenging to accomplish vision-based setups in real-life environments due to 

elevated acquisition costs, privacy issues, and image collection challenges. Wearable sys-

tems can exploit common portable devices with embedded sensors due to their low cost, 

portability, convenience, and capacity to log the real-time physical locomotion of users. 

Therefore, due to such valuable features and affordances, our research work is focused on 

wearable hybrid features for sustainable physical healthcare Pattern Recognition (HF-

SPHR) technology. 

Meanwhile, several studies involving wearable devices have been proposed by re-

searchers. These can be categorized by two main types of learning algorithm, namely, 

classical machine learning (C-ML) and deep learning (DL). In the case of C-ML, the algo-

rithms almost always require structured data, and are designed to ‘learn’ to act by under-

standing labeled data. Every time the result is incorrect, there is a need to ‘teach’ them 

again. On the other hand, DL methods help in handling the imperfections of C-ML tech-

niques, and do not require human interventions, as the multi-layers in artificial neural 

networks (ANN) store data in a hierarchy of different models. This hierarchy consists of 

three types of layers which support the networks to learn from their own mistakes, spe-

cifically, input, output, and hidden layers. 

Specific to DL concepts, recent theoretical and practical developments have revealed 

that deep learning has embraced visible changes in the modeling of high-level perceptions 

from convoluted data in many research areas [5], e.g., computer vision, natural language 

processing, and speech processing. Various deep learning methods have become available 

for SPHR in recent research, including deep neural networks (DNN), recurrent neural 

networks (RNN), and modular neural networks (MNN). DNN include auto-encoders, 

convolution neural networks (CNN), restricted Boltzmann machines (RBM), and long 

short-term memory (LSTM) [6]. LSTM requires longer training periods due to a variety of 

parameters being updated during the training process [7]. Similarly, CNN is able to learn 

important features [8], but—due to its single-parameter setting—the limited flexibility of 

the model has been observed. Meanwhile, RBMs are fully-connected, bipartite, and undi-

rected graphs that have both a visible and a hidden layer, and are examples of artificial 

neural networks [9]. If stacked together, they create a deep belief network (DBN) [10]. 

DBNs are probabilistic generative neural networks that use the connection weights of 

cross-layered RBM architecture. RBMs detect the features of data between different clas-

ses according to the connection weights across two layers, and not within each layer. 

When trained, a DBN can learn to reconstruct its input, and the layers act as feature de-

tectors. After the unsupervised learning, a DBN can be further trained, with supervision, 

to perform classification. Therefore, our model encircles the properties of DBN and RBMs. 

There are two well-known ways to investigate SPHR, namely, vision-based SPHR 

and wearable-sensors–based SPHR, which are applied in studies of both C-ML and DL. 

Vision-based SPHR is dependent on visual sensing technologies, namely, CCTV and dig-

ital cameras. Sequences of images and video clips are analyzed for features, modelling, 

segmentations, classification, and tracking [11]. Jalal et al. [12] proposed a depth vision-

based model for activity recognition using hidden Markov models (HMM) to monitor the 

activities of elderly individuals. Multiple features are fused together to make robust multi-

features, which are then processed, trained, and tested with respect to their classes. Espi-

nosa et al. [13] designed a fall-detection system using 2D CNN and multiple cameras. 

They presented a method with fixed time windows and an optical flow method for feature 

extraction for an UP-Fall dataset in order to test the proposed approach. In [14], the au-

thors proposed human pose estimation and event classification using a pseudo-2D stick 

model. They used energy, sine, distinct body parts movements, and 3D Cartesian view 

features to extract full-body human silhouettes. Yang and Tian [15] described a low-level 

polynormal assembled from a local neighboring hypersurface. A methodology including 

hybrid feature descriptors, GMM, entropy optimization, and maximum entropy Markov 

model (MEMM)-based classification was developed by Jalal et al. in [16]. Mahmood et al. 

[17] presented a model for human interaction recognition called WHITE STAG. Angular-
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geometric sequential methods based on space, time, and shape have been incorporated to 

extract features. In [18], Jalal et al. represented a technique using spatiotemporal multi-

fused features to classify segmented human activity. The proposed study used vector 

quantization for code vector generation, and HMM for SPHR. 

On the other hand, wearable sensors can be attached to the human body in order to 

capture human motion data constantly. In [19], Irvine et al. focused on data-driven ap-

proaches and proposed a new ensemble of neural networks. The authors generated four 

base models and integrated them using a support function fusion method to compute the 

output decision score for each base classifier. In a study of wearable sensors by Xi et al. 

[20], surface electromyography (sEMG) wearable sensors are attached on the limbs to 

monitor the performance of daily activities for frail individuals. They proposed time-, fre-

quency- and entropy-based feature abstraction. Gaussian Kernel Support Vector Ma-

chines (GK-SVM) and Fuzzy Min-Max Neural Networks (FMMNN) are used for activity 

classification. In [21], Wijekoon et al. described a knowledge-light method, as opposed to 

knowledge intensive methods. They proposed the use of a few seconds of data to help 

personalize SPHR models, and to further transfer recognition knowledge to identify un-

known activities. In [22], Quaid et al. introduced a human pattern behavior recognition 

method using inertial sensors. They proposed extracting statistical, cepstral, temporal, 

and spectral features, and then reweighting these features to adapt varying signal pat-

terns. Finally, the classification is performed using biological operations of crossover and 

mutation. Tahir et al. [23] presented a wearable inertial sensor-based activity recognition 

system using filters and multifused features. Feature optimization has been accomplished 

using adaptive moment estimation (Adam) and AdaDelta, which is further patterned us-

ing MEMM. Debache et al. The authors of [24] proposed a low-complexity model that is 

comparable to heavily-featured models for SPHR. They used mobile health (mHealth) and 

daily Life Activity (DaLiAc) datasets to compare their model’s performance using logistic 

regression (LR), gradient boosting (GB), k-nearest-neighbors (KNN), support vector ma-

chines (SVM), and CNN. The authors of [25] proposed a novel method based on the Hu-

man Gait Database (HuGaDB) dataset. Their contributions include the identification of 

direction and sensor position, a best feature selection method, and achieving the highest 

recognition accuracy for HuGaDB. Furthermore, the model has four different classifiers, 

namely, Random Forest [26] (RF), SVM, KNN, and Decision Tree (DT). Jalal et al. [27] 

presented a genetic-based classifier approach for human activity recognition. They pro-

posed a reweighted genetic algorithm for SPHR using inertial data. 

Considering our focal schema, we know that SPHR is eventually associated to the 

real-time monitoring of activities. Additionally, it contains tradeoffs between computa-

tional time and activity pattern recognition accuracies. In spite of all of these advanced 

research methodologies being proposed, there is still a deficiency in the classification of 

human activities using state-of-the-art techniques. Thus, our research is dedicated to the 

development of an efficient method that maintains high accuracy rates along with low 

computational complexities.  

