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Abstract: The oil and gas industry plays a vital role in meeting the ever-growing energy demand of
the human race needed for its sustainable existence. Newer unconventional wells are drilled for the
extraction of hydrocarbons that requires advanced innovations to encounter the challenges associated
with the drilling operations. The type of drill bits utilized in any drilling operation has an economical
influence on the overall drilling operation. The selection of suitable drill bits is a challenging task for
driller while planning for new wells. Usually, when it comes to deciding the drill bit type, generally,
the data of previously drilled wells present in similar geological formation are analyzed manually,
making it subjective, erroneous, and time consuming. Therefore, the main objective of this study was
to propose an automatic data-driven bit type selection method for drilling the target formation based
on the Optimum Penetration Rate (ROP). Response Surface Methodology (RSM) and Artificial Bee
Colony (ABC) have been utilized to develop a new data-driven modeling approach for the selection
of optimum bit type. Data from three nearby Norwegian wells have been utilized for the testing of
the proposed approach. RSM has been implemented to generate the objective function for ROP due
to its strong data-fitting characteristic, while ABC has been utilized to locate the global optimal value
of ROP. The proposed model has been generated with a 95% confidence level and compared with
the existing model of Artificial Neural Network and Genetic Algorithm. The proposed approach
can also be applied over any other geological field to automate the drill bit selection, which can
minimize human error and drilling cost. The United Nations Development Programme also promotes
innovations that are economical for industrial sectors and human sustainability.

Keywords: drill bit selection; response surface methodology; artificial bee colony; artificial neural
network; genetic algorithm

1. Introduction

Drilling operations are performed to extract natural oil and gas from underlying
reservoirs. Wellbores are drilled from top to the target depths of the geological formations
containing sweet spots of hydrocarbons. With ever-increasing energy demand, the oil and
gas industry requires newer innovative technologies that are more economic and efficient
for the sustainable development of human civilization. Innovations in the oil and gas
industry will help in the proper extraction and utilization of natural resources with a longer
sustainable period of hydrocarbon production. This will also encourage a global economy
that influences human sustainability, as clearly mentioned in the sustainable development
goals of the United Nation Development Programme (UNDP). However, the drilling of oil
and gas wells is an expansive task that involves huge financial investments and electrical
powers consumptions at the drill site. Drill sites may also have a hazardous impact on
human health and the environment when accidents such as blowouts, hydrocarbon spillage,
etc., occur. Drilling hydrocarbon wells is considered one of the most dangerous tasks in
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the oil and gas industry. Newer unconventional wells are drilled for the extraction of
hydrocarbons that requires advanced innovations to encounter the challenges associated
with the drilling operations. To achieve highly efficient drilling operations, operational
parameters need to be optimized for operational cost minimization.

Drill bits and Optimum Penetration Rate (ROP) are the important drilling parameters
that need to be optimized for the success of drilling operations due to their large impact on
operational efficacy and cost. While optimizing the cost of drilling operations, selection of
the most suitable drill bit types is one of the main concerns of drillers, as all other drilling
parameters directly or indirectly rely on the drill bit, although the cost of bits is only 5%
of the total operational cost but can influence 10–40% of the overall drilling costs [1]. It
may seem easy, but selecting the right bit types for drilling operations is still one of the
most challenging tasks due to its dependency on various factors. The performance of drill
bits depends on various aspects such as bit design parameters, formation properties, and
other operational field parameters [2,3]. The concept of drilling optimization is built on
the usage of earlier drilled well data for optimizing operational variables for drilling the
next well with minimum cost and time [1]. The drilling variables are gradually adjusted to
achieve their best possible effective optimum values to decrease operational cost and time.

Drill bits are mostly selected based on the knowledge of bit data of previously drilled
wells and from the types of bits available to driller from manufactures. A driller selects the
drill bits for a new well depending upon his experience drilling earlier wells [1]. Drilling
operations are also affected by various controllable and uncountable factors, which involves
a high risk of human error that may increase the cost of overall drilling operations [1].
Thus, various empirical and data-driven models have been developed based on the known
relationships between drilling variables to select the most suitable bit types. Recently,
data-driven intelligent models have been utilized to find suitable types of drill bits [4–9].
These models are reported to be more accurate as they learn from previous well data,
defying traditional methods for selecting the appropriate drill bit [9]. However, researchers
reported several issues related to the models, which are critically reviewed in the ‘Literature
review’ section of the paper [4–9].

In this work, a novel application of intelligent paradigms has been proposed for drill
bit selection utilizing Response Surface Methodology (RSM) and Artificial Bee Colony
(ABC) combination to provide a more reliable and efficient technique for automatic drill bit
selection. The main contributions of this study are given below:

• A comprehensive review of drill bit selection methodology for drilling oil and gas wells;
• A novel application of RSM and ABC combination has been tested for the selection of

suitable drill bit types based on optimum ROP values;
• Comparison of proposed approach with the existing ANN, ANN, and GA-based

drill bit selection models to test their efficacies and find a more reliable approach for
bit selection.

The rest of the paper is organized as follows: Section 2 gives the literature review and
establishes the main objectives of the research work. Section 3 briefly explains data-driven
models applied in this study. Section 4 contains results from modeling, whereas Section 5
presents the results and discussions. Finally, Section 6 concludes the major findings of the
research work along with the future scope.

2. Literature Review

Several methods have been applied for finding the optimum bit type mainly based on
measured data taken from offset well logs with limited applicability. Out of these methods,
the most popular method in use is cost per foot (CPF) estimation for drilled intervals. The
method is popular, as it is based on the operating cost of the drilling operation. CPF can be
measured using a formula.

CPF =
BitC + RigC(BitRT + CNT + TripT)

DF
(1)
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where BitC is the bit cost in dollars, RigC is the cost of rig per hour, BitRT is the bit running
time in hours, CNT is connection time in hours, TripT is the trip time in hours, and DF is the
sectional length of wellbore drilled in feet. CPF is used in combination with other methods
as it does not depend on the operational parameters, but the drilling economy is highly
affected by them. CPF also has one more disadvantage, as it can not be used in the case of
directional and horizontal wells. CPF has been proven efficient in the analysis of historic
drilling data obtained from the offset wells and current supervision of bit run [3]. Back in
the 1960s, Teale formulated a notion of Specific Energy (SE) by establishing a relationship
between bit energy requirement and its performance [2,3]. In rock drilling, SE is the energy
spent by the machine to eradicate unit rock volume. The SE formula is given below.

SE =
RPM ∗WOB

ROP ∗ BD
(2)

where RPM is the rounds per minute in rpm, WOB is the weight on the bit in pounds, ROP
is the drilling rate of penetration in feet per hour, and BD is the bit diameter in inches. As
it is clear from the formula, SE is governed by only three parameters mainly, ROP, WOB
(weight on bit), and RPM, which proves to be less advantageous. It also can not distinguish
between various formations based on mechanical properties and vibrations effects on the
dulling of a bit [3].

The International Association of Drilling Contractors (IADC) has adopted a new dull
grading system for selecting bits on their degree of dullness for roller cone as well as fixed
cutter bits. In this, the IADC used to report various parameters of drill bit such as teeth
wear, bearing conditions, etc., on a scale from 1 to 8, where 1 is excellent and 8 is the poor
condition. The dullness of the drill bit is a crucial factor as if the bit wears fast, it adds
to drilling cost and greater time consumption, which indirectly affects the economics of
drilling operation. So, one needs to carefully select the bit by evaluating data, as it will lead
to extra cost to projects [9].

In 1964, Hightower selected a drill bit from geological information and logs from
offset wells [10]. Sonic logs were used to find the right bit for drilling operations by
estimating the formation strength to define the drillability of the formation. The rock
strength utilized in this method was not measured directly from sonic logs but estimated
indirectly from the theory of elasticity. Bourgoyne and Young [11] utilized a multiple
regression approach for ROP modeling and considered drill bit types as an important factor
influencing the drilling operation. Rabia et al. [12] proposed the selection of a bit based
on mechanical specific energy. Fear et al. [13] selected drill bits based on the geology and
rock properties of the formation. Perrin et al. [3] proposed a novel drilling index for the
evaluation and selection of drill bit types for drilling operations. Uboldi et al. [14] utilized
rock strength measurements as criteria for the choice of drill bits. Bahari and Seyed [1]
applied mathematical correlations as objective functions for the optimization of various
drilling variables and operational costs.

