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Abstract: As the world’s largest developing country, and as the home to many of the world’s factories,
China plays a crucial role in the sustainable development of the world economy regarding envi-
ronmental protection, energy conservation, and emission reduction issues. Based on the data from
2003–2015, this paper examined the green total factor productivity and the technological progress in
the Chinese manufacturing industry. A slack-based measure (SBM) Malmquist productivity index
was used to measure the bias of technological change (BTC), input-biased technological change
(IBTC), and output-biased technological change (OBTC) by decomposing the technological progress.
It also investigated the mechanism of environmental regulation, property right structure, enterprise-
scale, energy consumption structure, and other factors on China’s technological progress bias. The
empirical results showed the following: (1) there was a bias of technological progress in the Chinese
manufacturing industry during the research period; (2) although China’s manufacturing industry’s
output tended to become greener, it was still characterized by a preference for overall CO2 output; and
(3) the impact of environmental regulations on the Chinese manufacturing industry’s technological
progress had a significant threshold effect. The flexible control of environmental regulatory strength
will benefit the Chinese manufacturing industry’s technological development. (4) R&D investment,
export delivery value, and structure of energy consumption significantly contributed to promoting
technological progress. This study provides further insight into the sustainable development of
China’s manufacturing sector to promote green-biased technological progress and to achieve the
dual goal of environmental protection and healthy economic growth.

Keywords: China’s manufacturing sector; green total factor productivity; biased-technical progress;
environmental regulation

1. Introduction

As a pillar industry of the economy, the manufacturing industry has laid a good
foundation for China’s vigorous economic development and has earned a reputation as
the world’s factory. In the past 20 years, China’s economy has grown rapidly. In 2019, the
manufacturing industry’s added value reached 26.9 trillion yuan (Data resources come
from the World Bank database: https://data.worldbank.org.cn/ (accessed on 26 January
2021)), but behind the rapid growth are high energy consumption, high emissions, and high
investment. In 2007, China replaced the United States as the world’s largest CO2 emitting
country. The manufacturing industry’s energy consumption and carbon emissions account
for one-third of China’s total energy consumption and carbon emissions and two-thirds
of the entire industrial sector. In recent years, developed countries have been transferring
low-end manufacturing and labor-intensive manufacturing to developing countries such
as China through foreign investment. At the same time, they have formulated a series of
environmental constraints, green barriers, and other policies to restrict. The contradiction
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between environment and resource, as well as international constraints, has forced China
to face severe pressure of economic transformation. To achieve sustainable economic
development and contribute to global environmental problems, it is necessary to embark
on a green and sustainable economic development mode. As an important part of China’s
economy, the manufacturing industry has become the key area of China’s green economic
development. The root of the change in development mode is to improve green total factor
productivity. Therefore, the right way to realize China’s green development is to promote
the green TFP of China’s manufacturing industry through reasonable environmental
regulation. This paper analyzes the influence mechanism of environmental regulations on
technological progress toward greening so as to achieve the dual goals of environmental
protection and healthy economic development.

Environmental regulations are the driving force for China’s green development and
have been proven to promote green total factor productivity in China’s manufacturing
industry [1–4]. Neoclassical economic growth theory suggests that technological progress
can promote economic growth. However, technological progress under this theory is
assumed to be exogenous and neutral. In fact, different preferences for input factors due
to changes in technology or differences in factor endowments lead to several biases in
technological progress during the actual production. For example, Acemoglu [5] defines
the technological progress bias as changing the marginal rate of substitution (MRS) among
inputs, thereby increasing the marginal output of factors and achieving the optimal al-
location of scarce resources. Many studies have shown that technological progress in
many regions or industries is non-neutral [6–9], Kaneko [10], Zhao [11], Fujii [12], have
studied the relationship between technological progress bias in China. However, these
studies have not paid much attention to the impact of the direction of the technological
bias on the environment and resources. In actual economic operation, when technological
progress tends to input fewer resources and produce fewer undesirable outputs (pollutants,
etc.), it can effectively promote economic growth while achieving energy conservation and
emission reduction.