Here, we propose an innovative methodology for SPHR using wearable sensors, in-

cluding an inertial measurement unit (IMU), electrocardiography (ECG), and electromy-

ography (EMG). Our model was able to recognize diverse human activities with better 

performance measures. Moreover, the proposed methodology consists of de-noising sig-

nals, pre-processing, and hybrid feature abstraction. For hybrid features, this research 

proposed the following four types of features: 

 Statistical nonparametric operator; i.e., a 1D local binary pattern (1D-LBP) generates 

a code [28] that can describe larger data in its compressed form using the sample and 

its neighbors. 

 Entropy-based features: these features are used to find the optimal characteristics of 

a signal [29], and can easily differentiate between noisy and plain signals. 

 Wavelet transform features: these features provide an inherent multiresolution ap-

proach and wavelet transform properties [30,31] during the signal analysis.  
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 Mel-frequency cepstral coefficient (MFCC) features: a powerful algorithm to process 

signals based on Mel-frequency cepstrum coefficients, which can detect the differ-

ence between a signal’s variations [32,33] for multiple activities. 

After extracting the hybrid features, the proposed model performs feature-to-feature 

fusion, feature selection, a codebook using Gaussian models, and classification for state-

of-the-art datasets. Through experimental results, we showed that the proposed model 

outperformed other comparative state-of-the-art approaches. The major contributions of 

this model are as follows: 

1. We developed hybrid approaches for feature abstraction, including statistical non-

parametric, entropy-based, wavelet transform, and Mel-cepstral features. 

2. We designed a multi-layer sequential forward selection (MLSFS) to differentiate and 

select the optimal features for SPHR. 

3. A combination of a Gaussian mixture model (GMM) with Gaussian mixture regres-

sion (GMR) was introduced to generate the codebook and optimum interpretation of 

the features. 

4. We used two publicly-available benchmark datasets for our model, and fully vali-

dated it against other state-of-the-art methods, including CNN, AdaBoost, and ANN-

based algorithms. 

The rest of the paper is structured as follows. Section 2 presents the details of the 

proposed model. Section 3 reports on the investigation and dataset details, along with the 

results. Section 4 discusses the methodology. Section 5 reports related discussions in the 

field of SPHR. Section 5 concludes the paper and provides some forthcoming directions. 

2. Materials and Methods 

The proposed system acquires raw signals from wearable sensors, specifically, an 

inertial measurement unit, an electrocardiogram, and an electromyogram for biosignal-

based datasets. Initially, a pre-processing phase is used to remove any noise via three dif-

ferent filters, namely, median, notch, and moving average filters. After that, we apply a 

sliding window algorithm to find hybrid features of different types [34]. In the perspective 

of multisensory systems, these hybrid features are then fused [35] through a feature-in-

feature-out technique [36,37] to improve, refine, and obtain new merged features. The di-

mensions of these fused data features are reduced using our novel modified multi-layer 

sequential forward selection algorithm. Next, in order to symbolize these reduced fea-

tures, we propose a GMM along with GMR algorithms to generate a codebook. Finally, 

the codebook is then fed to the deep belief networks along with multiple layers of RBMs. 

An overview of the proposed system is shown in the Figure 1. 

 

Figure 1. System architecture of the proposed HF-SPHR model. 



Sustainability 2021, 13, 1699 5 of 27 
 

2.1. Data Acquisition and Pre-Processing 

Feature abstraction is deeply reliant on the pre-processing phase; hence, it is im-

portant to reduce all of the noise from the acquired data. The data from the sensors [38]—

including IMU, ECG, and EMG—are extremely susceptible to interference and random 

noise, which can lead to signal variations, ultimately affecting the features. Therefore, we 

have applied three different filter types—namely, a median filter for IMU, a notch filter 

for ECG, and a moving average filter for EMG signals—to eliminate the associated noise. 

Figure 2 shows the filtering effects on selected lead for ECG, and the axis for IMU. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Original and filtered sensor signals; (a) notch filtered data for ECG, (b) median filtered 

data for IMU, and (c) moving average filtered data for EMG. 

2.2. Data Segmentation 

In the segmentation step, the signal samples are partitioned into segments of data in 

order to capture the dynamic motion. Each window is an approximation of the signal, 

which is provided for the signal analytics. We can segment a signal in different ways, as 

activity-defined windows, event-defined windows and sliding windows [39,40]. After the 

filtering in the pre-processing step, we segmented the filtered data using widows of 5 s 

duration for each of the signals’ axes and ECG/EMG leads, as defined in Algorithm 1 in 

the supplementary materials section, in order to maximize the recognition accuracy. 
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Algorithm 1 Signals Overlapping Segmentation 

Inputs: X1, X2, X3 

Outputs: Y1, Y2, Y3 

/* X1: IMU signal, X2: ECG signal, and X3: EMG signal, Y1: IMU segmented signal, Y2: ECG segmented signal, 

and Y3: EMG segmented signal*/ 

/*Signal Noise Removal through Filters*/ 

X1‘ = filter(X1, median_filter); 

X2‘ = filter(X2, notch_filter); 

X3‘ = filter(X3, moving_average_filter); 

total_time = total time of SPHR //in seconds 

/*Signals Segmentation*/ 

for i = 1 to size(X1‘,X2‘,X3‘)  

      /* Per second samples*/ 

      total_samples = size(X1‘, X2‘,X3‘) /total_time; 

      /*Samples for 5 seconds*/ 

      total_samples = total_samples*5; 

      /*Point between 2 windows*/ 

      window_point = floor(total_samples); 

      /*Total windows*/ 

      windows = max(1+floor(size(X1‘, X2‘,X3‘) /total_samples)); 

      /*Overlapping samples*/ 

      overlap = 12; 

      /* Iterate signals for each window segmentation*/ 

      for j = 1 to windows 

             for k = 1 to size(window_point) 

                    Y1 (k) = X1‘(k); 

                    Y2 (k) = X2‘(k); 

                    Y3 (k) = X3‘(k); 

             end 

             window_point = window_point + total_samples - overlap; 

      end 

end 

return Y1, Y2, Y3; 

Sliding windows are used to partition the bio-signal into fixed-sized time windows 

that can be either non-overlapping or overlapping. Overlapping sliding windows have a 

generalized positive impact on the performance of the proposed HF-SPHR system. Figure 

3 demonstrates all of the windows generated for the x-axis of the IMU when it is placed 

on the chest, and for lead 1 of the ECG. 