Recently, data-driven intelligent models have been utilized to find suitable types
of drill bits. These models are reported to be more accurate as they learn from previ-
ous well data, defying traditional methods for selecting the appropriate drill bit [15].
Bilgesu et al. [16] used Artificial Neural Networks (ANN) for the prediction of drill bit
types for drilling target geological formations. Yilmaz et al. [4] trained the ANN model
using previously drilled wells offset data and predicted the drill bits types for the develop-
ment wells required to be drilled internal and external of the same field. They also tested
the trained ANN model for the prediction of drill bit types for the development wells that
needed to be drilled in an adjoining field. Bahari et al. [5] utilized a Genetic Algorithm
(GA) for the accurate computation of constants for the Bourgoyne–Young ROP model.
Edalatkhah et al. [6] also selected the suitable drill bit types using ANN and GA for South
Pars Field wells. Momeni et al. [7] applied ANN for the estimation of drilling ROP and
bit types [14]. Momeni et al. [8] combined ANN and Genetic Algorithm (GA) for drill bit
selection based on optimal ROP. They selected the drill bit types based on the optimum
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values of ROP and drilling variables. Abbas et al. [9] also supported the notion of drill bit
selection depending upon optimum values of ROP using ANN and GA. Here, ANN was
primarily utilized for the development of the objective function and GA was utilized for
optimization of ROP objective function for the drill bit selection.

Various researchers have suggested that the selection of drill bits should be performed
based on the optimum values of ROP. This condition results in the development of an
unconstrained bounded optimization problem where a function of ROP is required to
be defined using drilling variables. However, the exact relationship between ROP and
drilling variables is unknown and undefined, which makes optimization of ROP a difficult
task. According to Kolmogorov’s theorem, multilayer feedforward perceptron (MLP) ANN
architecture can be utilized to define any continuous function in its approximation form [17].
The approximation function (objective function) requires an activation function and input
variables that are predefined during the training of the MLP neural network. Three-layered
MLP architecture can be expanded in a mathematical form with connection weights and
bias of neurons that will act as coefficients of approximation function. This technique helps
solve real-field complex optimization problems, especially where the association between
input and target variables is unknown such as bit selection based on optimum ROP values.
In the case of complex approximation function, paradigms such as Ant Colony, Swarm
Optimization, GA, etc. can be implemented to retort the optimization problem as stated
in the literature [18]. However, researchers reported several issues with ANN such as
overfitting, underfitting, stuck up in local minima/maxima, lack of proper guidelines for
the selected network architecture, etc. [19]. This also opens the opportunity to investigate
other techniques that can generate an approximation function to optimize ROP values
for drill bit selection. More research work is required to automate the drill bit selection
procedure for better reliability and efficacy.

This study aims to investigate RSM and ABC combination for automatic drill bit
selection as well as overcome the issues related to the existing ANN-based bit selection
model. RSM has been implemented to generate the objective function for ROP due to
its strong data-fitting characteristic. Furthermore, the generated ROP function is opti-
mized through ABC to acquire the optimal drilling variables along with drill bit types
for target geological formations. ABC is strategically designed to locate the global op-
timum value of any given objective function more efficiently in the high-dimensional
data space. ANN has a tendency to get stuck in local minima, so GA sometimes fails
to converge when data become too much complex [19–22]. Thus, the reliability of the
ANN and GA combination is a major concern for drill bit selection. However, RSM has
been reported to be a reliable and popular technique for solving optimization problems in
various engineering domains [23,24]. Researchers have also reported that ABC is a superior
evolutionary optimization paradigm that has outperformed GA in certain applications
with faster convergence and lesser iterations [20–22].

3. Materials and Methods

In this study, RSM and ABC have been utilized to develop a novel intelligent data-
driven approach for the selection of suitable bit type. The performance of the existing
ANN-based drill bit selection model has also been compared with the proposed approach
to understand its pros and cons. This study involves the development of two separate
objective functions for the same ROP and drilling variables using ANN and RSM techniques.
The intelligent paradigms applied in this study are briefly explained below.

3.1. Artificial Neural Networks

ANNs are a nature-inspired intelligent paradigm that is designed based on human
brain cells. It is constituted of multiple information processing units known as nodes. The
interconnected nodes combine to form a layer, and layers combine to form neural networks.
Neural nodes are also recognized as neuron units. Each neuron connection has been
associated with weights that are attuned during the training to generate approximation
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function to minimize error for classification or estimation tasks. Generally, ANN comprises
multilayers structure viz., input, hidden, and output layers [17]. However, the hidden
layers may vary in number depending on the complexity of training data. Initially, the field
data are provided to the input layer, which further transmits the raw data to hidden layers
for their processing. The results acquired after processing in hidden layers are directed
to the output layer, where predicted results are compared with actual target values. The
deviation of prediction values from actual targets is provided as feedback to the model for
updating associated weights and biases. The number of neurons and hidden layers may
vary according to the complexity of problems and data types. ANN is primarily developed
for handling classification and regression tasks; however, they are also applied for solving
optimization problems. Figure 1 depicts the architecture of the ANN utilized in this study.

Figure 1. The architecture of the Artificial Neural Network (ANN) investigated in this study.

Kolmogorov’s theorem stated that multilayer feedforward perceptron (MLP) neural
architecture can be utilized to define any continuous function in the form of approximation
function [17,18,25]. There exist two stages in the MLP network, namely the learning stage
and the prediction stage. Several neural network parameters are predetermined to define
neural networks such as the number of neurons, number of layers, propagation rules,
connections between neurons, activation function, learning rate, etc. The propagation rule
in MLP is the weighted sum of inputs, which is given below.

M

∑
m=1

wmnxm(t) + βn (3)

where wmn is the connection weights associated with neuron m in the input layer and
neuron n in the hidden layer, xm is the outcome from neuron m in the input layer and M
represents the input layer neurons, t represents the associated patterns, and βn represents
neuron bias. The activation function will be multiplied with Equation (3) to decide whether
neurons should be activated or not. There are several popular activation functions used in
neural networks such as sigmoid function, hyperbolic tangent function, Softmax function,
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Softsign, Rectified linear unit, Exponential linear units, etc. The outcome from the Kth
neuron with activation function existing in the input layer is given below [18].

Yn = f a(
M

∑
m=1

wmnxm(t) + βn) (4)

Due to the three-layer architecture of MLP, the propagation rule is applied twice to
transmit the values from the input to the output layer. Considering N to be the number of
neurons in the output layer, the result of the Kth output neuron can be described by the
following equation [18].

Yk = (
N

∑
n=1

wnkYm(t) + βk) (5)

Substituting Equation (4) in Equation (5), the outcome of Kth neuron can be rewritten
as given below.

Yn =
N

∑
n=1

wnk

(
f a(

M

∑
m=1

wmnxm(t) + βn)

)
+ βk (6)

Equation (6) of MLP is utilized to approximate the objective function in optimization
as given in Equation (7) [18].

f (x1, x2 . . . xM) =
N

∑
n=1

wnk

(
f a(

M

∑
m=1

wmnxm(t) + βn)

)
+ βk (7)

Constraints
C1(x1, x2 . . . xM) ≤ 0Cn(x1, x2 . . . xM) ≤ 0

Equation (7) acts as the objective function and constraints for optimization prob-
lems where the relationship between input and response variable is undefined. In the
case of complex approximation function, algorithms such as Ant Colony, Particle Swarm
Optimization, ABC, GA, etc., can be applied to retort the optimization problem.

3.2. Response Surface Methodology

RSM is a set of statistical techniques that are quite helpful in optimizing, developing,
and improving processes and useful in analyzing and modeling numerous problems in
engineering [26,27]. RSM is particularly useful in real-world situations where various
variables affect the performance, quality, and output of the desired process as in the case of
drilling operations [27]. The target variable (Y) is termed as the response variable, while
input variables are known as independent variables. An appropriate relationship can be
identified between input and response variables using RSM. RSM helps to develop the
correct approximate mathematical function, which satisfies a suitable relationship between
the objective function and test factor group [26]. Interaction between the input variables
can also be included in the response surface equation. The generalized relationship can be
developed as given below.

y = f (Xn) + e
√

2 (8)

where f is the unknown exact response function, which may be complex, and e is the error
due to unaccountable factors that influence the response or output but are never included
in the Equation (8) such as noise, interaction effects, etc. Let us consider that e is a statistical
error that is distributed normally with variance σ2 and zero mean. Then, the following
error equation can be written as given below.

Error[Y] = Error[ f (Xn)] + Error[e] = f (x1, x2 . . . xn) (9)
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where x1, x2, . . . xn are known as natural variables in their natural units. Furthermore, these
variables are changed into coded variables that are dimensionless and have zero mean and
alike standard deviation. The coded form of Equation (9) is written as given below.