Compared with previous studies, this paper has three significant contributions.
Firstly, it examines the green TFP, technological progress, and corresponding technological
progress biases, including input and output technological progress biases in China’s manu-
facturing subsectors from 2003 to 2015 based on SBM and Malmquist methods. The focus
on input and output bias avoids the one-sidedness of the technology bias research [13],
while the study of expected and unexpected output is more in line with the requirements
for China’s sustainable economic development. Secondly, based on summarizing the green
TFP growth and technology bias in China’s manufacturing industry, we focus on combining
input and output factors along with technology bias. The trends of technology bias and the
factors of input and output during the research period were analyzed to better understand
the sources of technological progress and the current development status of this sector.
Finally, different from the existing studies, the influence mechanism of environmental
regulations and other factors such as the proportion of state-owned assets, R&D invest-
ment, and export delivery value, etc., on technological progress and technological bias help
us gain a deeper understanding of the flexible control of the intensity of environmental
regulations and the influence mechanism of other influencing factors on technological
progress under environmental regulations, to have detailed theoretical support for further
rational policymaking.

The paper is organized as follows: Section 2 provides a brief review of existing
research; Section 3 introduces the main methods and data involved in this paper, including
the SBM model dealing with undesirable output, the Malmquist productivity index, and the
theory of technological progress bias, including the decomposition process of technological
bias and the identification of technological bias. Section 4 summarizes relevant research
findings on the Chinese manufacturing industry and analyzes the mechanisms underlying
environmental regulations’ influence on technological progress. Section 5 presents relevant
conclusions and policy recommendations based on this study.
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2. Literature Review
2.1. Related Research on the Environmental Regulation and Green Total Factor Productivity

Environmental regulation occurs when, given the external diseconomy of environmen-
tal pollution, the government leads relevant policies or measures to regulate the production
behaviors of enterprises. By means of making enterprise production decisions incorporate
resource and environmental factors into their cost considerations, achieving the goal of
maintaining the coordination between environmental and economic development [14]. As
environmental regulation affects enterprise behaviors directly, compared to total factor
productivity (TFP), the green total factor productivity obtained by incorporating environ-
mental pollution and energy consumption into the analytical framework of total factor
productivity can represent the production level of enterprises considering environmental
factors more [15–17]. With the increasingly severe environmental problems, many scholars
have explored the relationship between environmental regulation and green total factor
productivity. For example, Ghosal et al. [18] use data from the Swedish paper industry to
research the impact of environmental regulations and enforcement policies on green total
factor productivity (TFP) growth and its components related to efficiency change and tech-
nical change. The results show that environmental regulation is beneficial to the increase
and sustainable production practices of green total factor productivity. Via sorting out these
studies, it can be broadly divided into two categories. One is based on the type of environ-
mental regulation. Xie et al. [19] analyzed the impacts of different types of environmental
regulations on local green TFP in China, supporting the “strong” Porter Hypothesis that
reasonable stringency of environmental regulations may enhance rather than lower indus-
trial competitiveness. Cai and Zhou [20] tested the direct and indirect effects of three kinds
of environmental regulations on green TFP, meanwhile testing the “Porter hypothesis”.
According to the impact of different types of environmental regulations on the threshold
value of total factor productivity, Lei and Wu [21] found that the effects of different kinds of
environmental regulations on the behavior and degree near the threshold were inconsistent.
The other is based on the perspective of environmental regulation strength. For example,
Zhang et al. [22] measured the total factor productivity of China’s industrial sectors and
tested the relationship between environmental regulation strength and total factor produc-
tivity. They found a co-integration relationship between environmental regulation and
TFP, and environmental regulation’s positive promotion to TFP is much more apparent in
the long run than that in the short run. Li and Tao [23] divided China’s 28 manufacturing
sectors into three categories: heavily polluting industries, moderately polluting indus-
tries, and lightly polluting industries. Based on measuring the environmental regulation
strength and green total factor productivity of three industrial sectors from 1999 to 2009,
the panel data model was used to test the relationship between environmental regulation
and green total factor productivity, exploring China’s optimal environmental regulation
strength manufacturing industry. Through the study of Chinese industrial green total factor
productivity and environmental regulation strength, Li et al. [24] found environmental
regulation strength has an obvious “threshold effect”. When the environmental regulatory
strength is lower than the “threshold value”, it has no significant impact on green TFP,
while when it is higher than a certain “threshold value”, it will have adverse effects. Only
the environmental regulatory strength between the two thresholds is conducive to the
growth of green TFP. Some researchers also measured the environmental regulations from
the perspective of pollution removal rate and applied them to their impact on TFP. For
example, Li and Wu [25] analyzed the effect of green total factor productivity based on
different urban attributes and civil environmental laws and regulations, indicating that
the government should reduce market intervention, promote enterprises’ technological
innovation, and put forward targeted emission reduction policies.

