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Abstract: Shipping trade and port operations are two of the primary sources of greenhouse gas
emissions. The emission of air pollutants brings severe problems to the marine environment and
coastal residents’ lives. Shore power technology is an efficient CO, emission reduction program,
but it faces sizeable initial investment and high electricity prices. For shipping companies, energy
such as low-sulfur fuels and liquefied natural gas has become an essential supplementary means to
meet emission reduction requirements. This research considers the impact of government subsidies
on port shore power construction and ship shore power use. It constructs a multi-period dual-
objective port shore power deployment optimization model based on minimizing operating costs
and minimizing CO, emissions. Multi-combination subsidy strategies, including unit subsidy
rate and subsidy demarcation line, are quantitatively described and measured. The proposed
Epsilon constraint method is used to transform and model the dual-objective optimization problem.
Numerical experiments verify the effectiveness of the model and the feasibility of the solution method.
By carrying out a “cost-environment” Pareto trade-off analysis, a model multi-period change analysis,
and a subsidy efficiency analysis, this research compares the decision-making results of port shore
power construction, ship berthing shore power use, and ship berthing energy selection. Government
subsidy strategy and operation management enlightenment in the optimization of port shore power
deployment are discussed.

Keywords: green port; government subsidy; shore power construction; energy choice; Epsilon
constraint; environmental impact; sustainable transportation system

1. Introduction

For a long time, sea transportation has been regarded as one of the most effective
and safest means of transportation services. It has undertaken more than 80% of the
international trade volume of goods [1]. Ports are the main gateways for international trade
in goods and are vital to economic development around the world [2]. Simultaneously,
the environmental pollution caused by ship berthing discharge, loading, and unloading
operations have generated tremendous pressure on the green and sustainable development
of the port [3]. The construction of green ports has received increasing attention under the
strategic background of green development and green traffic flow.

When ships are at the port, auxiliary diesel engines are usually used to generate
electricity to support ship production operations and people’s lives. During this period,
diesel combustion will produce many greenhouse gases (GHG), sulfur dioxide (SO5),
nitrogen oxides (NOx), particulate matter (PM), and other harmful pollutants, which are
detrimental to the health of residents and ports in offshore areas. Sustainable development
has brought an enormous impact [4]. According to related studies [5], 70% of the sulfur
emissions from international shipping activities are concentrated along the main trade
routes within 400 km of the coastline. For port cities with frequent shipping activities, the
urban environmental impact caused by pollutant discharge is more significant [6].
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To cope with the increasingly severe environmental pollution, the government and
port companies strive to find solutions and have carried out active exploration and practice
in port greening. Shore side electricity (SSE) is an effective measure to reduce port emissions.
In 2008, the port in Stockholm, the capital of Sweden, designed and installed the world’s
first high-voltage shore power system [7]. The so-called shore power technology is designed
to stop using its auxiliary power generation system when the ship is berthing at the port,
and then supply power to the shipboard system through the shore power grid or power
source, so as to avoid the additional greenhouse gas and air pollutant emissions caused by
the use of auxiliary diesel engines during the ship berthing at the port [8]. However, the
deployment of shore power systems often requires port companies to bear more significant
construction costs. In addition to the deployment of shoreline power facilities, liquefied
natural gas (LNG), low-sulfur (0.5%) diesel, and other energy sources, while providing
power output, produce fewer greenhouse gases or harmful gases than traditional diesel
energy. Better environmental friendliness and lower cost of use make alternative energy
sources another feasible solution to meet emission reduction requirements during ship
stays [9].

The operation practice and theoretical research of green ports at home and abroad
show that the government plays an essential role in promoting the green and sustainable
development of ports [10]. The United States and Europe have successively proposed
supporting policies to provide regulatory requirements and policy preferences to construct
green ports and shipping [11]. The Californian government of the United States has
formulated a timetable and route map for the use of shore power systems for ships calling
at ports, requiring ships to use shore power when calling at ports with shore power
facilities, and mandatory construction of ports that provide calling services for ships
transporting a specified load. It is ultimately mandatory for shore power equipment that
ships transporting specified loads must use shore power systems at ports of call [12].
Important European ports such as the Port of Amsterdam, the Port of Hamburg, the
Port of Antwerp, and the Port of Rotterdam provide port taxes for ocean-going ships
whose SOx, NOx, or CO, emissions are lower than the industry average in accordance
with the concessionary fees or tonnage fees of the International Maritime Organization
(IMO) emission standards [13]. In 2018, the Ministry of Transport issued the Action
Plan for Deepening the Construction of Green Ports (2018-2022) (Draft for Solicitation of
Comments), which included port development concepts, energy consumption structure,
recycling resources, strengthening pollution prevention, and innovative transportation
methods in terms of in-depth promotion of green port construction [14].