µ = f (x1, x2 . . . xn) (10)

Here, function f is known and undefined. Thus, a suitable approximation function is
required to be generated for modeling purposes. In RSM, the first or second-order poly-
nomial equation is primarily generated as approximation functions in place of the actual
response function. The second-order model is popularly applied for modeling various
process operations due to its flexibility, diverse functional form, efficient approximation,
and model coefficients that can be easily estimated through the least square estimation
technique. A second-order response surface equation, based on Talyor series expansion, is
given below:

yT = β0 + i =
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i + ∑

n

∑
i<j=2

βijxixj + ε (11)

where xi and xj represent the input parameters, b0 is the constant of the regression equation,
Y is the predicted ROP response, βi is the linear coefficients, βij are interaction coeffi-
cients, βii are the coefficients of the square terms, and ε is the fitting error in the equation.
To generate a response surface, stepwise regression methods are utilized to reduce the
computational burden.

Here, central composite design (CCD) has been considered for developing the second-
order approximation function for ROP, as shown in Equation (11). The input variables are
converted into coded variables for fitting the data in CCD between two levels [−1, 1]. CCD
contains the factorial point, central point, and axial points, which are mostly developed
through sequential experimentation, as shown in Figure 2. Ten factors and full factorial
design were utilized for the development of the response function. The range of design
factors was assigned according to the range of field variables. The interaction, quadratic,
and linear coefficients were estimated through the least square regression. Furthermore,
the importance of each term was determined through an analysis of variance (ANOVA)
test, whereas redundant terms were eliminated. Equation (11) will act as an ROP objective
function (approximation function) for the target geological formations containing bit
information as an input variable similar to ANN. Furthermore, this equation will be
optimized using Artificial Bee Colony to find the optimum value of ROP along with its
input variables (control variables) including BT. A comprehensive explanation of RSM
is available in the cited literature [26,27]. Figure 3 provides a flowchart of RSM for the
development and optimization of the ROP equation.

Figure 2. The layout of face-centered design (alpha = 1) for central composite design (CCD).
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Figure 3. A flowchart of Response Surface Methodology (RSM) and Artificial Bee Colony (ABC) for
the development and optimization of the Optimum Penetration Rate (ROP) equation.

3.3. Artificial Bee Colony

Karaboga (2005) proposed an Artificial Bee Colony (ABC) paradigm based on the
natural behavior of bees when they search for nectar containing flowers [28]. There are three
variations of honey bees generally present in natural hives, namely onlookers, employed
bees, and scouts. Every bee has an assigned duty that it is required to perform. The scout
bees perform a random hunt for the flowers that have nectar in their nearby environment
and remember the location of the flower inside their internal memory [28]. This means
scouts examine local search feature space for optimal solutions and remember it. After
returning to their hive, scouts exchange information about flower location with other bees
using the waggle dance technique [28]. After the waggle dance, employed bees begin their
exploration for the nectar-having flowers depending upon the information achieved from
scout bees. The employed bees extract the nectar from the target flowers, which are known
as food sources [28]. Only one employed bee will be assigned to a single flower to exploit
their nectar. Thus, each available food source contains an assigned employed bee that
creates an initial solution [28]. The value of each solution is calculated to understand its
significance. A new response is generated for each problem solution using the relationship
as given below.

Bi,j = Si,j + δi,j(Si,j − Sk,j)

i ∈ {1, 2, . . . IA}, j ∈ {1, 2, . . . O}, k ∈ {1, 2, . . . IA} and k 6= i (12)

where Si,j is parameter j obtained from response i, Bi,j is the parameter j in the new response,
whereas i represents the number of solutions, δi,j is an arbitrary number existing between
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[−1, 1], k is a random number from a single answer to the problem, IA signifies initial
solutions to the given problem, and O is the total number of parameters required during
optimization. After calculating a new answer for each solution, they are compared with
the previous answer. If the difference is found to be higher between the current and earlier
answer, only then it will be accepted; otherwise, it will be rejected [28]. The step length is
adaptively decreased according to the difference between current and previous answers
as the search reaches closer to the optimal solution. The waiting onlooker bees in the
hive choose the best source depending upon the dance of employed bees. This helps in
identifying the global solution existing in the search space along with local solutions [28].
Furthermore, employed bees of an abandoned food site start to behave like scout bees and
hunt for newer sources of food. The probability of selection of source through an onlooker
bee is given below.

Proi =
f itness

∑FS
n=1 f itnessn

(13)

where f itnessi represents the fitness of the solution i examined via employed bees depend-
ing upon nectar quantity at location i, and FS is the number of the food source. After
predefined iterations, there is no improvement in answer value using Equation (12); then,
the employed bees convert into scouts and randomly begin the search for a newer source
of food. The ABC algorithm has been utilized for solving various engineering problems
such as ROP optimization [29], oil and gas well placement optimization [30], over break
prediction in the tunnel [31], etc. A detailed description of ABC optimization can be found
in other references [31–34]. Figure 4 depicts the flowchart of the Artificial Bee Colony
paradigm that was originally proposed by Karaboga [28]. Figure 5 shows the generalized
schema of the proposed approach of drill bit selection.

Figure 4. Flowchart of the Artificial Bee Colony paradigm [28].
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Figure 5. A generalized schema of the proposed approach for drill bit selection.

3.4. Data Description

The Volve oil and gas field is situated in the central North Sea near the Norwegian
Continental Shelf. It was discovered in 1993 and its production shut down in September
2016 by its investors’ companies. The ocean depth near the Volve field is in a range of
85 to 95 meters. This field contains Jurassic sandstone related to the Hugin formation
reservoir. The depositional environment of this reservoir is analyzed as tidal to the shallow
estuary. The average properties expected from this Hugin reservoir are as follows: porosity
(0.2), permeability (910), water saturation (0.23), and shale volume (0.17). Geosteering was
particularly utilized to increase the extent of the reservoir linking to various fault blocks.
The peak production rate in the Volve field was recorded to be 56,000 barrels per day and
produced a cumulative amount of 63 million barrels of oil with a recovery rate of 54% of
the total reservoir estimated over 8 years [35]. Input data used in this research work were
obtained from the Equinor company website openly available for research purposes [35].
Table 1 contains the geological prognosis of the Volve field. Table 2 contains a description
of the drilling variables used in the study. Table 3 has been provided to inform about
different drill bit types (IADC code) utilized for drilling the three wells. Wells A (F-4) and
B (F-15) were utilized for the training of models and well C (F-12) was used for testing the
developed models. The IADC code of drill bits cannot be utilized directly for the training
of the ANN model. Thus, they are numbered in the bit-type column of Table 3. The location
of the Norwegian Volve field situated in the North Sea is depicted in Figure 6.
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Figure 6. Location of Volve oil and gas field in the North Sea [34].

Table 1. Geological prognosis of Well 15/9-F-12 under study (courtesy: Equinor company) [35] *.

Group Formation Depth (m) Description

Nordland Utsira Top 892 Gray claystone, a stringer of sand and siltstone.
Utsira Base 1084 Well-sorted sandstone, minor silt, and limestone stringers.

Hordaland Skade Top 1259 Claystone, minor limestone/dolomite stringers.
Skade Base 1347 Medium-grained sorted sandstone.
Grid Top 2179 Fine-grained sandstone.
Grid Base 2245 Fine-grained sandstone.

Rogaland Balder Top 2317 Colored claystone, partly tuffaceous, and limestone stringers.
Sele Top 2374 Claystone and limestone stringer.
Lista Top 2445 Non-calcareous claystone and minor limestone stringers.

Ty Top 2531 Fine to medium sandstone; some interbedded claystone, siltstone, and
limestone stringers.

Shetland Ekofisk Top 2698 Limestone with traces of claystone and sandstone.
Tor Top 2715 White limestone with traces of claystone.

Hod Top 2839 Limestone along with gluconate.
Blodoeks Top 2944 Marl, argillaceous laminations, and gluconates in parts.

Hidra Top 2972 Off-white firm limestone.
Cromer Knoll Roedby Top 2981 Marl along with argillaceous laminations

Aasgard Top 3001 Interbedded limestone and marl with minor claystone and siltstone.
Viking Draupne Top 3036 Organic-rich claystone, micaceous, carbonaceous with traces of pyrite.

Heather Top 3086 Claystone with limestone stringers.
Vestland Hugin Top 3094 Sandstone and rare claystone stringers.

Sleipner Top 3266 Sandstone, grey claystone, and layers of coal.