From the review of the previous literature noted above, most of the researchers study
the effects of environmental regulation on green TFP directly but seldom analyze the impact
mechanism of environmental regulation, especially from the perspective of technological
progress and its decomposition items. According to existing studies, technological progress
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is an important part of total factor productivity, as well as the main driving force of total
factor productivity growth [1,5,6], while environmental regulations will increase the cost
of enterprises [26], resulting in the extrusion effect of enterprises’ R&D and other expen-
ditures, which influence the technological progress. Therefore, it is necessary to explore
the influence mechanism of environmental regulations on technological progress, espe-
cially on the decomposition items of technological progress. Decomposing technological
progress into biased technological progress and scale technological progress, and analyzing
the decomposed items can clarify the internal impact of environmental regulations on
technological progress effectively.

2.2. Related Research on the Bias of Technological Change

According to Fare et al. [27], we can decompose technological progress into technolog-
ical scale changes and technological progress bias. Technological progress bias has been a
hot topic in TFP research in recent years. If the assumption of neutrality in technological
progress is not met, the possibility of bias in both input and output technologies must be
considered. Many scholars have empirically studied the performance of technology bias in
various fields. Sato and Morita’s [28] research on labor-saving technological innovations
in Japan and the United States found that such advances were beneficial to productivity.
Yang et al. [29] used the stochastic frontier approach (SFA) to study the technology bias
and elasticity of substitution of R&D activities in the Chinese manufacturing industry.
Yoshida et al. [30] studied the productivity and technology bias of Japanese airports. They
showed that the traditional growth accounting method of neutral change is not suitable for
analyzing the productivity changes at Japanese airports. However, none of these studies
took into account environmental and energy factors. As environmental problems have
worsened in recent years, incorporating environmental and energy factors into the pro-
duction framework to analyze technology bias has become an area of interest for many
researchers. For example, Briec et al. [31] examined the property of productivity growth
and technological bias of hydroelectric plants in Portugal, Li et al. [32] studied the green
total factor productivity and technological bias of industrial water resources in China.

Based on a summary of relevant studies, the most popular methods for measuring
technology bias are Data Envelopment Analysis (DEA), Stochastic Frontier (SFA), and
Standardized Supply-Side System (CES). Compared to CES and SFA, DEA can avoid
the bias caused by predetermined production model settings and is more accurate in
measuring technology bias because it applies to multiple inputs and outputs, making it a
popular method.

2.3. Related Research on Manufacturing Sector Sustainability Measurement

In recent years, the issue of sustainability in manufacturing has not received much
attention from researchers. Most of them have focused on the impact of tariffs, trade, or
resource allocation on manufacturing productivity [33–35]. Alternatively, the role of R&D
spillover effects on productivity has been analyzed from the R&D perspective [36]. Among
the studies on the relationship between environment and productivity in the manufactur-
ing sector, some scholars have studied from the perspectives of environmental regulations,
green innovation, and R&D, such as Marchi [37] found the important influence of technol-
ogy R &D cooperation on environmental innovation tendency in his research on Spanish
manufacturing industry. Brunnermeier [38] analyzed the determinants of environmental
innovation in the US manufacturing industry, such as pollution expenditures and environ-
mental regulations, and found that environmental innovation is more likely to occur in
internationally competitive industries. Rubashkina [39] tested the Porter hypothesis for the
European manufacturing industry by showing that environmental regulations positively
impact green innovation.