At present, there are many studies on the deployment of green ports at home and
abroad. Winkel et al. [15] quantified the economic and environmental potential of shore
power construction in Europe. They put forward crucial obstacles and policy measures for
implementing shore power policies by estimating in detail the emissions and related energy
requirements of ships berthed. The U.S. Environmental Protection Agency (2017) [16]
summarized 13 shore power studies in ports in the Americas, Europe, and Asia. It found
that most ports have seen a 60% to 80% reduction in CO, and pollutant emissions during
the berthing period of container ships due to shore power systems. Wang et al. [17]
comprehensively included cost reduction, energy-saving, and emission reduction goals
and proposed a green port project scheduling model to optimize economic construction
and complete environmental construction. Dai et al. [18] proposed a feasibility assessment
framework for shore power investment that considers ecological factors, and carbon trading
was also integrated into this framework. Wu and Wang [19] studied the issue of shore
power deployment in containerships’ shipping networks. They proposed a government
subsidy program to minimize the emissions of ships during berth. However, the literature
mentioned above ignores the influence of government subsidy behavior’s key factor in
the integrated optimization decision of port shore power construction and ship energy
selection. In addition, through government subsidies, effectively alleviating the operational
pressure of port companies and shipping companies can stimulate port companies and
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shipping companies to participate in the construction of green ports [20]. Maintaining a
balance between cost control and environmental protection has also become an essential
issue for green port construction [21].

Compared with the research conducted by Wu and Wang [19] that combined shore
power deployment with container shipping network, this study focused on the deployment
of shore power on port berths and considered the optimization of energy level and shore
power level. This research constructs a mixed-integer programming optimization model for
multi-period, bi-objective port shore power deployment. The proposed model integrates
port shore power system deployment decisions, energy options for ship berthing, and gov-
ernment subsidy strategies. The government subsidy function implements a corresponding
subsidy or penalty strategy according to the scale of port shore power construction and
ship shore power cost. When the cost of port shore power construction or container ship
power consumption is higher than a given value, the government will provide a specific
cost subsidy. When the port shore power construction cost or ship shore power cost is
lower than a given value, the government takes corresponding economic penalties.

In this research, the Epsilon constraint method is used to transform and solve the
bi-objective problem. The influence of different government subsidy strategies and dif-
ferent environmental constraints on the optimal objectives of the model are investigated.
The feasibility of the model and the solution method are verified through an example.
Some management implications, such as strategy selection under different environmental
constraints, are also obtained through corresponding numerical experiments.

2. Model Construction
2.1. Problem Description and Assumptions

v

This research analyzes the interactive relationship among the “government”, “port
company”, and “shipping companies” in green port construction. The structure of the three-
party interactive relationship is shown in Figure 1. Driven by passive policy requirements or
active green transformations, port companies face the shore power construction’s decision-
making to reduce CO, emissions during ship stays in ports. Port companies shall make
corresponding decision-making restrictions on using shore power systems or selecting
auxiliary engine energy when the shipping company’s vessels are in port. The government
grants port companies or shipping companies a certain number of subsidies based on the
cost of port shore power construction or the cost of shore power usage during the ship stay
in port to ease the cost pressure of participating in shore power construction.

Government
Government subsidy Government subsidy
) ) _ _ _ Decision-making restrictions Shipping
Port company on shore power use and energy use company

Figure 1. The tripartite interaction of “government department—port company-shipping company”
in the decision making of port shore power deployment.



Sustainability 2021, 13, 1640

4 of 14

The port shore power deployment problem proposed in this study considers the
two optimization goals of cost control and environmental protection. Cost control mainly
involves the construction cost of shore power, the energy consumption cost of ships’ stays
in port, the cost of using shore power during ships’ stays in port, and possible subsidies
or penalties from the government. In terms of environmental protection, this research
mainly measures the CO, emissions produced by energy use during ships’ stays in port.
For convenience, this research only considers CO, emissions as the only environmental
impact factor. In addition, this research introduces different decision-making levels in the
construction of port shore power and the energy selection of ships” stays in port. The shore
power facility level and energy cleanliness level can be set discretely [22]. For example,
the shore power facility level can be set to “high”, “medium”, and “low”. These three
levels correspond to three different construction costs and electricity costs. The energy
cleanliness level can be set to “high”, “medium”, and “low”. These three levels correspond
to three different energy consumption costs and CO, emission levels. The higher the shore
power system’s level, the lower the electricity cost per unit time for ships to stop, and
the higher the corresponding construction cost. The higher the level of clean energy, the
lower the amount of CO; produced by ships per unit time of stoppage, and the higher the
corresponding cost of use.