* Table showing different formations existing for F-12 well along with the depth of the reservoir.
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Table 2. Statistical details of drilling data used in this study.

S. No. Drilling Variables Ranges Units Code Factor

1. Measured Depth (DT) 100–3520 m x1
2. Rate of Penetration (ROP) 1.73–201.02 m/h –
3. Weight on bit (WOB) 0.01–19.17 Tons x2
4. Rounds per minutes (RPM) 60–220 rpm x4
5. Torque (TQ) 0–5.24 kN/m x3
6. Standpipe pressure (SPP) 58.6–289.2 Bar x5
7. Mud weight (MW) 1.03–1.42 S.g. x6
8. Inclination (IN) 0.46–54.95 Degree x8
9. Azimuth (AZ) 0.38–334.67 Degree x9
10. Bit type (BT) 1–11 N/A x10
11. Bit Size (BS) 8.5–26 Inch x7

Table 3. Drill bit types utilized for drilling of wells at different depths for three Norwegian Volve field wells.

Well Name Bit Type Depth In (m) Depth Out (m) IADC Code Bit Size (Inch)

WELL A (F-4) 1 100 310 PDC M415 36”
2 25 1360 MT 115A 17.5”
7 1360 1410 PDC M422 12.25”
8 2770 2993 PDC M222 8.5”
8 2993 3510 PDC M222 8.5”

Well B (F-15) 10 144 226 MT 115 36”
6 226 1378 PDC M115 26”
3 1378 1381 MT 244 17.5”
4 1381 2536 PDC M332 12.25”
9 2536 3670 PDC M323 8.5”
9 3670 4090 PDC M323 8.5”
5 1378 2591 PDC M322 26”
4 2591 2594 PDC M332 12.25”
5 2591 2596 PDC M322 8.5”
5 2596 3180 PDC M322 8.5”
5 3180 4095 PDC M322 8.5”
5 3185 3498 PDC M322 8.5”
7 2562 2665 PDC M422 12.25”
7 2665 2920 PDC M422 12.25”

WELL C (F-12) 1 251 1369 PDC M415 36”
5 1369 2513 PDC M322 17.5”
6 2513 2573 MT 135 17.5”
7 2573 3114 PDC M422 12.25”
8 3114 3520 PDC M222 8.5”

4. Results
4.1. Development of ROP Objective Function Using ANN

In this study, three-layered MLP architecture was utilized to generate an approxi-
mation function for the ROP in terms of operational drilling variables. ANN having a
three-layered multilayer perceptron architecture can be utilized to produce the polyno-
mial equation for solving optimization problems [18]. However, parameters of ANN are
required to be determined beforehand during the training stage. Three popular training
functions were applied to train the ANN, namely (a) Levenberg–Marquardt (LM), (b) Scaled
Conjugate Gradient (SCG), and (c) Bayesian Regularization (BR). Hornik et al. [36] sug-
gested that a singular hidden layer neural network model can be utilized for approximating
any nonlinear function. Still, the optimum neurons in the hidden layer are required to
be estimated before training the ANN model. Table 4 contains reported correlations to
decide the number of neurons inside the hidden layer. Ni and No represent the number of
predictor and target variables in Table 4. Several ANN models were generated with the
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neurons ranging from 2 to 20 which, were calculated using the correlations available in
Table 4. The optimum values of the model parameters are given in Table 5.

Table 4. The reported relationships to calculate the neurons inside the hidden layer of ANNs.

Relationships References

≤ 2× Ni + 1′ [25]
(Ni + N0)/2 [37]

2+N0×Ni+0.5N0×(N2
0+Ni)−3

Ni+N0
[38]

2× Ni/3 [39]√
Ni × N0 [40]
2Ni [41,42]

Table 5. Optimum values of model parameters utilized in this research work.

Estimators Model Parameters Search Range Optimum Value

ANNs Configuration 2–20 [10-18-1]
Learning rate 0.0001–0.5 0.0001

Maximum number of iteration 100–1000 200

Activation function hidden layer Tangential sigmoid
function N/A

Activation function output layer purline function
Training algorithm Levenberg–Marquardt N/A

ABC Iterations 10–200 100
Scouts 1–100 70

Colony size 1–100 100
GA Iterations 1–5000 3000

Crossover probability 0.1–1 0.5
Population size 1–200 100
Crossover type - Uniform

Elit_ratio 0.001–1 0.001
Parents portion 0.1–1 0.3

The performance of developed ANN models are compared based on the coefficient of
correlation (R2) and root mean square error (RMSE) as mentioned below.

A. Coefficient of correlation (R2):

R2 =

n
∑

i=1
(ROPm − ROPp)

2

n
∑

i=1

[
ROPm − 1

n

n
∑

i=1
(ROPm)

]2

i

(14)

B. Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(ROPm − ROPp)
2 (15)

Zorlu et al. [43] suggested a ranking method to compare the performance of several
neural networks together. Here, an integer (rank) was allocated to every network based
upon the goodness of R2 and RMSE values. Then, ranks allocated to every R2 and RMSE
were added to acquire the total rank for every network configuration separately. The
network having the highest total rank was considered as the best model for this research
work [44]. The results of three-layered neural architectures with three different combi-
nations of training functions are recorded in Tables 6–8. The training algorithm LM has
acquired the highest rank of 36 through its performance with (10-18-1) configuration. There-
fore, the best performing ANN (10-18-1) alignment was considered for the development of
the approximation function to obtain optimum values ROP and Bit Type (BT) along with
other drilling variables. All the ANN variants are developed using MATLAB 2019 software.
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Table 6. The outcomes of ANN models trained using the Levenberg–Marquardt (LM) function *.

Model
No.

No of
Neurons Train R2 Train

RMSE
Test
R2

Test
RMSE

Train
Rating R2

Train
Rating
RMSE

Test
Rating

R2

Test
Rating
RMSE

Total
Rank

1 2 0.793 11.76 0.597 20.414 3 3 1 1 8
2 4 0.640 16.20 0.634 16.233 1 1 2 2 6
3 6 0.839 10.94 0.720 14.975 4 5 3 4 16
4 8 0.894 9.283 0.850 8.298 6 6 9 10 31
5 10 0.843 11.18 0.801 10.475 5 4 6 8 23
6 12 0.930 6.930 0.831 13.635 9 8 8 5 30
7 14 0.908 8.332 0.761 11.786 8 7 4 7 26
8 16 0.952 6.319 0.825 16.392 10 9 7 3 29
9 18 0.9143 7.99 0.855 10.32 7 10 10 9 36

10 20 0.734 14.59 0.774 12.916 2 2 5 6 15

* Table 6 shows the ranking method for selecting the optimum number of neurons for the hidden layer. Here, 18 neurons have achieved the
highest total rank of 36 by summing all the training and testing ratings together for the LM training function. The results are also compared
with the total rank achieved in Tables 7 and 8 to decide the optimum neuron configuration in the hidden layer.

Table 7. The outcomes of the ANN models trained using the Scaled Conjugate Gradient (SCG) function.

Model
No.

No of
Neurons Train R2 Train

RMSE
Test
R2

Test
RMSE

Train
Rating R2

Train
Rating
RMSE

Test
Rating

R2

Test
Rating
RMSE

Total
Rank

1 2 0.723 14.82 0.675 16.430 4 4 4 4 16
2 4 0.767 12.71 0.804 12.901 8 8 2 9 27
3 6 0.558 19.32 0.648 16.520 1 2 2 3 8
4 8 0.710 14.30 0.673 14.263 3 6 3 7 19
5 10 0.685 16.34 0.600 14.340 2 3 1 6 12
6 12 0.764 13.88 0.816 11.778 7 7 9 10 33
7 14 0.814 12.37 0.756 13.538 10 9 7 8 34
8 16 0.734 14.36 0.745 14.609 5 5 6 5 21
9 18 0.802 12.12 0.733 16.851 9 10 5 2 26

10 20 0.757 210.75 0.869 115.82 6 1 10 1 18

Table 8. The outcomes of the ANN models trained using the Bayesian Regularization (BR) function.

Model
No.