 
(a) 

 
(b) 

Figure 3. Signal segmentation showing, (a) the windows for the IMU placed on the chest, and (b) 

the windows for lead 1 of the ECG. 
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2.3. IMU-Based Hybrid Feature Extraction 

An inertial measurement unit is a mechanized device that is used to monitor and 

provide data on object-specific force, angular degree [41] and positioning values. It uses a 

combination of accelerometers, gyroscopes and magnetometers, which consist of x, y, and 

z axes. After the pre-processing phase is completed, the second phase is to generate hybrid 

features from each sensor’s processed signal separately. The four major domains of hybrid 

features employed are statistical non-parametric, entropy-based, wavelet transform, and 

Mel-frequency cepstral coefficient features. This paper proposes three features for IMU 

signals: 1D-LBP, state-space correlation entropy (SSCE), and dispersion entropy (DE), 

which is explained in the sections below. Algorithm 2 (1 SSCE and 2Dispersion Entropy [42–

44]) in the supplementary materials section shows the pseudocode for the overall IMU 

feature extraction.  

Algorithm 2 IMU Feature Abstraction 

Input: Y1 

Output: Z1 

/* Y1: IMU segmented signal, Z1: extracted features for IMU*/ 

/*For each axis of IMU segmented signal*/ 

for i = 1 to size(Y1)  

      /* Iterate signal for each segmented window*/ 

      for j = 1 to windows 

            /*Extracting 1D-LBP*/ 

            Y1 ‘ = reshape(Y1(j), 9); 

            for k = 1 to size(Y1 ‘) 

                  mid = median(Y1 ‘); 

                  if Y1 ‘(k) < mid 

                       temp = temp + 1; 

                  else 

                        temp = temp +0; 

                  end 

             end 

             z1 = z1 + bin2dec(temp); 

             /*Extracting State-Space Correlation Entropy*/ 

             z2 = z2 + ssce1 (Y1(j), 4); //embedding dimension is 4. 

             /*Extracting Dispersion Entropy*/ 

             z3 = z3 + DisEnt2 (Y1(j), 1, 12, 1); // embedding dimension is 1, number of activities is 12, time lag 

is 1. 

      end 

end 

Z1 = z1 + z2 + z3; 

return Z1 ; 

2.3.1. 1D Local Binary Pattern 

1D-LBP is a non-parametric statistical feature extraction [45] technique. It focuses on 

the vibration of the signal, and captures the descriptive information representing the rel-

ative changes in the IMU signal amplitudes. This feature requires substantially less com-

putational power, and has strong discriminative capabilities.  

  1� − ���(�)  = � � (�)2�   
�

���
 where, � = �

0, � < �ℎ���ℎ���
1, � ≥ �ℎ���ℎ���

 (1)

Here in Equation (1), x is the signal window for 1D-LBP, y is the threshold, T repre-

sents selected binary values, and n is the number of total values in each selected window. 

Figure 4 denotes 1D-LBP features for the mHealth dataset. Each IMU axis is represented 

on the x-axis, whereas the y-axis represents the number of windows. Each box in the figure 

visually represents the 1D-LBP data for every IMU axis. The central red mark in the box 

indicates the median, while the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively. 
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Figure 4. Box plot of the 1D-LBP feature for all of the IMU sensors’ axes in the mHealth dataset. 

2.3.2. State–Space Correlation Entropy 

The data related to the time series can be divided into embedded vectors. The state 

space covariance matrix captures the correlations of the embedded vectors in a time series. 

The upper triangular and lower triangular elements of the matrix are identical. The diag-

onal elements of the matrix capture the autocorrelation of the embedded vectors which 

are calculated from the probability of the correlations between the embedded vectors (See 

Figure 5) using Equation (2). The dimension of embedded vector is another important 

parameter for SSCE, for which, when small, the number of embedded vectors is high. 

����(�) = − ∑ ������
�
��� ��  (2)

where Pk is the probability evaluation and n is the number of bins.  

 

Figure 5. State-Space Correlation Entropy for each of the given 10 dimensions and windows. 

2.3.3. Dispersion Entropy 

Dispersion Entropy is used to quantify the regularity of a time series and detect noise 

bandwidth, simultaneous frequencies, and amplitude changes. As a measure of uncer-

tainty, DE tackles the limitations of permutation entropy and Shannon entropy, including 

the discrimination of different groups of similar traits with lesser computation time. Dis-

persion entropy includes four main steps, and they are formulated according to Equation 

(3);  

��(�, �, �, �) = − � �������…����
�.  ��

��

���
��������…����

��.   (3)

�������…����
� =

������ { � | � ≤ � − (� − 1)�, ��
�,� ℎ�� ���� �����…����

}

� − (� − 1)�
. (4)

where, x is the signal, m is the embedding dimension, c is the number of classes, d is the 

time domain, and �������…����
� is the number of dispersion patterns, computed as in 

Equation (4). Meanwhile, ��
�,�  is the embedding vector, and d is the time delay, as shown 

in Figure 6. 
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Figure 6. 1D plot of the dispersion entropy feature extraction for the IMU device. 

2.4. ECG-Based Hybrid Feature Extraction 

ECG-based features are classified into five types that detect possible heart problems 

and other abnormalities [46] related to SPHR. These ECG feature extractions are explained 

in Algorithm 3 (1 MFCC [47–49]), which is provided in the supplementary materials section.  

Algorithm 3 ECG Feature Abstraction 

Input: Y2 

Output: Z2 

/* Y2: ECG segmented signal, Z2: extracted features for ECG, Fs = samp. freq., Tw = frame time, Ts = frame shift, 

alpha = coef., R = freq. range, M = no. of filter bank ch., C = no. of cepstral coef., and L = cepstral lifter*/ 

/*For each lead of ECG segmented signal*/ 

for i = 1 to size(Y2)  

      /* Iterate signal for each segmented window*/ 

      for j = 1 to windows 

            /*Wavelet packet entropy feature extraction*/ 

            temp = wpdec(Y2(j), 4, ‘db9’,’shannon’); //get wavelet packet decomposition tree ….. 

using mother wavelet db9 

            Y2 ‘ = wprcoef(temp,2); //reconstruct an approximation to the signal from the selected node 

            z1 = z1 + wentropy(Y2’, ‘shannon’);  

            /*MFCC feature extraction*/                            

            z2 = z2 + mfcc1 (Y2(j), Fs, Tw, Ts, alpha, hamming, R, M, C+1, L);  

            /* R-Wave, P-Wave and T-Wave extraction*/ 

            peaks = findpeaks(Y2(j), ‘Widthreference = halfheight’, ‘MinPeak = 0.05’, …..  