Therefore, this research designed the following dual-objective optimization content:

(1) Minimize operating costs: operating costs including shore power construction costs,
energy consumption costs for ships’ stays in ports, electricity costs for ships’ stays in
ports, and government subsidies;

(2) Minimize the environmental impact: minimization of CO, emissions during ships
stays in ports in the decision planning period.

7

Before the model is established, this section gives the following assumptions:

(1) The port shore power construction is completed in the first phase of the decision-
making plan.

(2) Considering the influence of ship route planning, ship schedule delays, and other
factors, the number U of ships of a shipping company calling at a specific port in a
single decision planning period is uniformly distributed on [ug, up], namely, U ~
[, Up).

(3) Considering the influence of factors such as differences in container loading and
unloading operations, the time W of a ship calling at a specific port in a single
decision planning period is uniformly distributed on [uc, 1], namely, W ~ [uc, u ].

(4) Assume that all ships at the port are of the same size and ignore the influence of ship
inconsistency on the model decision.

2.2. Model Parameters and Decision Variable Settings

To provide a clearer introduction to the model, the following sub-section describes the
model’s notation, parameters, decision variables, and objective functions, respectively. The
interpretation of these symbols provides the basis for the construction of the model.

2.2.1. Notation

p theport, p € P, P represents the set of all ports.

I the shore power level, | € L, L represents the set of all shore power facility levels.
k the energy level, k € K, K represents the set of all energy levels.

t the operating period, t € T, T represents the set of all operating periods.

For example, T = {1,2,3} represents the three-period port shore power construction
cycle, and the measuring unit is based on one-year.
2.2.2. Parameter
c; the construction cost of type I shore power system.

hy  the cost of energy consumption per unit time when the ships use type k energy.
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hy  the cost of electricity consumption per unit time for ships of type I shore power system
to stay in port.

upt the number of ships which visit port p in period ¢.

e the pollutant emissions (Kg) per unit period when ships use type k energy.

wpt the average stay time (h) of the ships on each berthing at the port p in the decision
period t.

dp the number of berths in port p.

a government subsidy (penalty) rate.

TC demarcation limit of government subsidies for port shore power construction.

TE demarcation limit of government subsidies for port shore power emission reduction.
M alarge enough positive number.

2.2.3. Decision Variables

ay  The Boolean variable. If the port p is carrying out the construction of the type I shore
power system, the value is 1. Otherwise, the value is 0.

By The port p carries out the type I shore power transformation construction scale for its
berths, B, = {0,1,2,...,|dp|}.

Ypkt In the decision period t, port p receives the number of ships that use type k energy.

2.2.4. Objective Function

Objective 1-cost objective function:

e  Construction cost of shore power equipment

Fi= Y., Bpo 1

peP,leLl

e  Energy consumption cost for ships’ stay in port

Fo= Y,  Yphxwp 2)
pePkeKteT

e  Electricity cost for ships” stay in port
Fs= Y, hwy (upt -y “kat> 3)
pePteT,lel keK
e  Shore power construction subsidies
Fey = a( 2 ‘Bplcpl - TC) 4)
peP,lcL
e  Electricity subsidies for ships
Fe5 = a< Z fllwpt (upt - Z 7pkt> - TE) ®)
pePteT,lel keK

Objective 2-environment objective function:

e Total CO, emission

FE= ). exYpuwp (6)
pePkeK teT
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2.3. Government Subsidy Function

The government subsidy functions, fi(F.1, TC), f2(F.3, TE), can be set as piecewise
functions, corresponding to the following three subsidy strategies [23].

Strategy S0: No subsidy and no penalty. The government does not subsidize the cost
of port shore power construction or ship shore power consumption; thatis, a = TC =
TE = 0. This is shown in the first line of Equations (7) and (8).

Strategy S1: Only subsidize without penalty. The government subsidizes the cost
of port shore power construction or ship shore power consumption and does not set a
boundary subsidy (penalty) amount, and the unit subsidy rate is 2. That meansa > 0, TC =
TE = 0. This is shown in the second line of Equations (7) and (8).

Strategy S2: There are subsidies and penalties. When the cost of port shore power
construction or ship shore power consumption exceeds a certain amount, the subsidy will
be given. Otherwise, it will be punished. The unit subsidy (penalty) rate is a. That means,
a>0,TC >, TE > 0. This is shown in the third line of Equations (7) and (8).