No of
Neurons Train R2 Train

RMSE
Test
R2

Test
RMSE

Train
Rating R2

Train
Rating
RMSE

Test
Rating

R2

Test
Rating
RMSE

Total
Rank

1 2 0.855 10.84 0.714 13.376 1 1 3 8 13
2 4 0.890 8.90 0.819 13.520 2 3 7 6 18
3 6 0.927 7.58 0.751 13.375 3 4 5 9 21
4 8 0.9281 6.94 0.864 13.473 4 5 9 7 25
5 10 0.946 6.492 0.762 14.476 6 6 6 4 22
6 12 0.946 6.359 0.907 10.059 6 7 10 10 33
7 14 0.965 5.131 0.547 19.724 8 9 1 2 20
8 16 0.960 5.37 0.820 14.157 7 8 8 5 28
9 18 0.973 4.416 0.715 19.234 9 10 4 3 26

10 20 0.986 9.907 0.562 28.045 10 2 2 1 15

Figure 7 contains the Regression plot, Mean square error (MSE) plot, and Error plot
of optimal ANN architecture [10-18-1]. Table 9 contains weights and bias associated with
the selected neural network configuration (10-18-1). The developed ROP approximation
function using Equation (7) is given below.

f (x) =

[
N

∑
i=1

w2,1

(
1

[1 + e−2z]
− 1
)
+ b2

]
(16)

z = (wi,1 × x1 + wi,2 × x2 + w1,3 × x3 + wi,4 × x4 + wi,5 × x5 + wi,6 × x6 + wi,7 × x7 + wi,8 × x8 + wi,9 × x9 + wi,10 × x10)

where the tangent sigmoid function is utilized in the hidden layer, and purline is the
activation function for the output layer. wi,1 and w2,i are the weights of input and hidden
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layers. The weights and bias (obtained during the training of 10-18-1 ANN configura-
tion) associated with the Equation (16) have been provided in Table 9. Table 10 contains
constraint bounds required for the optimization of the ROP Equation (16) and control
variables. Here, measured depth (DT), Inclination (IN), and Azimuth (AZ) will remain
constant because of their predefined nature while optimizing for a particular depth.

Figure 7. Cont.
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Figure 7. The prediction performance of optimal ANN architecture [10-18-1] for developing an ROP
objective function (a) Regression plot, (b) Mean square error (MSE) plot, and (c) Error plot.

Table 9. The weights and bias allocated to the training of optimal ANN configuration [10-18-1].

Connections Generated Values

Bias Hidden Layer −2.331; −2.775; −0.1308; −0.03132; 1.504; 0.2345; 2.2617; −1.5475; 1.1458; 0.3785;
−0.0855; 0.3141; −1.0727; −2.2302; 1.8623; −2.6596; −1.85; 2.721

Connection Weights between
Input and Hidden Layer

−0.486; −2.186; 0.151; 1.236; 1.964; 0.920; −0.5052; −0.677; 0.008; 0.570; 1.202;
−0.577; 0.269; −2.421; 0.145; −0.654; −0.664; −2.189; 1.061; 0.126; 1.048; 1.962;
−0.479; −0.984; −1.578; 0.542; −1.061; −0.900; −0.856; 0.401; 0.108; −0.469;

−1.358; −0.818; 0.037; 0.413; 0.484; −1.092; −1.283; 0.109; −0.444; −1.698; −3.35;
0.353; −0.194; −0.038; −0.431; −0.647; −0.0049; −0.225; 0.266; 0.517; −0.0142;

1.035; 0.456; −0.271; 0.6465; −0.568; 1.96; −0.423;−0.594; −0.981; 0.441; −0.363;
−0.293; −0.0681; −0.313; −0.996; −2.33; 1.21; −1.033; −0.649; 1.68; −0.859; 0.426;
0.880; −0.425; −1.456; −1.231; 0.436; −1.234; −1.301; 1.712; 1.96; 1.55; 0.53; 1.17;
−1.79; 0.66; −0.093; −2.81; 1.47; −1.103; −0.346; −3.252; 0.403; −0.52; 0.426;
−1.246; 0.8551; −0.721; −3.845; 0.619; 0.902; 1.909; −0.7886; 0.271; 1.015; −3.98;

0.366; −0.101; −1.257; 2.83; 1.017; 1.185; −0.150; −0.0382; −2.389; −0.740;
−1.086; −1.868; −0.573; −0.689; −0.337; −1.414; 1.336; 0.797; −0.853; −2.783;
−0.484; −0.252; −1.243; 1.548; 1.508; 0.047; −0.109; 0.699; 0.56544; −0.317;

−0.452; 1.35; −0.1153; −0.661; 1.076; 0.436; 0.986; 0.55; 0.5131; −1.026; −0.5348;
−0.1402; 0.156; −0.5217; −0.6648; 1.3074; 0.0939; −0.822; −1.814; −0.092; 1.22;

0.242; −1.53; 1.24; −1.493; 0.112; −0.68; −0.342; 0.62; 0.451; −0.179; −1.14; 3.38;
0.66; −0.351; −0.017; 0.098; −0.433; −1.99; −1.40; −0.112

Bias Output Layer −0.7816

Connection Weights between
Hidden Layer and Output Layer

−0.264; −1.214; 0.0348; −0.701; 0.319; 0.410; 0.1114; 0.421; 0.5133; −0.4028; 0.1325;
−0.5300; 0.785; −0.475; −0.765; 0.434; 0.376; −0.133
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Table 10. Range of predictor variables utilized during the optimization of ROP as upper and lower bounds.

Depth Interval (m) Predictor Variables Utilized During Optimization

251–1369 DT = constant, BT = [1, 10], BS = constant, WOB = [0.01, 16.29], RPM = [83, 220], TQ =
[−0.15, 15.26]. MW = [1.03, 1.36], IN = constant, AZ = constant, SPP = [59, 153]

1369–2513 DT = constant, BT = [1, 10], BS = constant, WOB = [0.01, 19.17], RPM = [90, 186], TQ =
[7.58, 27.03]. MW = [1.16, 1.4], IN = constant, AZ = constant, SPP = [140, 252]

2513–2573 DT = constant, BS = constant, BT = [1, 10], WOB = [11.78, 19.07], RPM = [150, 180], TQ
= [11.35, 19.07]. MW = [1.39, 1.4], IN = constant, AZ = constant, SPP = [226, 282.4]

2573–3114 DT = constant, BT = [1, 10], BS = constant, WOB = [1.35, 10.96], RPM = [137, 180], TQ =
[1.07, 9.84]. MW = [1.39, 1.42], IN = constant, AZ = constant, SPP = [220, 290]

3114–3520 DT = constant, BS = constant, BT = [1, 10], WOB = [2.04, 6.87], RPM = [60, 140], TQ =
[2.11, 6.15]. MW = [1.39, 1.44], IN = constant, AZ = constant, SPP = [174.6, 233.9]

Drill bit selection based on optimum ROP values is a bound constrained maximization
problem. The developed ROP objective function (Equation (16)) requires an optimization
algorithm for determining optimum values of ROP and other operational variables along
with BT. GA is an evolutionary paradigm that has been utilized for the optimization of
Equation (16) [44]. During the optimization process, Equation (16) was maximized using
GA with upper and lower bounds as shown in Table 10 according to the following steps:

(a) Adjust the model parameters of GA (maximum no of iterations = 3000, crossover
probability = 0.5, population size = 100, parents portion = 0.3, crossover-type =
uniform, elite ratio = 0.01, variable type = real);

(b) Set the upper and lower bounds for input variables existing in objective Equation (16)
using Table 10;

(c) Randomly generate the initial population for GA;
(d) Several combinations of ROP and input variables will be generated during optimiza-

tion. In the end, GA converges on the best combination of input variables having
maximum ROP value;

(e) Record the value of ROP and BT in the final solution produced by GA. GA will
provide optimum ROP values along with suitable BT and other control variables.

The optimization of the ROP objective function (Equation (16)) has been carried out
using Python package Geneticalgorithm 1.0.1 freely available online for research purposes.