For the Chinese manufacturing industry, in addition to Cao [16] and Shi [17], Cao
et al. [40] studied the green growth and environmental regulations of Chinese manufactur-
ing and found that the impact of environmental regulations on green growth is U-shaped
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nonlinear. The impact in various industries is heterogeneous. Cheng et al. [41] divided
the subsectors of China’s manufacturing industry according to the pollution intensity
and studied the green energy-environmental efficiency of the subsectors under different
pollution intensities. They found that the most efficient is the lightly polluting industry,
and the research, development, and governance transformation investment can promote
the growth of TFP. Gong et al. [42] systematically reviewed the environmental regula-
tion and the theoretical mechanism of the comparative advantage of trade in the green
transformation and upgrading of China’s manufacturing industry and proved that under
the constraints of environmental regulation, the comparative advantage of trade would
promote the green transformation of the manufacturing industry. Meng et al. [43] analyzed
the role of environmental regulation and green innovation in the intelligent development
of China’s manufacturing industry, and the results showed that environmental regulation
and green innovation have a positive effect on the intelligent upgrading of manufacturing.

Research on technology bias in manufacturing has mostly focused on the bias between
labor and capital factors, such as Wang et al. [44], Manasse and Stanca [45]. Only a few
researchers have examined the relationship between environmental regulatory policies
on green TFP and technological progress in the manufacturing sector, as argued by Jaffe
et al. [46], Yang et al. [47] found that environmental regulations are positively correlated
with R&D expenditures and that green technology advancement has a positive impact on
productivity through a study of the Taiwanese manufacturing industry. In the study of
the relationship between environmental regulations and the impact of technology bias,
Zhou et al. [48] analyzed the mechanism of the effect of environmental regulations on
the technological progress of energy and environmental bias, showing that the impact
of different types of environmental regulations on technological bias differs significantly.
Song et al. [49] constructed a definition of technological progress related to the environment
and measured China’s environmental-biased technological progress. Song and Wang [50]
found that environmental regulation, population aging, and other factors can promote
green-oriented technological progress. What’s more, Calel and Antonie [51] found that
environmental policies can promote targeted technological change by examining the Euro-
pean market.

By reviewing the existing studies, it is found that there are relatively few studies
that give full consideration among environmental regulation, green TFP, and technology
advancement bias in the Chinese manufacturing industry, and there is no detailed arrange-
ment of technology bias in this sector, including input-output technology bias. In addition,
the mechanism of the intrinsic influence of environmental regulations on technological
progress is still unclear, especially the influence on the technological bias. The “Porter’s
Hypothesis” and the environmental Kuznets curve indicate that environmental regulations
do not have a simple linear effect on the economy. Therefore, it is more important for
the green development of the manufacturing industry to investigate the mechanism of
environmental regulations on technological progress, especially on the technological bias.
After exploring the input/output factor combinations and input/output technology bias
in this sector, this paper analyzes the influence mechanism of environmental regulations
on technical progress and technology bias, providing rationalization suggestions for the
sustainable development of the Chinese manufacturing industry.

3. Materials and Methods
3.1. The Model

To measure the bias of technological progress, Fare et al. [52] decomposed the Malmquist
index into technological efficiency change, technological change, and decomposed techno-
logical change into technological scale change, input-biased technological progress, and
output-biased technological progress, but this decomposition method does not apply to
the production model with undesirable outputs. Therefore, this paper adopts the SBM
model with undesired outputs proposed by Tone [53], which consider the relationship
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between inputs, outputs, and undesirable outputs, solving the slack problem in efficiency
evaluation better.