0,(1 - TC = 0
Foy = f1(Fa, TC) = aF, a>0, TC =0 @)
a(Fq —TC),a >0, TC>0
Fis = fa(Fes, TE) = aFs3,a>0, TE=0 ®)

a(F3 —TE),a >0, TE >0

2.4. Mathematical Model

The initial mathematical model M is constructed as follows:

MinF, =Fq+Fy+ F3—F.4—Fs 9)
Min Fp (10)
S.T. -
diZ,Bpl‘*'Z'kat:Mpt VpeP, teT (11)
P leL kek

Zﬂépzﬁl VpeP (12)

leL
Y ap>1 (13)

peP, leL

,Bpl S“le VPEP, lel (14)
Bpr =y VpeP, lclL (15)
ap € 10,1} VpeP, lel (16)

Bo={0,1,2...,8,9,|d,|} VpeP lel (17)
Yokt = 0 VpeP keK teT (18)

Constraint condition (11) ensures that the scale of shore power construction in the
port meets the demand for ships that use shore power systems and clean energy during
their stay in port. Constraint condition (12) ensures that the shore power level for any
port construction is unique. Constraint condition (13) provides that at least one port has
implemented shore power construction. Constraints (14)-(15) ensure that the proportion
of port shore power construction is valid only when the port decides to implement shore
power construction. Constraints (16)—(18) define the variable.
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3. Epsilon Constraint Solving Method

Epsilon constraint method is a frequently-used method to solve multi-objective opti-
mization problems [24]. The basic idea of the solution method is [25]:

(1) Selecting an objective function from multiple objective functions and listing it as the
modified model’s single objective function based on the importance of the objective
function and decision preference.

(2) Constructing the Epsilon constraint problem by setting up the Epsilon constraint
factor to transform the rest of the objective function into constraint conditions.

(3)  Solving the Epsilon constraint problem by gradually adjusting the value of the Epsilon
constraint factor. In this research, the Epsilon constraint method is applied to solve
the constructed dual-objective model, obtain the Pareto frontier, and analyze cost
objective control and environmental objective control.

Due to the complexity of the cost objective function, this research sets it as the single
objective after model transformation. Since the two objective functions are both minimiza-
tion problems in the constructed mixed-integer programming model, the original model
M can be transformed into the following Epsilon constraint problem M’ (Equation (9)).

S.T. (11)-(18)

Fg < 6-E 19)

Among the model mentioned above, 6 is the Epsilon constraint factor (¢ € (0,1]), E is
the maximum value of the original environmental target. The smaller the value of 6, the
smaller the value of 0-E, indicating the higher the environmental requirements, and then
restricting the upper limit of the environmental constraint of Equation (19). By adjusting
the value of 6, the link between the cost objective and the environmental constraint can be
established. E can fix the original environmental objective as a single objective, and the
fixed Equations (11)—(18) are the constraint, which is obtained by solving the maximum
value of Fr. Finally, the CPLEX solver is used to solve the constructed Epsilon constraint
problem model M’.

Therefore, Epsilon constraint methods solving process for M’ can be described, as
shown in Algorithm 1.

Algorithm 1 the Epsilon constraint method’s solving process

Input: 6,E,. M’
Process:
I: F,Val(F¢y),Val(Fg,),Val(Fe3), Val(Fe,), Val(Fes), Val (Fg) «~ @

%%Function initialization, F  is used to store the results of cost objective function and environment objective functior

2: Function Epsilon_fun(8,E) %%Set function Epsilon_fun(6, E) as the solver

3: Min F %% Solving the optimization model with F, as the single objective
4: S.T. Fg = 0-E formula(11)-(18)

5: If M’ cannot be solved with 2 hours then

6: continue

7: end if

8: F « (Val(Fgy), Val(Fgy), Val(Fg3), Val(Fgy), Val(Fes), Val(Fg))

9: End Epsilon_fun(6,E)

Output: F

4. Numerical Experiment
4.1. Experiment Preparation

In the proposed model, the size of the optimization problem is set for the numerical
experiment test to verify the feasibility of the constructed model and the Epsilon constraint
method. This section uses five ports, several berths, and three planning periods. Each port
is assigned a random number of berths, with varying numbers. According to the optimal
decision of the proposed model, each berth in each port may be equipped with shore
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power equipment. The data in the literature [26,27] is applied as the basis to determine the

relevant parameter settings of Section 2.2.2 listed in Table 1.

Table 1. Input parameters related to the model.