4.2. Development of the ROP Function Using RSM

The CCD design was utilized for the generation of fitting Equation (17) with a face-
centered configuration where alpha was one. The ten input variables were considered as
factors that were coded in two levels (1, −1). There were 128 cube points, 10 center points,
and 20 axial points present in the developed CCD design with a total of 158 base runs. The
quadratic equation of RSM contains controllable input factors and uncontrollable factors.
These uncontrollable or predefined factors such as Measured Depth (DT), AZ, etc., were
held as constant, as they cannot be altered. The objective function of ROP developed using
RSM is given below.

f (x) = 21.61× x2 + 12.337× x4 − 15.34× x5 + 37.57× x9 − 0.1554× x10 − 17.67× x2
1 + 2.55× x2

2 − 0.1699× x2
3 − 2.325× x2

4
+3.35× x2

5 − 2.6398× x2
9 − 11.72× x1x2 − 7.04× x1x2 − 7.04× x1x3 − 12.437× x1x9 − 16.11× x2x7 + 1.84× x2x9 − 8.67× x4x6

−3.767× x4x8 + 0.0564× x4x10 − 7.391× x5x9 + 9.156× x5x8 + 0.0723× x5x10 − 59.62
(17)

where f (x) is the approximate objective function of ROP along with other drilling variables
as shown in Table 2. This ROP Equation (17) shows predictor variables in the quadratic
fitting equation. The R2, adjusted R2, and predicted R2 for the above-mentioned objec-
tive function are 84.41%, 82.68%, and 81.23% respectively, as given in Table 6. Adjusted
R2 shows the goodness of fit for the developed regression model. Less difference be-
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tween R2 and adjusted R2 shows that important predictors were selected for fitting a
quadratic polynomial of RSM. Contours and 3D surface plots were also generated to have
a better visualization of the effects of various predictor variables with ROP, as shown
in Figures 8 and 9. These plots were helpful for the manual search of optimal points in
case of a lower number of input variables. Surface plots and contour plots are utilized
to understand and determine the desirable values of the target variable by varying the
input variables. Contour plots are two-dimensional representations where all the points
having the same response (or target) values are connected. The surface plot provides
three-dimensional visualization of the interaction between response (target variable) and
input variables. These plots are helpful in the manual estimation of optimum values for the
model parameters when the number of input variables is low. However, it is very difficult
to find the global maximum point manually in our case, as the number of input variables
is 10 (Equation (17)). Therefore, ABC and GA are used [26,27] to optimize Equations (16)
and (17).

The significance level of 5% was used while developing an objective function for ROP
(Equation (17)). It has been reported the 5% significance level balances Type 1 and Type 2
error during hypothesis testing of any regression coefficients [45,46]. The correctness of the
developed ROP objective function was validated by analysis of variance (ANOVA) test,
as shown in Table 11. This test demonstrates that coefficients satisfy 5% significance level
criteria. All the terms having P values higher than the significance level were eligible for
the null hypothesis, which resulted in zero value of coefficient terms and was eliminated
from the ROP regression equation. Table 11 shows all the coefficients having lower P values.
A T-test was also performed to validate the significance of the regression coefficient of the
ROP function. There are several missing interaction terms in the ROP objective function
such as BT*BT, BT*BS, etc. due to their higher P values. The developed Equation (17) has
been optimized using the ABC algorithm available in the python beecolpy 2.1 packages
based on Karaboga and Basturk [22]. Figure 10 shows residual plots of errors resulted from
the developed ROP objective function using RSM. Figure 10 is composed of four residual
plots for the developed ROP objective function using RSM, which are explained below.

(a) A normal probability plot is used to verify the normal distribution of residual data.
Ideally, the fitted data should follow a straight line. However, it was found to be not
true for the studied drilling datasets, as the trend did not follow a straight line. This
verifies the complexity of the real field drilling datasets.

(b) Histogram of residuals plot provides details about data skewness or outliers. The
skewness is confirmed by a long tail in one direction; however, if a bar is distant away
from the other bars, it indicates noise or outlier in the residual data. In the studied
drilling datasets, no such problem with data distribution has been found.

(c) The residual vs. fits plot checks the constant variance of the residual. It plots the fitted
values on the x-axis and residual on the y-axis and verifies the model assumption of
the random distribution of residuals as well as constant variance. It is expected that
the data points should lie randomly on both sides of the 0 line with no pattern [26,27],
which is true in our case.

(d) The residual vs. order plot checks whether residuals are uncorrelated or not. These
graphs are generated to inspect the goodness of fit of fitting Equation (17) and ANOVA
test. Normally, a model residual must lies randomly on both sides of the centerline
with no patterns, which is true for our drilling data as well. The generated ROP
Equation (17) has satisfied all the required standard conditions to be a good fitting
equation (approximate function/objective function).
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Figure 8. Contour plots show interactions of different input variables visualized in the 2D plane for Equation (17). (Example:
In Weight on bit (WOB) ×Measured depth (DT) subplot, WOB is on the y-axis, whereas DT on the x-axis.).
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Figure 9. Surface plots for ROP objective function generated through the RSM technique. These plots help visualize the
interactions between various input variables. These are graphical visualizations of the fitted ROP shown in Equation (17).

Figure 10. Residual plots of errors from developed ROP objective function using RSM. (a) Normal probability plot is used
to verify the normal distribution of residual data (b) Histogram of residuals provide details about data skewness or outliers’
presence. (c) The residual vs. fits plot confirms the constant variance of residual. (d) The residual vs. order plot checks
whether the residuals are uncorrelated or not. These graphs are generated to inspect the goodness of fit of fitting Equation
(17) and the ANOVA test.
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Table 11. Results of the ANOVA test for significant terms in the ROP Equation (17) utilized in this study *.

Source DF Sum of Squares Mean Square F-Value p-Value T-Value

Model 63 10.29 0.1633 48.74 0.00 0.000
x2 1 0.98 0.1022 30.51 0.00 5.524
x4 1 0.013 0.013 3.94 0.047 1.986
x5 1 0.0158 0.0157 4.71 0.030 −2.169
x9 1 0.02 0.02 5.97 0.015 2.444
x10 1 0.0020 0.00204 0.61 0.036 −1.779

x1 × x1 1 0.022 0.020 5.98 0.015 −2.445
x2 × x2 1 0.1132 0.1132 33.77 0.000 5.811
x3 × x3 1 0.0001 0.00005 0.02 0.897 −0.129
x4 × x4 1 0.0139 0.0139 4.15 0.042 −2.038
x5 × x5 1 0.0243 0.0243 7.24 0.007 2.691
x9 × x9 1 0.0343 0.3433 10.24 0.001 −3.200
x1 × x2 1 0.1493 0.1493 44.57 0.00 −6.676
x1 × x3 1 0.0154 0.0154 4.61 0.032 −2.146
x1 × x9 1 0.0027 0.00271 8.09 0.005 −2.844
x2 × x7 1 0.1153 0.1153 34.4 0.000 −5.865
x2 × x9 1 0.0206 0.0206 6.15 0.013 2.480
x4 × x6 1 0.0157 0.01565 4.67 0.031 −2.161
x4 × x8 1 0.0134 0.0133 4.01 0.046 −2.002
x4 × x10 1 0.0206 0.0206 6.15 0.013 2.480
x5 × x9 1 0.1299 0.1298 38.75 0.000 −6.225
x5 × x9 1 0.0534 0.05303 15.82 0.000 3.978
x5 × x10 1 0.0137 0.01366 4.08 0.044 2.019

* Table 11 contains the ANOVA analysis of significant terms only, while insignificant terms that fail in the significance test of 5% are
eliminated to reduce the redundancy in Equation (17).

The developed Equation (17) has been considered as an ROP objective function.
During the optimization process, Equation (17) was maximized using ABC with upper and
lower bounds, as shown in Table 10 according to the following steps:

(a) Initialize the search boundaries using the range of parameters provided in Table 10
and code Equation (17) as an objective function;

(b) Adjust the other parameters of ABC (colony size = 50, scouts = 0.5, iterations = 100,
min_max = ‘max’, nan_protection = True). Here, the size of the colony determines
bees in the algorithm. Half of its values represent food sources, employed bees, and
onlooker bees;

(c) The algorithm returns a global optimal solution for the ROP objective function along
with the locations of food sources or possible solutions (local maxima);

(d) Record the values of ROP and other variables including BT. Tables 12–14 contain the
optimum values of drilling variables and BT for target formations along with cost
per foot.

Table 12. Comparative analysis of drill bit selection results for the test geological zones.

Bit Selection Models Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

[47] ANNs 3 5 4 3 8

[6]/[9] ANNs and
GA 3 5 6 7 8

Proposed approach RSM and
ABC 1 5 6 7 8

Actual BT Data 1 5 6 7 8
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Table 13. Comparison of drill bit selection results based on cost per foot calculation for different approaches.

Target Zones ANNs
Predicted Cumulative CCF $/ft ANNs and

GA Cumulative CCF $/ft Proposed
Approach Cumulative CCF $/ft

Zone 1 3 50 3 50 1 24
Zone 2 5 25 5 25 5 25
Zone 3 4 456 6 396 6 396
Zone 4 3 50 7 50 7 50
Zone 5 8 64 8 64 8 64

Table 14. The optimum value of input drilling variables for certain depths of target zones using a combination of RSM and
ABC.