‘MinPeakWidth = 0.4’, ‘MaxPeakWidth = 1.7’); 

            for k = 1 to size(peaks) 

               if peaks(k+1) – peaks(k) >= 10 

                    z3 = z3 + peaks(k); // P-Waves 

                    z4 = z4 + peaks(k+1); // T-Waves 

                    z5 = z5 + peaks(k+2); // R-Wave 

               end 

             end 

             /* R-R Interval extraction*/ 

             for n = 1 to size(z5) 

                 if z5(n+1).window == z5(n).window //belongs to same window 

                      z6 = z6 + (z5(n+1) – z5(n)); 

                 end 

             end   

      end 

end 

Z2 = z1 + z2 + z3 + z4 + z5 + z6; 

return Z2 ; 

2.4.1. Wavelet Packet Entropy (WPE) 

In WPE, the original signal is decomposed into two components—detail coefficients 

(DCs) and approximation coefficients (ACs)—using a wavelet decomposition tree [50] un-

til the decomposition level is reached. Mathematically, this procedure of decomposition 

can be defined as in Equation (5): 
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�� = �

��,�(�) = �(�),

��,����(�) =  √2 ∑ ℎ(�)����,�(2� − �),�

��,��(�) =  √2 ∑ �(�)����,�(2� − �),�

  (5)

where h(k) and g(k) are the two filters that are used to obtain ACs/DCs, and ��,� represents 

the reconstruction signals at the ith level and jth node. A decomposition wavelet tree 

(DWT) is shown using four-level decomposition into ACs and DCs in Figure 7a, whereas 

a two-level wavelet packet decomposition into AC and DC is presented in Figure 7b.  

  

(a) (b) 

Figure 7. Wavelet Transform feature: (a) Wavelet Packet Decomposition Tree; (b) a Wavelet Packet decomposition Tree 

for an ECG with two-level wavelet packet decomposition. 

2.4.2. P-Wave and T-Wave Detection 

P- and T-wave detection features are used to extract ECG signals using a Q-wave, R-

wave, and S-wave (QRS) complex and a Hamilton segmenter algorithm. According to the 

Hamilton segmenter algorithm, we need to apply a few rules to every cycle, which is 

called a QRS complex, in an ECG signal. Equations (6) and (7) explain the rules adopted 

from the algorithm for P-wave �� and T-wave �� detection: 

�� = �,           �
ℎ(�)  >  0.04 

�(�) > 0.3 and �(�) < 1.8
  (6)

�� = �,        �
ℎ(�) > 0 

�(�) > 0.3 and �(�) < 1.3
 (7)

where h(x) represents the height of the peak detected, and �(�) represents the width of 

the peak. By using these formulas, we have developed an algorithm, which is presented 

in Algorithm 3. The samples of the finding of P and T waves from two different activities, 

like jogging and sitting, are given below in Figure 8. After discovering the QRS complex 

for each ECG cycle in Figure 8a, the red squares denote the T wave detection, whereas the 

green triangles represent the P-wave detection for the jogging activity. In Figure 8b, the 

black triangles symbolize P waves, and the green squares represent T-wave detection for 

the lying down activity.  

  

(a) (b) 

Figure 8. P–Wave and T–Wave Detection features for (a) jogging and (b) lying down activities. 
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2.4.3. Mel-Frequency Cepstral Coefficients 

During the MFCC coefficient generation, we initially pre-processed the ECG signal 

by applying pre-emphasis with α = 0.97. With an analysis frame duration of 3000 ms and 

a frame shift of 10 ms, the signal is then windowed using hamming and N as 256. Next, in 

order to take the discrete Fourier transform of the frame, Equation (8) is used, where h(n) 

is a N sample long analysis window, K is the length of DFT, and si(n) is the periodogram-

based power spectral estimate for the frame, which is formulated as: 

��(�) =  ∑ ��(�)ℎ(�)�������/�,�
���           1 ≤ � ≤ �  (8)

Meanwhile, Mel filtering, a Natural Logarithm, and DCT are applied (See Figure 9), 

with the number of Mel filter-bank channels being 20, the number of cepstral coefficients 

being 12, and the liftering parameter being 22. The filter-banks are created using Equation 

(9), where m is the number of filters and (f) is the list of m + 2 Mel-spaced frequencies: 

��(�) =

⎩
⎪
⎨

⎪
⎧                      0                                 � < �(� − 1) ^ � > �(� + 1)

���(���)

�(�)��(���)
                    �(� − 1) ≤ � ≤ �(�)

�(���)��

�(���)��(�)
                     �(�) ≤ � ≤ �(� + 1)

  (9)

 

 

Figure 9. MFCC process overview. 

However, in order to calculate the 12 cepstral coefficients, Equation (10) is used, 

where dt is the coefficient from the t frame, and a typical value for N is 2. Figure 10 repre-

sents a few outcomes of MFCC for different activities. 

�� =  
∑ �(���� − ����

�
���

2 ∑ ���
���

 (10)

 

   

(a) (b) (c) 

Figure 10. MFCC features extracted for (a) jumping forward and backward, (b) standing still and (c) walking activities. 

2.4.4. R-Point Detection and R–R Interval 

The R-point is the top peak in a QRS complex [51]; therefore, we extracted the R-

points first using Equation (11), where ℎ(�) is the minimum height peak of a specific sig-

nal, and �(�) are the width limitations for R peaks. Then, the model calculated the dif-

ference between two consecutive R-points in the same window. Such differences provide 
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& Framing 

Hamming 
windowing 
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Natural 
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the R–R Intervals in each window, and have a maximum of 3 R peaks. Here, we have 

extracted three R-points from each window in order to ensure consistency in the feature 

extraction and to avoid bias towards a particular activity. In Figure 11a, after finding a 

QRS complex, the R-points are shown using blue circles, and R–R Intervals are detected 

and presented in Figure 11b using a scatter plot. 

�� = �,           �
ℎ(�)  >  0.06 

�(�) > 0.4 and �(�) < 2.0
  (11)

 

  
(a) (b) 

Figure 11. (a) R–Point Detection of a standing still activity, and (b) R–R Intervals representation with respect to the win-

dows for the ECG. 

2.5. EMG-Based Hybrid Feature Extraction 

EMG is a process that is used to record and assess the electrical activity formed by 

skeletal muscles. For the EMG feature abstraction process, we used entropy-based fea-

tures, which include a nonlinear dynamic parameter [52] for the measurement of signal 

complexity. We used the fuzzy entropy, approximate entropy, and Renyi entropy of or-

ders 2 and 3. Algorithm 4 (1 Fuzzy Entropy [53,54]; 2 Approximate Entropy [55]; 3 Renyi Entropy 

[56]) in the supplementary materials section explains the implementation of all three types 

of entropies for the EMG signal. 