No. Parameters Symbol Value
1 Shore power construction cost (¥) C 8,000,000; 7,500,000; 7,000,000
2 CO;, emissions per unit time during the ship stays in port (Kg) e 20; 25; 30
3 Energy consumption cost per unit time during ship stays in port (¥) hk 6500; 5500; 5000
4 Electricity cost per unit time during the ship stays in port (¥) I 4000; 4500; 5000
5 Number of berths in the port, respectively dy 8;9;11;10;9
6 Average time of ship stays in port Wyt [20,30]
7 Number of ships visiting the port Upt [200,300]

Note: The three groups of values of the first four parameters (1-4) correspond to the three levels of “high, medium, and low”, respectively.

total CO2 cmission (Kg)

0.

x10°

The model M’ is written in Visual Studio 2015 C#, the operating system is Windows
10 Professional X64, the processor is Intel Core (TM) i7-6500 @ 2.50 GHz, and the memory
is 8 GB. Meanwhile, Visual Studio 2015 C# coding is used to call ILOG CPLEX 12.6.1.0, and

CPLEX is used to solve the model.

4.2. Result Analysis
4.2.1. Comparison of Government Subsidy Strategies

Different government subsidy strategies often lead to different decision-making results.
This section gives the strategy types under different parameter combinations. Different
types of strategies are combined according to the unit subsidy rate and subsidy penalty
threshold, as shown in Table 2. With Algorithm 1, this section calculates the different
subsidy strategies listed in Table 2, and the Pareto curve of the result is shown in Figure 2.

(52

- =50
-—-S1(1)
—=-51(2)
——S1(3)
--52(1-1)
—&-52(1-2)
——S2(1-3)
S2(2-1)
S2(2-2)
S2(2-3)
—--52(3-1)
——-52(3-2)
——52(3-3)

5 6 7 8 9 10 11 12 13 14
Total cost(Y)

Figure 2. Pareto curve under different government subsidy strategies.

x10
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Table 2. Explanation of different subsidy strategies and codes.

Strategy Description
S0 No subsidy and no penalty
S1(1) Only subsidies without penalty, unit subsidy rate a = 0.1
y penalty y
S1(2) Only subsidies without penalty, unit subsidy rate a = 0.2
S1(3) Only subsidies without penalty, unit subsidy rate a = 0.3
$2(1-1) There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.1,
TC = 0.1 xmax{F.}, TE = 0.1 * max{F3}
There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.1,
52(1-2) TC = 0.2 «max{F.}, TE = 0.2 * max{Fg}
$2(1-3) There are subsidies and penalties, and the government unit subsidy (penalty) rate 2 = 0.1,
TC = 0.3 *xmax{F.}, TE = 0.3 *x max{F3}
$2(2-1) There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.2,
TC = 0.1 xmax{F.}, TE = 0.1 * max{Fg}
$2(2-2) There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.2,
TC = 0.2 «max{F.}, TE = 0.2 * max{Fg}
$2(2-3) There are subsidies and penalties, and the government unit subsidy (penalty) rate 2 = 0.2,
TC = 0.3 «xmax{F.}, TE = 0.3 *x max{F3}
$2(3-1) There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.3,
TC = 0.1 *max{F}, TE = 0.1 *x max{F3}
$2(3-2) There are subsidies and penalties, and the government unit subsidy (penalty) rate a = 0.3,
TC = 0.2 «max{F.}, TE = 0.2 * max{Fg}
$2(3-3) There are subsidies and penalties, and the government unit subsidy (penalty) rate 2 = 0.3,

TC = 0.3 xmax{F.}, TE = 0.3 x max{F3}

The results in Figure 2 show that the Pareto curves reflected by different strategies are
not the same. Overall, strategy S1(3) has the most significant effect. S1(3) has the least CO,
emission under the same cost, and S1(3) has the lowest cost under the same CO, emission
level. The reason for this result may be due to the higher unit subsidy rate a = 0.3. The
S1(3) strategy requires the government to pay a higher cost of government subsidies, which
eases port companies’ and shipping companies’ cost burden.

Viewed by sections, when the environmental constraints are small (8 =1,0.9,0.8,0.7,
the left part of the abscissa in Figure 2), the effects of the S1(3) strategy and the SO strategy
are the same. In the decision-making problem of port shore power deployment, if the
overall system’s environmental constraints are lower, it is appropriate to adopt the SO
strategy of no subsidies and no penalties, and there is no need to make government
subsidies. As the environmental constraints gradually increase (6 becomes smaller, the
right part of the abscissa in Figure 2), the advantage of strategy S1(3) is reflected.