DT WOB TQ RPM SPP MW BT ROP

Zone 1 3.72 0.01 90 62.6 1.03 1 47.4
Zone 2 3.64 16.67 176 247.3 1.39 5 40.35
Zone 3 16.01 21.8 178 279.3 1.22 6 10.56
Zone 4 6.94 31.25 139 193.8 1.41 7 11.61
Zone 5 6.87 22.28 140 205.9 1.4 8 27.54

5. Discussion

The selection of suitable drill bits is essential for a successful drilling operation to
minimize the overall wellbore cost and increase the efficiency of the drilling operations. In
this study, an alternative approach has been investigated for drill bit selection using RSM
and ABC combination. RSM has been utilized to develop an objective function for ROP and
to determine optimum values of drilling control variables using ABC. Ten drilling variables
were considered as input variables for the development of the ROP objective function,
namely; DT, BT, BS, WOB, RPM, TQ, MW, IN, AZ, and SPP. Three nearby Norwegian wells’
data have been considered for testing the proposed approach of drill bit selection. The five
geological zones of well C were utilized for the testing of data-driven drill bit selection
techniques, as shown in Tables 12 and 13. Figure 5 shows the generalized schema of the
proposed approach for drill bit selection. The developed objective Equations (16) and (17)
for ROP were optimized with the upper and lower bounds provided in Table 10 to obtain
the optimum value of BT and ROP. Table 12 contains the bit types selected on the optimum
ROP values using different data-driven approaches. ANN has wrongly predicted the drill
bit types for zones 1, 3, and 4; however, when combined with GA, its drill bit selection
error reduces to zone 1 only.

ANN has been reported to have a tendency to get stuck in local minima, which is why
it failed to predict the correct bit type for certain target formations [19,48]. When ANN is
combined with GA, the optimization task is handled by GA, which is a strong optimizer
and converses to the correct BT except in zone 1, as compared to actual BT. Equations (16)
and (17) are multimodal equations developed through high-dimensional data comprised of
large local optimal points. Therefore, detecting a globally optimum solution in the search
space is a difficult task. In the case of GA, sometimes, premature convergence may happen
due to strong selection pressure imposed by the selection operator and crossover operator
if the initial population lacks desirable diversity. However, ABC utilizes a stochastic search
technique that is good at maintaining diversity and escaping local optimal stagnation.
Table 12 shows that the proposed RSM and ABC combination has precisely estimated the
bit types for five target geological zones. Here, information about actual drill bits used in
the real field for drilling the wells has been taken as a standard reference for comparison in
Table 12. Table 14 contains the optimum values of drilling variables acquired through RSM
and ABC combination at different target depths. Moreover, the performance of drill bits
selection techniques must be compared based on the drilling cost involved in the drilling
operations. It might be possible that the GA-suggested BT for zone 1 is more suited for an
applied bit. Therefore, the cost per foot analysis should be done for each drill bit to check
the economic feasibility of suggested drill bit types.
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The oil and gas industry has direct as well as indirect impacts on the global economy,
which decides the fate of the sustainable development of human beings. The revenue
generated by the oil and gas drilling sector alone was approximately 3.3 trillion U.S.
dollars, which was roughly 3.8% of Global Gross Domestic Product (GDP) in 2019 by
IBISWorld data [49]. The upstream drilling sector is also known as the exploration and
production industry (E&P industry). However, the contribution of industries midstream
and downstream of the petroleum sectors was never included in the above-said data;
otherwise, the GDP percentage share of the petroleum industry would be much greater.
Therefore, any economical and innovative technological development in the E&P industry
will have a global impact. This will also encourage a global economy that influences human
sustainability, as clearly mentioned in the sustainable development goals of the UNDP.

The type of drill bits utilized in any drilling operation has an economical influence on
the overall drilling operation. The drilling cost has a direct relationship with ROP and the
running life of the drill bit that is needed to be minimized. Polycrystalline diamond compact
(PDC) drill bits were primarily utilized for drilling the Norwegian wells considered in this
study. Nearly 10–40% of the dryhole well cost is found dependent on the PDC drill bit [7].
The PDC bit life fluctuates with its design parameters such as cutter distribution, type of
gauge protection material, etc., whereas design parameters such as nozzle placement, cutter
shape, PDC type, etc. directly vary the bottom hole ROP drastically [7]. Therefore, the
selection of a suitable BT is essential for the minimization of associated drilling costs. The
selection performance of different data-driven approaches has also been compared based
on cost per foot analysis. The prices of drill bits were identified from the manufactures
catalogs. The totality of trip time and connection time was expected to be 6 hours per 1000
ft. Equation (1) has been utilized to perform the cost per foot analysis of the predicted drill
bit. Table 13 shows the computed cost per foot results for five target zones of well C based
on drill bits selected through different data-driven approaches. Figure 11 shows that the
selection of the bit for five target drilling zones by ANN and GA combination and proposed
approach has given nearly similar types of drill bits and cost per foot except for zone 1.
The proposed approach has given a lesser cost per foot value for zone 1 as compared to
ANN and GA combination, as shown in Table 13. Table 14 shows the optimum value of
input drilling variables for certain depths of target zones using a combination of RSM and
ABC. Therefore, the proposed RSM and ABC combination is found to be more reliable than
ANN-based drill bit selection models and can also be utilized for the drill bit selection
purposes. Moreover, these models are case-specific, as well as data-dependent in nature,
and require calibration for other fields.

Figure 11. The comparison of cost per foot calculated for five target geological zones. The ANN and
Genetic Algorithm (GA) combination has given a similar cost per foot as compared to the proposed
RSM and ABC approach, except in zone 1. In zone 1, RSM and ABC have given lower cost per foot
results than the ANN and GA combination.
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Mostly, PDC drill bits have been utilized along with roller cone bits for the drilling of
the Norwegian wells considered in this study. These bits are widely applied in offshore
conditions due to various benefits such as to reduce tripping time, to drill in non-hydrating
formations, to achieve high RPM and ROP in directional drilling, etc. However, PDC bits are
sensitive to fragile and soft formations as in the case of Volve wells considered in this study.
These wells comprise softer rock formations that contain fine to medium sandstone, some
interbedded claystone, siltstone, and limestone stringers, marl, argillaceous laminations,
etc., as shown in Table 1. Soft, fragile, and fractured rock formations affect the stability
of PDC bits with a large reduction of the bit life. Recently, hybrid drill bits (e.g., Kymera)
have been developed that combined the properties of conventional PDC bit and roller cone
bit types [49–51]. These hybrid bits seem to be a good solution for drilling problematic
wellbore sections while maintaining the stability of drilling operations. It may be possible
that the drilling cost per foot has been reduced more if hybrid drill bits are employed for
drilling the Norwegian wells considered in this study.

6. Conclusions

UNDP promotes economic innovations that lead to the growth of any industrial sector.
In this work, attempts have been made to develop a more reliable technology for drilling
optimization and cost reduction of drilling operations. RSM and ABC combination has been
proposed to select drill bit type based on the optimum values of ROP. RSM has been utilized
for the development of the ROP objective function, which is further optimized using ABC
to find the optimum values of ROP. The optimum values of operational variables are also
determined in this research work for drilling the target formations. A comprehensive study
has been done to test the efficacy of the proposed method with the existing ANN, ANN,
and GA for drill bit selection and drilling optimization. The analysis of the results obtained
leads to the following conclusions.

• This study provides an alternate intelligent approach for bit selection based on opti-
mum values of ROP.

• The proposed drill bit selection approach is found to be more accurate than the
ANN-based prediction of drill bit types.

• The combination of RSM and ABC provides a more reliable bit selection modeling
approach as compared to ANN based on cost per foot comparison.

• The prediction correlation coefficient of the RSM objective function is found to be
81.23%, while 85.5% has been found for ANN during the estimation of ROP.

• The ROP objective function developed through RSM is less complex than the ANN-
based objective function due to the absence of an exponential function.

• ANN requires more computational cost for the development of the ROP function and
its optimization.

• These models are case-specific data-dependent models and require calibration for
other field data.

• The proposed data-driven approach has presented optimism for the sustainable devel-
opment of more efficient, robust, reliable, and economical technology that has shown
potential for drilling optimization and cost reduction.

This research work indicates the potential of coupled intelligent techniques for the
estimation and optimization of drilling variables. Using the proposed model, drilling
engineers can effectively reduce the overall time and expenses that a company invests in a
field by smartly selecting the optimum parameters of any newly planned oil and well.