Algorithm 4 EMG Feature Abstraction 

Input: Y3 

Output: Z3 

/* Y3: EMG segmented signal, Z3: extracted features*/ 

/*For each lead of EMG segmented signal*/ 

for i = 1 to size(Y3)  

      /* Iterate signal for each segmented window*/ 

      for j = 1 to windows 

            /*Fuzzy Entropy feature extraction using embedding dimension = 2, threshold = 0.24,  

fuzzy power = 0.20,  

              and time lag = 1*/ 

            z1 = z1 + FuzEn1 (Y3(j), 2, 0.24, 0.20, 1);  

            /*Approximate Entropy feature extraction using dimension = 2 and tolerance = 2.0*/ 

            z2 = z2 + ApEn2 (Y3(j), 2, 2.0);  

            /*Renyi Entropy with order 2 and order 3*/ 

            z3 = z3 + renyi_entro3 (Y3(j), 2);  

            z4 = z4 + renyi_entro(Y3(j), 3);  

      end 

end 

Z3 = z1 + z2 + z3 + z4; 

return Z3; 
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2.5.1. Fuzzy Entropy 

Fuzzy entropy is the negative natural logarithm of the conditional probability in 

which two vectors with similar m points remain similar for m + 1 points. Fuzzy entropy 

measures the regularity of time series more efficiently as: 

 �� (�, �) =  
�

���
 ×  ∑ (

�

�����
 ∑ ���

����
���,� ��

���
���   (12)

 ���� (�, �) =  
�

���
 × ∑ (

�

�����
 ∑ ���

������
���,� ��

���
���   (13)

���������(�, �, �, �) = �� ��(�, �) − �� ���� (�, �).  (14)

where, in Equations (12)–(14), m is the consecutive vector sequence, n is the gradient, r is 

the width of the boundary of the exponential function, N is the sample time series, and 

���
� is the degree of similarity. Following, we used different values for n and r, which leads 

to a decrease in the standard deviation. Here, we selected r = 0.24 and n = 0.2 for all of the 

windows of both ECG leads in the HuGaDB dataset, as shown in Figure 12. 

 

Figure 12. Fuzzy Entropy features extracted for EMG lead 1 and lead 2 for the HuGaDB dataset. 

2.5.2. Approximate Entropy 

During approximate entropy, we measure the randomness of a series of data without 

any previous knowledge [57] about the dataset. Equations (15) and (16) show the inner 

concept of the calculation of approximate entropy, where m is the embedding dimensions 

and r is the noise filter. We used m = 2 and r = 2.0 for our data. Figure 13 shows the ap-

proximate entropy calculated for the EMG leads using the above-mentioned parameters: 

��(�) =  (� − � + 1)�� ∑ ����
�(�).�����

���   (15)

�������(�, �, �) = [ ��(�) − ����(�)].  (16)

 

Figure 13. Approximate Entropy feature Extraction using r = 2.0 and m = 2. 
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2.5.3. Renyi Entropy Order 2 and Order 3 

Renyi entropy is the generalization of Shannon’s entropy explained in Equation (18), 

which preserves the additivity of statistically-independent systems [58,59], and is com-

monly used for the analysis of biosignals [60]. Equation (17) presents the formula for the 

calculation of the Renyi entropy for order �, where s is the signal sample values, � is the 

order = 2, 3,…, M is the finite number of possible values from s, and p is the probability of 

each s. Figure 14 shows the Renyi entropy of � = 2 and � = 3 for the EMG signal leads. 

����������(�) =
�

���
 ����  ∑ ��

��
���   (17)

�ℎ����������(�) =  − ∑ ��������
�
���   (18)

 

  
(a) (b) 

Figure 14. Renyi entropy feature extraction for (a) order 2 and (b) order 3. 

2.6. Feature-to-Feature Fusion 

After the separate extraction of the IMU, ECG, and EMG, the model proposes to fuse 

the hybrid features for each sensor type together, as described in Equations (19)–(21); 

������� =  ⋃ 1����(�)�
��� ∪  ⋃ ����(�)�

��� ∪ ⋃ ��(�)�
���    (19)

������� =  ⋃ ��
�
��� ∪  ⋃ ��(�)�

��� ∪ ⋃ ��(�)�
��� ∪  ⋃ ��(�)�

��� ∪ ⋃ ��(�) ⋃ ��,�(�)�
���

�
���   (20)

������� =  ⋃ ���������(�)�
��� ∪  ⋃ �������(�)�

��� ∪ ⋃ ����������(�, 2)�
��� ⋃ ����������(�, 3)�

���   (21)

Furthermore, in order to obtain more complete global information, the fused features 

from all three sensors will again be merged together based on time. This type of data fu-

sion is also known as feature in–feature out, where the input and output of the fusion 

show both features, as shown in Figure 15. Equation (22) shows the formula to fuse the 

hybrid features from each sensor: 

�������� =  ������� ∪ ������� ∪ ������� (22)

 

Figure 15. Proposed feature–to–feature fusion concept. 
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2.7. Feature Reduction: Modified Multi-Layer Sequential Forward Selection 

In the feature reduction phase, we eliminate unnecessary features based on a search 

strategy and an objective function. In search strategies, the algorithms are further catego-

rized into sequential algorithms and randomized algorithms. Similarly, the objective func-

tions are also categorized into filters and wrappers [61]. Dimension reduction not only 

helps to obtain better results for classification; it can also be used to find those features 

which act as the best predictors. Here, we proposed a unique algorithm for the feature 

reduction, designated as modified multi-layer sequential forward selection. 

Whitney’s implementation for sequential forward selection (SFS) has been used by 

many data scientists, and is based on the formula given in Equation (23), where Sd is the 

feature set of size d, D is the dataset values, and M is the classification model used as KNN. 

Equation (24) explains how to maintain the monotonicity condition in two subsets of the 

feature set Sd while J is the condition. 

� = ��������
�(��, �, �). (23)

�� ⊂  ��  ⇒ �(��)  ≤  �(��) (24)

The outdated SFS selected feature sets using a single layer. The MLSFS preserves the 

features of a signal until the correlation rates for all of the features are established. Fur-

thermore, MLSFS will select the most correlated features captured from the well-defined 

correlation rates. It achieved better accuracy in feature reduction, and it is presented in 

Algorithm 5, which is provided in the supplementary materials section. 

Algorithm 5 Multi-layer Sequential Forward Selection algorithm 

Input: F 

Output: S 

/* F: Hybrid-Features set Datafuse, S: Reduced features*/ 

/*For all the features in F*/ 

while NOT isempty(F) do 

      S’ = {ϕ};  

      /* Iterate all features to get most correlated features*/ 

      for i = 1 to size(F) 

            Sd = F(i); 

            /*Select the next best feature*/ 

            S’ = S’ + argmaxSd G (Sd, D, M);      

      end 

      F = F – S’; 

end 

S = S’; 

return S; 

2.8. Codebook Generation 

In order to encode the resultant fused features, a codebook known as a Gaussian 

mixture model is used. It is a widely accepted method for representing complex infor-

mation and feature matching [62] based on an expectation maximization (EM) algorithm. 