The internal comparison between the S1 series strategy and the S2 series strategy is
also an evaluation direction that deserves attention. In the comparison of the S1 series
strategy and the S2 series strategy, it is found that the larger the unit subsidy rate (a), the
more the Pareto curve shifts to the left, and the more significant the effect of the port shore
power deployment decision. It is also in line with the port’s actual operation. In the internal
comparison of the S2 series of strategies, it shows that the larger the unit subsidy rate
(a), the more the Pareto curve shifts to the left, and the more significant the effect of port
shore power deployment decisions. However, the larger the quota standards represented
by TC and TE, the more the Pareto curve shifts to the right. The reason may be that the
larger the quota standard is, the greater the penalty imposed by the government on port
companies and shipping companies for substandard on-shore power use will be, which
leads to the rightist deviation of the Pareto curve. This result shows the effect of punitive
government subsidies.
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4.2.2. Comparison of Optimal Decision-Making Solutions and Sub-Objective Change

After strategy S1(3) was determined to be an ideal scheme, it is necessary to analyze
the optimal solution composition and sub-objective changes in the strategy. Further,
this part aims to understand the specific situation of the decision result and the main
composition of the objective function value so that the port power construction has targeted
implementation optimization and control. Table 3 shows the optimal solution of strategy
S1(3) under different Epsilon constraints. Figure 3 shows the variation of the sub-target
values of strategy S51(3) under different Epsilon constraints.

Table 3. The optimal solution of strategy S1(3) under different Epsilon constraint factors.

Decision Results of Port Shore

Results of Decision-Making Restrictions on Energy and Number of Ships’ Stays
in Ports during Different Decision-Making and Planning Periods

0 Power Construction
T1 T2 3
(1,3,8) % (2,3,9); (3,3,11), B
. ) [3,2,1,208] ***; [4,1,1,230] [3,2,2,208]; [4,1,2,27] .

03 (1/3/8)/ (2;3;9)/ (5,3'9) [4,2,1,2] [4,2,2,212] [3;2,3,222], [4,2,3,215]

0.5 1,3,8); (5,3,9) [2,2,1,219]; [3,2,1,208] [2,2,2,225];[2,3,2,2] [2,2,3,201]; [3,2,3,87]
| T [42,1,1]; [43,1,231] [3,2,2,208]; [4,2,2,239] [3,3,3,135]; [4,2,3,215]
[1,2,1,213]; [2,2,1,219] [1,1,2,249]; [2,1,2,227] [1,1,3,211]; [2,1,3,201]
0.7 (1,21) [3,1,1,208]; [4,1,1,232] [3,1,2,208]; [4,1,2,239] [3,2,3,222]; [4,1,3,178]

[5,1,1,228] [5,1,2,246] [4,2,3,37]; [5,1,3,202]
[1,2,1,213]; [2,3,1,219] [1,3,2,249]; [2,2,2,227] [1,2,3,211]; [2,2,3,201]
0.9 (2,2,1) [3,2,1,73]; [3,3,1,135] [3,2,2,208]; [4,3,2,239] [3,2,3,222]; [4,2,3,215]

[4,3,1,232]; [5,3,1,228]

[5,2,2,246]

[5,2,3,202]

Note: (1) The triple combination of the symbol

1

represents three characteristic dimensions: port serial number, shore power level,

maximum number of berths corresponding to the port equipped with shore power system. (2) The N/A marked with the symbol “**”
means there is no decision results for the place. (3) The quaternion marked with the symbol “***” contains: port serial number, energy level
during the ship stay in port, decision-making planning period, number of ship stays in port.

Cost (¥)

(Kg)

eemission

)

CO,

Epsilon factor 6

Figure 3. The change of S1(3) strategy sub-objective value under different Epsilon constraint factors.
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It can be found from Table 3 that when the Epsilon constraint factor is small (6 = 0.1,
0.3, and 0.5), the level and scale of shore power construction are higher, and the ship energy
utilization scale is lower. When the Epsilon constraint factor is large (6 = 0.7, 0.9), the level
and scale of shore power construction are low, and the level and scale of energy options for
ship docking are higher.

Meanwhile, when the Epsilon constraint factor is small (8 = 0.1 to 8 = 0.5), the cost of
electricity used by ships is the main cost factor. When the Epsilon constraint factor is large
(6 = 0.6 to 8 = 1), the energy consumption cost of ships’ stays in port is the main cost factor.

The results in Table 3 and Figure 3 help discover the critical cost parameters under
different environmental constraints: ship and port electricity costs are the crucial parameter
under high environmental constraints. The ships’ energy consumption is the crucial
parameter under low environmental constraints. The experimental results provide a basis
for cost control under different scenarios and provide a reference for government decision
makers to carry out targeted shore power construction and ship energy subsidies under
different Epsilon constraint factors (i.e., various environmental constraints).