7. Code Source

The results have been generated through Matlab 2019, MiniTab 2016, and python
toolbox Geneticalgorithm 1.0.1. and beecolpy 2.1.
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Abbreviations

DT Measured Depth
TVD True Vertical Depth
ROP Rate of Penetration
WOB Weight on Bit
RPM Rounds per Minutes
TQ Torque
SPP Standpipe Pressure
MW Mud Weight
FR Flow Rate
TG Total Gas
IN Inclination
AZ Azimuth
BT Bit Type
BS Bit Size
RSM Response Surface Methodology
PDC Polycrystalline Diamond Cutter
MT Milled Tooth
MSE Mean Square Error
MAE Mean Absolute Error
RMSE Root Mean Square Error
LM Levenberg–Marquardt
BR Bayesian Regularization
SCG Scaled Conjugate Gradient
IADC International Association of Drilling Contractors
MLP Multilayer Perceptron Neural Network
UNDP United Nation Development Programme
CCD Central Composite Design
BBD Box Behnken Design
CCRD Central Composite Rotatable Design
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17. Kůrková, V. Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 1992, 5, 501–506. [CrossRef]
18. Villarrubia, G.; De Paz, J.F.; Chamoso, P.; De la Prieta, F. Artificial neural networks used in optimization problems. Neurocomputing

2018, 272, 10–16. [CrossRef]
19. Polikar, R. Pattern Recognition. Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons, Inc.: New York, NY, USA, 2006.
20. Muthiah, A.; Rajkumar, R. A comparison of artificial bee colony algorithm and genetic algorithm to minimize the makespan for

job shop scheduling. Procedia Eng. 2014, 97, 1745–1754.
21. Alqattan, Z.N.M.; Abdullah, R.A. Comparison between Artificial Bee Colony and Particle Swarm Optimization Algorithms for

Protein Structure Prediction Problem. Lect. Notes Comput. Sci. 2013, 827, 331–340.
22. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
23. Myers, R.H.; Khuri, A.I.; Walter, H.C., Jr. Response Surface Methodology. Technometrics 1989, 31, 137–157.
24. Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: New York, NY, USA, 2014.
25. Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the IEEE First International

Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987; Volume 989, pp. 11–14.
26. Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. In Breakthroughs in Statistics. Springer Series in

Statistics (Perspectives in Statistics); Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA; Morgantown, WV, USA, 1993.
27. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using

Designed Experiments; John Wiley & Sons. Inc.: New York, NY, USA, 1995; pp. 134–174.
28. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-tr06, Erciyes University, Engi-

neering Faculty, Computer Engineering Department. 2005. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;
jsessionid=E32274EB05825D919807935CF722606F?doi=10.1.1.714.4934&rep=rep1&type=pdf (accessed on 29 October 2020).

29. Zhao, Y.; Noorbakhsh, A.; Koopialipoor, M.; Azizi, A.; Tahir, M.M. A new methodology for optimization and prediction of rate of
penetration during drilling operations. Eng. Comput. 2020, 36, 587–595. [CrossRef]

30. Nozohour-leilabady, B.; Fazelabdolabadi, B. On the application of artificial bee colony (ABC) algorithm for optimization of well
placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO) methodology. Petroleum
2016, 2, 79–89. [CrossRef]

31. Koopialipoor, M.; Ghaleini, E.N.; Haghighi, M.; Kanagarajan, S.; Maarefvand, P.; Mohamad, E.T. Overbreak prediction and
optimization in tunnel using neural network and bee colony techniques. Eng. Comput. 2019, 35, 1191–1202. [CrossRef]

32. Ghaleini, E.N.; Koopialipoor, M.; Momenzadeh, M.; Sarafraz, M.E.; Mohamad, E.T.; Gordan, B. A combination of artificial bee
colony and neural network for approximating the safety factor of retaining walls. Eng. Comput. 2018, 35, 647–658. [CrossRef]

http://doi.org/10.1016/S0098-3004(01)00071-1
http://doi.org/10.3923/jas.2008.3050.3054
http://doi.org/10.1080/10916460903160818
http://doi.org/10.2118/4238-PA
http://doi.org/10.2118/1200-0027-JPT
http://doi.org/10.1016/0893-6080(92)90012-8
http://doi.org/10.1016/j.neucom.2017.04.075
http://doi.org/10.1007/s10898-007-9149-x
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E32274EB05825D919807935CF722606F?doi=10.1.1.714.4934&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E32274EB05825D919807935CF722606F?doi=10.1.1.714.4934&rep=rep1&type=pdf
http://doi.org/10.1007/s00366-019-00715-2
http://doi.org/10.1016/j.petlm.2015.11.004
http://doi.org/10.1007/s00366-018-0658-7
http://doi.org/10.1007/s00366-018-0625-3


Sustainability 2021, 13, 1664 27 of 27

33. Ahmad, A.; Razali, S.F.M.; Mohamed, Z.S.; El-shafie, A. The application of artificial bee colony and gravitational search algorithm
in reservoir optimization. Water Resour. Manag. 2018, 30, 2497–2516. [CrossRef]

34. Ravasi, M.; Vasconcelos, I.; Curtis, A.; Kristi, A. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set
without up/down decomposed wavefields. Geophysics 2015, 80, S137–S150. [CrossRef]

35. Equinor Website Database. Available online: https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-
field-data-village-download.html (accessed on 17 August 2020).

36. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,
359–366. [CrossRef]

37. Ripley, B.D. Statistical aspects of neural networks Networks and Chaos: Statistical and Probabilistic Aspects. Chapman Hall 1993,
50, 40–123.

38. Paola, J.D. Neural Network Classification of Multispectral Imagery. Master’s Thesis, The University of Arizona, Tucson, AZ,
USA, 1994.

39. Wang, C. A Theory of Generalization in Learning Machines with Neural Applications. Ph.D. Thesis, The University of Pennsylva-
nia, Philadelphia, PA, USA, 1994.

40. Masters, T. Practical Neural Network Recipes in C++; Morgan Kaufmann: Burlington, VT, USA, 1993.
41. Kanellopoulos, I.; Wilkinson, G.G. Strategies and best practice for neural network image classification. Int. J. Remote Sens. 1997,

18, 711–725. [CrossRef]
42. Kaastra, I.; Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 1996, 10,

215–236. [CrossRef]
43. Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones

using petrography-based models. Eng. Geol. 2008, 96, 141–158. [CrossRef]
44. Demuth, H.; Beale, M.; Hagan, M. Artificial Neural Networks & Genetic Algorithms User’s Guide. Revis. Matlab Program. 2007, 5.

Available online: http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf (accessed on 18 January 2021).
45. Lindenmayer, D.; Burgman, M.A. Monitoring, assessment, and indicators. Pract. Conserv. Biol. 2005, 401–424. [CrossRef]
46. Schlotzhauer, S. Elementary Statistics Using JMP; SAS Publishing: Cary, NC, USA, 2007.
47. Hou, B.; Chen, M.; Yuan, J. Optimization and Application of Bit Selection Technology for Improving the Penetration Rate. Res. J.

Appl. Sci. Eng. Technol. 2014, 8, 179–187. [CrossRef]
48. Tewari, S.; Dwivedi, U.D. Ensemble-based Big Data Analytics of Lithofacies for Automatic Development of Petroleum Reservoirs.

Comput. Ind. Eng. 2018, 128, 937–947. [CrossRef]
49. Ibisworld Website Database. Available online: https://www.ibisworld.com/industry-insider/search/?query=GDP (accessed on

3 December 2020).
50. Pessier, R.; Damschen, M. Hybrid bits offer distinct advantages in selected roller-cone and pdc-bit applications. Spe Drill. Complet.

2011, 26, 96–103. [CrossRef]
51. Tewari, S.; Dwivedi, U.D.; Biswas, S. A Novel Application of Ensemble Methods with Data Resampling Techniques for Drill Bit

Selection in the Oil and Gas Industry. Energies 2021, 14, 432. [CrossRef]

http://doi.org/10.1007/s11269-016-1304-z
http://doi.org/10.1190/geo2014-0554.1
https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1080/014311697218719
http://doi.org/10.1016/0925-2312(95)00039-9
http://doi.org/10.1016/j.enggeo.2007.10.009
http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf
http://doi.org/10.1071/9780643093102
http://doi.org/10.19026/rjaset.8.957
http://doi.org/10.1016/j.cie.2018.08.018
https://www.ibisworld.com/industry-insider/search/?query=GDP
http://doi.org/10.2118/128741-PA
http://doi.org/10.3390/en14020432

	Introduction 
	Literature Review 
	Materials and Methods 
	Artificial Neural Networks 
	Response Surface Methodology 
	Artificial Bee Colony 
	Data Description 

	Results 
	Development of ROP Objective Function Using ANN 
	Development of the ROP Function Using RSM 

	Discussion 
	Conclusions 
	Code Source 
	References