The EM algorithm estimates the unknown parameter sets Θ of probabilistic weights, and 

helps to find the maximum likelihood function by giving an initial parameter set Θ1 and 

continuing to apply E and M steps. Then, the EM algorithm generates a sequence {Θ1, Θ2, 

…, Θm, …} and considers both E and M steps, as in Equations (25) and (26): 

�� ���
�
 � �� , ��) =  

��
� �������

� ,   ∑ )�
�

∑ �� ����� ��
� ,   ∑ )�

�
�
���

 (25)

� =  
∑ �����

�
���, ��)(�� − ��

���)(�� − ��
���)� �

���

∑ �����
�
���, ��) �

���

���

�
. (26)

where, �� ���
�
 � �� , Θ�) presents the probability of the jth sample with the kth Gaussian 

element at the mth iterations along weights ��
�, means ��

�, and covariance ∑  �
�  values. 
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Similarly, Gaussian mixture regression provides a way of extracting a single generalized 

signal from the set of features given. Hence, we can clearly retrieve an analytically smooth 

signal through regression by encoding the temporal signal features [63] into a mixture of 

Gaussians. This technique takes each vector of the signals’ GMM as an input of xI and 

finds the output xO using GMR.  

Finally, GMR is considered to provide better results compared to other stochastic 

approaches because it gives a fast and logical means to restructure the ‘best’ sequence 

from a Gaussian model. Figure 16 provides a glimpse of GMM–GMR encoded vectors for 

the HuGaDB and mHealth datasets. 

 

Figure 16. Codebook generation via a GMM–GMR model applied to the (a) HuGaDB and (b) mHealth datasets. 

2.9. Deep Belief Network Implementation Using RBMs 

DBNs are multi-layered probabilistic models [64] which consist of multi-parameters 

for model learning. Each layer contains simple undirected graphs called RBMs. RBM lay-

ers are of two types, which are hidden layers and visible layers. The visible layer is the 

bottom layer, and hidden layers are the top layers. Figure 17 explains the workings of the 

hidden and visible layers of RBMs. Hidden layers model the probability distribution of 

the visible variables, and are fully bidirectionally connected with symmetric weights. In 

RBMs, the layers are not interconnected. The hierarchical processing of stacked RBMs can 

be used to create a DBN model (See Figure 17). An RBM encodes the joint probability 

distribution via the energy function, as in Equation (27), in which v is the visible data, h is 

the hidden data, w is the weight, and �  = (w, b(v), b(h)). We can write the encoded joint 

probability as in Equation (28): 

�(�, ℎ;  �) =  − ∑ ∑ �����ℎ� −  ∑ ��
(�)

�� −  ∑ ��
(�)

ℎ�����   (27)

�(�, ℎ|�) =  
���(−�(�, ℎ: �)

∑ ∑ ��� (−�(��, ℎ�; �)����

. (28)

These rules are derived to update the initial states, such that every update gives a 

lower energy state and ultimately settles into equilibrium. Here, in Equations (29) and 

(30), σ(x) = 1/(1 + exp(−x)), where the sigmoid function is observed as: 

�(�� = 1 | ℎ, �) = � (∑ ���ℎ�� +  ��
(�)

)  (29)

�(ℎ� = 1 | �, �) = � (∑ ������ +  ��
(�)

)  (30)
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In order to train the RBMs, the visible layer is provided with the input data. Here, 

the learning is to adapt the parameter θ such that the probability distribution in Equation 

(28) becomes maximally similar to the true values, which means that it will maximize the 

log-likelihood of each generation of the observed data. A contrastive divergence (CD) al-

gorithm samples the new values for all of the hidden layers in parallel with the current 

input in order to give a complete sample (vdata, hdata). Furthermore, it generates a sample 

for the visible layer, and then samples the hidden layer again. Then, we obtain the sample 

from the model as (vmodel, hmodel). The weights can be updated according to Equation (31).  

∆ ��� =  ���� ,����ℎ�,���� − �� ,�����ℎ�,������.   (31)

 

Figure 17. Architecture of DBN using RBMs. 

3. Experimental Performance 

In order to evaluate the accomplishment of the DBN classifier [65] for human activity 

recognition, this paper considered using accuracy, sensitivity, specificity, precision, recall, 

F-measure and misclassification scores as the performance measures. The accurate classi-

fication of the SPHR is called accuracy [66], as expressed in Equation (32). In Equations 

(32)–(36), TN, TP, FN, and FP represent true negative, true positive, false negative, and 

false positive, respectively.  

�������� (100)  =
�����

�����������
 ×  100  (32)
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Sensitivity measures the proportion of actual positives that are correctly identified, 

and this is called the true positive rate (TPR). Equation (33) describes the formula used to 

calculate the sensitivity.  

����������� (%) =
��

�����
 × 100  (33)

Specificity is defined as the measure of the proportion of negatives that are correctly 

identified. Equation (34) gives us the formula to measure the specificity, given TN and FP. 

����������� (%) =
��

�����
 × 100  (34)

Precision is the proportion of true positives correctly identified from total positives. 

Equation (35) describes the formula for the calculation of precision. 

��������� (%) =
��

�����
 × 100  (35)

Recall is the proportion of all true positives out of true positives and false negatives. 

Equation (36) tells us the formula for recall. 

������ (%) =
��(�)

��(�)���(�)
 × 100  (36)

where n represents all classes for classification. 

The F-measure is a method to combine precision and recall together into a single 

measure that captures the quality of both performance measures. The misclassification 

rate can be calculated from the accuracy: 

F-������� =
� ×��������� ×������

����������������
   (37)

����������������� ���� =  1 − �������� (38)

3.1. Datasets Description 

In order to appraise the testing/training abilities of our proposed model, we used two 

public benchmark datasets, i.e., the mHealth dataset [67] from the UCI Machine Learning 

repository, and the HuGaDB dataset [68] from the GitHub repository.  

In the mHealth dataset, there are a total of 12 activities with 24 attributes each. It uses 

21 attributes for IMU sensors on the chest, left ankle and right arm, two attributes for the 

ECG sensor, and one attribute for the labels describing the activity performed. The dataset 

represents 10 subjects and locomotion activities: standing still, sitting and relaxing, lying 

down, walking, climbing stairs, waist bending forward, the frontal elevation of arms, 

knees bending (crouching), cycling, jogging, running, and jumping back and forth. Each 

subject had all of the above-mentioned sensors attached, with a frequency of 50 Hz.  

The second dataset used to evaluate performance was a human gait database. It con-

sists of 12 activities and 39 attributes for each activity. For IMU, there are 36 attributes; for 

EMG, there are two attributes; and the last attribute is for the activity label. This dataset 

was collected for 18 subjects with repeated activities. The activities were walking, running, 

going up, going down, sitting, sitting down, standing up, standing, bicycling, going up 

by elevator, going down by elevator, and sitting in car. Six IMUs and two EMG sensors 

were attached to each subject, and a sample rate of 1000 Hz was used. 