The results also show that when the Epsilon constraint factor is small (that is, the
environmental constraints are strong), the port system’s CO, emissions are low, and there
are situations such as port shore power construction, ship shore power use, and ship
energy use. From the perspective of increasing the proportion of shore power construction
and improving the port’s environmental level, it is reasonable for many parties to place
environmental constraints in the range of 0.1-0.6.

4.2.3. Analysis of the Efficiency of Environmental Improvement by Different Strategies of
Government Subsidies

In discussing the changes in sub-objectives under different constraint conditions,
another question worth discussing is: under different Epsilon constraint factors (that is,
under environmental constraints), what kind of subsidy strategy allows the government to
grant port shore power construction, and ship shore power use subsidies to improve the
efficiency of the system’s environmental goals?

Here, referring to the value engineering theory (value = function/cost) [28], the for-
mula for calculating the efficiency of government subsidies for improving the environment
is given:

ug = AFp/sum(Fy + Fes) (20)

The ratio is calculated as the ratio of the reduction of CO; emissions to government
subsidies’ total input. The more significant environmental improvement and lower subsidy
expenditures should be maintained to ensure higher improvement efficiency from the
formula structure perspective.

Table 4 shows the efficiency values under different scenarios. It can be seen from
Table 4 that when the Epsilon constraint factor is small (that is, the environmental constraint
is large), 6 = 0.1,0.2,0.3,0.4,0.5), the S2(1-3) strategy has the highest efficiency value.
While 6§ = 0.4, the efficiency of each strategy type is the highest. When the Epsilon
constraint factor is large (i.e., the environmental constraint is small, 8 = 0.6,0.7,0.8,0.9,1.0),
the efficiency value of the S2 strategy is the highest. The efficiency value of each strategy
type is the highest while 8 = 0.4. Besides, when the Epsilon constraint factor is large, some
strategies’ subsidy efficiency is also negative. Due to some strategies’ punitive measures,
the government'’s subsidy expenditure is negative (that is, a positive increase in revenue).
Extensive environmental improvements and high subsidy penalties should be maintained
to ensure high improvement efficiency in such situations.
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Table 4. Environmental improvement efficiency values of each subsidy strategy under different Epsilon constraint factors.

Strategy 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
51(1) 1.70E-02  1.73E-02 1.96E-02  2.51E-02  2.09E-02 3.31E-02 9.63E-01 6.42E-01 3.21E-01 0
51(2) 8.52E-03 8.63E-03 9.82E-03  1.26E-02  1.05E-02 1.65E-02 4.81E-01 3.21E-01 1.61E-01 0
51(3) 5.68E-03 575E-03 6.54E-03 8.37E-03 6.98E-03 1.10E-02 3.21E-01 2.14E-01 1.07E-01 0

52(1-1) 1.90E-02 1.99E-02 237E-02  3.39E-02  2.82E-02 6.74E-02 —-5.13E-02  —342E-02 —-171E-02 O
S2(1-2) 2.16E-02  2.35E-02 3.00E-02 5.19E-02 4.33E-02 —-1.79E+00 —250E-02 —-1.67E-02 —8.33E-03 0
S2(1-3) 249E-02 2.87E-02 4.08E-02 1.11E-01 9.28E-02  —6.26E-02 —1.65E-02 —1.10E-02 —550E-03 0
52(2-1) 9.52E-03 9.95E-03 1.19E-02 1.69E-02 1.41E-02 3.37E-02 —2.56E-02 —-1.71E-02 —855E-03 0
52(2-2) 1.086-02  1.18E-02  1.50E-02  2.59E-02 2.16E-02 —893E-01 —1.25E-02 —833E-03 —4.16E-03 0
S2(2-3) 1.24E-02 1.43E-02 2.04E-02  5.56E-02  4.64E-02  —3.13E-02 —-8.25E-03 —5.50E-03 —2.75E-03 0
52(3-1) 6.35E-03  6.63E-03 791E-03 1.13E-02 9.41E-03 2.25E-02 —1.71E-02 —-1.14E-02 —-5.70E-03 O
52(3-2) 719E-03  7.83E-03 1.00E-02 1.73E-02 144E-02 —-5.96E-01 —833E-03 —555E-03 —278E-03 0
S2(3-3) 8.30E-03 9.56E-03 1.36E-02  3.70E-02  3.09E-02 —2.09E-02 —-5.50E-03 —3.67E-03 —1.83E-03 0

4.2.4. Comparison of Changes during the Decision-Making and Planning Period

The length of the decision-making planning period may affect the port shore power
deployment decision. This part lists several Epsilon constraint factor scenarios (6 =
0.1,0.3,0.5,0.7,0.9) for three decision planning periods (short-term T = 3 years, medium-
term T = 9 years, and long-term T = 27 years), and the change of the objective value is

analyzed. The results are shown in Table 5.