In our work, the data from all of the subjects is separated with respect to the sensors’ 

nature, and then preprocessed to remove noise. Finally, the signals were split into win-

dows of 5 s each, with 12 overlapping values. We used the ‘leave-one-subject-out’ (LOSO) 

[69] cross-validation technique for the training and testing.  
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3.2. Results Evaluations 

The experiment was performed with a laptop, with the specification of the CPU being 

i7-8550 and the RAM being 24 GB, and a NVIDIA GeForce GTX GPU 2GB. The program-

ming tool was MATLAB, with multiple frameworks available in the tool and online. For 

efficient results, the sample data from HuGaDB was sent to the Gaussian mixture models 

in batches of half the sample length for the walking activity. The model used deep belief 

network with RBMs of four layers in order to minimize reconstruction errors and set the 

number of training samples according to the cross-validation. RBMs use CD as a sampling 

method type. The learning rate for each RBM was set to 0.05, and the model uses discrim-

inative RBMs, as explained in Figure 18. 

 

Figure 18. Discriminative RBM structure: the visible layer consists of y labels and z inputs. 

In the first layer of the RBMs, we set the number of nodes to the number of input 

variables. The second, third, fourth, and fifth RBM layers had 500, 500, 500, and 1000 

nodes. All of the training and testing sample sets from the cross-validation were looked 

into one after the other in order to see which set performed best. By training and testing 

the test set, the classification confusion matrix was produced for the mHealth dataset as 

in Table 1; for the HuGaDB dataset, see Table 2. 

Table 1. Confusion matrix for SPHR classification of all activities using the mHealth dataset. 

Activities L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 

L1 9 0 0 1 0 0 0 0 1 0 0 0 

L2 1 10 0 0 0 0 0 0 0 0 0 0 

L3 0 0 9 0 0 1 0 0 0 0 0 0 

L4 0 0 0 9 0 0 0 0 1 1 0 0 

L5 0 0 0 0 10 0 1 0 0 0 0 1 

L6 0 0 0 0 0 9 0 0 0 0 0 0 

L7 1 0 1 0 0 0 10 0 1 0 0 0 

L8 0 0 0 0 1 0 0 9 0 0 0 0 

L9 0 1 0 0 0 0 0 1 9 0 0 0 

L10 0 0 1 1 0 1 0 0 0 10 0 1 

L11 0 0 0 0 0 0 1 0 0 0 9 0 

L12 0 0 0 0 0 0 0 1 1 0 0 9 

Mean Accuracy = 93.33% 

L1 = Standing Still; L2 = Sitting and Relaxing; L3 = Lying down; L4 = Walking; L5 = Climbing 

Stairs; L6 = Waist bending forward; L7 = Frontal elevation of the arms; L8 = Knees bending 

(crouching); L9 = Cycling; L10 = Jogging; L11 = Running; and L12 = Jumping back and forth. In 

addition, the diagonal values represent the exact accuracy rate for each activity. 
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It can be observed from Figure 19 column 1 that there are activities with high alti-

tudes of signal closeness to each other, i.e., standing still, sitting, and lying down. Simi-

larly, the walking, running and jogging signals bear a resemblance to each other in column 

2. It is important to notice that our proposed model is able to distinguish between such 

activities with decent accuracy rates of 93.33% for the mHealth dataset and 92.50% for the 

HuGaDB datasets.  

Table 2. Confusion matrix for the SPHR classification of all of the activities using the HuGaDB 

dataset. 

Activities H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

H1 10 1 0 0 0 0 0 0 0 0 0 0 

H2 0 9 1 0 0 0 0 0 1 0 0 0 

H3 0 0 9 0 0 0 0 0 0 0 0 0 

H4 0 0 0 9 0 0 1 0 0 1 0 0 

H5 1 0 0 0 9 0 0 0 0 0 0 0 

H6 0 0 0 0 1 10 0 0 0 0 0 0 

H7 0 1 0 0 0 1 9 1 0 0 0 0 

H8 0 0 0 1 0 0 0 9 0 1 0 1 

H9 0 0 1 0 0 0 0 0 9 0 0 0 

H10 0 0 0 0 0 0 0 0 0 10 0 0 

H11 0 0 0 0 0 0 0 0 1 0 9 0 

H12 0 0 0 0 1 0 0 0 0 0 0 9 

 Mean Accuracy = 92.50%  

H1 = Waking; H2 = Running; H3 = Going up; H4 = Going down; H5 = Sitting; H6 = Sitting down; 

H7 = Standing up; H8 = Standing; H9 = Bicycling; H10 = Going up by elevator; H11 = Going down 

by elevator; and H12 = Sitting in a car. In addition, the diagonal values represent the exact accu-

racy rate for each activity. 

Comparisons of the sensitivity and specificity are given in Table 3 for the mHealth 

dataset and Table 4 for the HuGaDB dataset. Table 5 shows the precision, recall, and F-

measure for each activity for both datasets.  

Table 3. Comparison of the sensitivity and specificity of the classification results using the 

mHealth dataset. 

Activities Sensitivity Specificity 

L1 0.692 0.984 

L2 0.758 0.992 

L3 0.687 0.992 

L4 0.692 0.984 

L5 0.763 0.984 

L6 0.687 0.992 

L7 0.775 0.975 

L8 0.687 0.992 

L9 0.703 0.983 

L10 0.775 0.967 

L11 0.677 0.992 

L12 0.698 0.984 

Table 4. Comparison of the sensitivity and specificity of the classification results using the 

HuGaDB dataset. 

Activities Sensitivity Specificity 

H1 0.800 0.991 

H2 0.732 0.983 

H3 0.720 1.000 

H4 0.726 0.983 

H5 0.726 0.991 

H6 0.800 0.991 

H7 0.732 0.974 

H8 0.732 0.974 

H9 0.726 0.991 

H10 0.800 1.000 

H11 0.714 0.992 

H12 0.720 0.991 
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Table 5. Precision, Recall, and F-measure classification results using the mHealth and HuGaDB 

datasets. 

Activities Precision Recall F-measure 

L1 0.818 0.818 0.818 

L2 0.909 0.909 0.909 

L3 0.818 0.900 0.857 

L4 0.818 0.818 0.818 

L5 0.909 0.833 0.870 

L6 0.818 1.000 0.900 

L7 0.833 0.769 0.800 

L8 0.818 0.900 0.857 

L9 0.692 0.818 0.750 

L10 0.909 0.714 0.800 

L11 1.000 0.900 0.947 

L12 0.818 0.818 0.818 

Mean 0.847 0.850 0.845 

H1 0.909 0.909 0.909 

H2 0.818 0.818 0.818 

H3 0.818 1.000 0.900 

H4 0.900 0.818 0.857 

H5 0.818 0.900 0.857 

H6 0.909 0.909 0.909 

H7 0.900 0.750 0.818 

H8 0.900 0.750 0.818 

H9 0.818 0.900 0.857 

H10 0.833 1.000 0.909 

H11 1.000 0.900 0.947 

H12 0.900 0.900 0.900 

Mean 0.877 0.880 0.875 

 

  

  

  

Windows Windows 

Figure 19. Signal representing Chest acceleration for standing still, sitting and relaxing, and lying down (left column), and 

Chest acceleration for walking, running, and jogging (right column). 