Table 5. The change of objective function value of strategy S1(3) under different Epsilon constraint factors and decision

planning periods.

0 T FC Fcl Fc2 Fc3 Fc4 Fc5 Fg
3 1033035635 329000000 0 1083199500 86700000 292463865 0
0.1 9 2708085935 329000000 0 3476128500 86700000 1010342565 0
27 7598763335 329000000 0 10462810500 86700000 3106347165 0
3 817351385 182000000 171991500 676377000 42600000 170417115 722130
0.3 9 2249999935 182000000 619487000 2083738500 42600000 592625565 2317415
27 6428906385 182000000 1885799500 6244587000 42600000 1840880115 6975205
3 698279785 119000000 251508500 455679000 23700000 104207715 1203555
0.5 9 1951469535 119000000 856003000 1382386500 23700000 382219965 3862365
27 5615654235 119000000 2564359000 4176427500 23700000 1220432265 11625250
3 555250485 7500000 505504500 0 —9750000 —32495985 1684920
0.7 9 1671939485 7500000 1622193500 0 —9750000 —32495985 5407310
27 4879004135 56000000 3344100000 2073154500 4800000 589450365 16275480
3 475011485 7500000 425265500 0 —9750000 —32495985 2166305
0.9 9 1414454485 7500000 1364708500 0 —9750000 —32495985 6952195
27 4157375485 7500000 4107629500 0 —9750000 —32495985 20925545

It can be found from Table 5 that the changes in the decision-making planning period
mainly affect the energy consumption cost of ships’ stays in port (F) and the cost of
electricity used by ships’ stays in port (Fz3), which in turn affects the government’s cost
subsidies to shipping companies and the environmental objective. The short-term and
mid-term decision-making and planning periods have no impact on the port shore power
construction. Only in the partial Epsilon constraint factor ((¢ = 0.7) scenario, the long-term
decision-making, and planning period will have an impact on the cost of port shore power
construction (F;) and port shore power construction subsidies (F.4). The experiment results
remind decision-makers that it is necessary to pay attention to and control ships’ energy
consumption cost and ships’ electricity cost in the long-term planning situation.
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5. Discussion

Based on the background of green port construction activities, namely port shore
power construction, shore power use, and ship energy use, this research constructs a port
shore power deployment decision-making model considering government subsidies. The
model minimizes operating costs and environmental impact as optimization objectives. The
government subsidy functions, including subsidies and penalties, have been investigated.
The Epsilon constraint method is used to transform and solve the bi-objective optimization
model. Finally, a series of numerical experiments were carried out by calling the CPLEX
solver to analyze and verify the proposed model and algorithm.

Experimental results show that:

(1) From the perspective of ports and shipping companies, in the context of low envi-
ronmental constraints (Epsilon constraint factor § = 0.7 to = 1.0), the SO strategy
(no subsidies and no penalties) is an ideal solution for green port deployment. On
the whole (Epsilon constraint factor § = 0.1 to 6 = 1.0), the S51(3) strategy that only
subsidizes without penalty is an ideal solution.

(2)  When the environmental constraints are strong (Epsilon constraint factor 6 = 0.1
to 8 = 0.5), the cost of electricity used by ships is the main cost factor. When the
environmental constraints are low (Epsilon constraint factor 6 = 0.6 to 8 = 1.0), the
energy consumption cost of ships’ stays in port is the main cost factor. The results
suggest that decision-makers need to select critical parameters for cost control under
different environmental constraints.

(3) When the environmental constraints are strong (that is, the Epsilon constraint factor
is small), the port system’s CO, emissions level is low, and the port shore power
construction, ship shore power use, and ship energy use all exist. From the perspective
of increasing the proportion of shore power construction and improving the port’s
environmental level, it is reasonable to place environmental constraints in the range
of 0.1-0.6 to participate in port shore power deployment.

(4) The efficiency analysis of environmental improvement through different government
subsidy strategies can help the government choose appropriate government subsidy
strategies based on environmental constraints. The results show that when the
environmental constraints are strong (that is, the Epsilon constraint factor is small),
the S2(1-3) strategy is effective. When the environmental constraints are small (that is,
the Epsilon constraint factor is large), the S1 strategy is effective.

(5) The changes in the decision-making and planning period mainly affect the energy
consumption cost of ships’ stays in port and the cost of electricity for ships’ stays in
port. It is necessary to strengthen the cost control of both.

At this stage, this research only considers some of the decision-making factors for port
shore power deployment. In the future, we will further study the integrated port shore
power deployment issues, including complicated factors such as ship type changes [29]
and port industrial integration [30].
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