  

C
h

e
s

t 
S

e
n

s
o

r 
fo

r 
S

ta
n

d
in

g
 S

ti
ll

C
h

e
s

t 
S

e
n

s
o

r 
fo

r 
S

it
ti

n
g

C
h

e
s

t 
S

e
n

s
o

r 
fo

r 
R

u
n

n
in

g

C
h

e
s

t 
S

e
n

s
o

r 
fo

r 
L

y
in

g

C
h

e
s

t 
S

e
n

s
o

r 
fo

r 
J

o
g

g
in

g



Sustainability 2021, 13, 1699 22 of 27 
 

A comparison between the different layers of the RBMs using the time and number 

of iterations is presented in Table 6. Parameter tuning [70] is an important step of DBN. 

Hence, a batch size of 15 samples was used; the weight cost for each node was set to 0.0002, 

and a maximum of seven epochs for each layer was proposed as the list of parameters [71] 

being tuned. The reconstruction error for each layer decreases as the RBM moves towards 

the next layer. The time in seconds is given, and the number of nodes can also be observed. 

Table 6. Comparisons of the RBM layers in the deep belief network for the mHealth and HuGaDB datasets. 

Dataset 
No. of RBMs-Perfor-

mance Method 
No. of Epochs 

No. of Nodes in 

Each RBM 

Average 

Reconstruction Error 
Time (s) 

mHealth 

r = 1 

Reconstruction 
7 n = 500 49,458,754.7895 2290 

r = 2 

Reconstruction 
7 n = 500 24,327.784 4689 

r = 3 

Reconstruction 
7 n = 500 0.04582 6087 

r = 4 

Reconstruction 
7 n = 1000 0.00037 8786 

r = 5 

Classification 
7 n = 12 0.0000002 12,784 

HuGaDB 

r = 1 

Reconstruction 
7 n = 500 65,215,315,432.3545 2340 

r = 2 

Reconstruction 
7 n = 500 78,652,131.2563 4808 

r = 3 

Reconstruction 
7 n = 500 156,325.012 7090 

r = 4 

Reconstruction 
7 n = 1000 0.024563 10,910 

r = 5  

Classification 
7 n = 12 0.000000284 15,580 

Table 7 presents the comparative study results using the accuracies for the proposed 

model and other statistically–well-known classifiers and methodologies i.e., random for-

est, artificial neural network, ensemble algorithms, Adam based optimization, decision 

trees, SVM, kNN, and Hampel Estimated. The overall results show that the proposed 

model achieved better classification results using a deep belief network and discrimina-

tive RBMs, which shows a novel contribution for SPHR. The proposed HF-SPHR model 

has to be assessed and adjusted according to the following challenges: 

 In its actual implementation, pattern recognition challenges were faced while the 

same activity was performed by different individuals. 

 Wearable-sensors–based architectures are susceptible to placement changes and 

other locomotion activities. 

Table 7. Comparison of the proposed model with state-of-the-art deep learning algorithms using 

the mHealth and HuGaDB datasets. 

Method Accuracy Using mHealth (%) Method Accuracy Using HuGaDB (%) 

Abedin et al. [72] 57.19 Fang et al. [73] 79.24 

Maitre et al. [74] 84.89 Rasnayaka et al. [75] 85 

O’Halloran et al. [76] 90.55 Sun et al. [77] 88 

Tahir et al. [23] 90.91 Badawi et al. [25] 88 

Masum et al. [78] 91.68 Kumari et al. [79] 91.1 

Ha et al. [80] 91.94 - - 

Guo et al. [81] 92.3 - - 

Proposed 

HF-SPHR Model 
93.33 

Proposed 

HF-SPHR Model 
92.50 
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We used other state-of-the-art classifier techniques like random forest and AdaBoost 

for comparison with the proposed DBN and RBM model. Table 8 shows that DBN signif-

icantly outperforms other classifiers with regard to its accuracy rate. 

Table 8. Comparison of DBN, Random Forest, and AdaBoost Classifiers for the mHealth and 

HuGaDB datasets. 

Algorithm Dataset Accuracy Dataset Accuracy 

DBN mHealth 93.33% HuGaDB 92.50% 

Random Forest mHealth 92.7% HuGaDB 91.9% 

Adaboost  mHealth 49.9% HuGaDB 57.0% 

4. Discussion 

This paper proposed a robust sustainable system with consistency across different 

challenging datasets; because elderly and disabled individuals [82] stay indoors, two in-

door activity-based datasets were used for stability. The proposed HF-SPHR system pro-

duced a good quality performance with both datasets, handling problems of varying hu-

man activities and a variety of signal shapes due to the incorporation of multiple types of 

sensors. The actions performed in both datasets are complex, because the movements in-

volved in performing most of the activities are quite similar—namely, jogging, running, 

walking and standing, sitting, lying-down—as described in Figure 19. However, HF-

SPHR remained composed and reliable in recognizing and distinguishing between similar 

actions due to the robust hybrid features. The proposed system showed high accuracy, 

specificity, precision, recall, and F-measure rates. 

The ECG cycle extraction was challenging due to the similarity in actions like lying-

down and sitting. In the feature extraction phase, the QRS complex was identified suc-

cessfully using a few important ECG peak rules, followed by the extraction of the P wave, 

T wave, R wave, and R–R Intervals as features of the ECG signals. However, the similarity 

between some actions caused QRS complex cycles to overlap more significantly with each 

other in a few instances. For example, in classes such as jogging and running, the QRS 

complex cycles overlapped at some points. As such, the performance of such actions was 

been compromised due to the overlapping of the QRS complexes. However, our system 

offered different domains’ features—namely, WPE and MFCC in hybrid form—to keep 

the performance at a high level.  

5. Conclusions 

This paper proposed a robust model for sustainable physical healthcare Pattern 

Recognition with hybrid feature manipulation and Gaussian mixture models. It also sug-

gested the application of a deep belief network classifier with discriminative RBMs, which 

automatically extracts features and also reduces the dependence on domain experts. This 

model achieved excellent recognition results. HF-SPHR can also serve the purpose of a 

deep learning model that can efficiently and sustainably recognize activities. By introduc-

ing the structure of MFCC, entropy and other features, HF-SPHR effectively extracts the 

raw data from different sensors more comprehensively, extracts more relevant features, 

and increases the diversity of the feature sets. The experiments also revealed the influence 

of the HF-SPHR model in terms of accuracy, sensitivity, specificity, precision, recall, and 

the F-measure. HF-SPHR helped in constructing an ideal human behavior recognition 

model. It is worth mentioning that the proposed HF-SPHR technique recognized static 

activities with lower accuracies compared to dynamic activities where further improve-

ments are necessary. It will be of interest to see how the model performs for complex ac-

tivities. 
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