In this study, we treat each of the 27 industries in the Chinese manufacturing industry
as a production decision unit (DMU) to construct the optimal time boundaries of Chinese
manufacturing production for any period. Using inputs m for each industry, recorded as
Xk = (x1k, x2k, . . . , xmk), we obtain p desired outputs, recorded as Yk = (y1k, y2k, . . . , ypk),
and q undesired outputs recorded as Bk = (b1k, b2k, . . . , bqk).

p(x) = {(x, y, b) |: x ≥ Xλ, y ≥ Yλ, b ≥ Bλ, λ ≥ 0} (1)

According to model (1), the SBM model of undesired output is as follows:

minρk =
1− 1

m

m
∑

i=1

sx−
i
xik

1+ 1
p+q

(
p
∑

r=1

py+
r

yrk
+

q
∑

t=1

zb−
t
btk

)
s.t.Xλ + sx− = xk′Yλ− sy+ = yk′Bλ + sb− = bk′ , λ ≥ 0, sx−, sy+, sb− ≥ 0

(2)

where sx−, sy+, sb− represents the slack values of the input, good output, and bad output,
respectively. xmk, ypk, bqk represents the mth input of the kth DMU, the pth desired output,
and the qth undesired output. ρk is a variable between 0 and 1 representing the efficiency
of the kth DMU environment, less than 1 means that the kth DMU is inefficient.

This study constructs the Malmquist index’s distance function in conjunction with
the SBM model dealing with undesirable output. According to the Malmquist exponential
decomposition method of Fare, [8] the TFP growth rate is decomposed into technological
change, efficiency change, further, decomposed into output-biased technological progress
and input-biased technological progress, and scale technological progress.

First, assuming that ρt
k
(
xt+1, yt+1, bt+1) and ρt+1

k
(
xt+1, yt+1, bt+1) are the efficiency of

the kth DMU in period t to t+1, China’s green Malmquist productivity index for manufac-
turing is defined as follows:

MIt,t+1
k =

[
ρt

k
(
xt+1, yt+1, bt+1)
ρt

k(xt, yt, bt)
×

ρt+1
k
(
xt+1, yt+1, bt+1)

ρt+1
k (xt, yt, bt)

] 1
2

(3)

When MIt,t+1
k > 1 indicates that the green TFP is growing from period t to period t

+ 1, when MIt,t+1
k < 1 indicates that the green TFP is reduced from period t to period t +

1. According to the Malmquist Exponential Decomposition Method by Fare, [8] the TFP
growth rate is decomposed into technological change, efficiency change as follows:

MIt,t+1
k = TCt,t+1

k × ECt,t+1
k =

[
ρt

k
(

xt, yt, bt)
ρt+1

k (xt, yt, bt)
×

ρt
k
(
xt+1, yt+1, bt+1)

ρt+1
k (xt+1, yt+1, bt+1)

] 1
2

×
ρt+1

k
(
xt+1, yt+1, bt+1)

ρt
k(xt, yt, bt)

(4)

TCt,t+1
k denotes the shift of the kth DMU in the period t to t + 1 of the technological

change, i.e., the technological frontier. ECt,t+1
k indicates a change in relative efficiency.

After breaking down MI Fare [27], decomposing TC into an index of technological
progress at scale (MATC) and an index of technological bias (BTC), the technology bias
index can be decomposed into input-biased technological progress and output-biased
technological progress indices as follows:

TCt,t+1
k =

[
ρt

k(xt ,yt ,bt)
ρt+1

k (xt ,yt ,bt)
× ρt

k(xt+1,yt+1,bt+1)
ρt+1

k (xt+1,yt+1,bt+1)

] 1
2

=
ρt

k(xt+1,yt+1,bt+1)
ρt+1

k (xt+1,yt+1,bt+1)
×
[

ρt
k(xt ,yt ,bt)

ρt+1
k (xt ,yt ,bt)

× ρt+1
k (xt+1,yt+1,bt+1)
ρt

k(xt+1,yt+1,bt+1)

] 1
2

= MATCt,t+1
k × BTCt,t+1

k

(5)
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BTCt,t+1
k =

[
ρt

k(xt ,yt ,bt)
ρt+1

k (xt ,yt ,bt)
× ρt+1

k (xt+1,yt+1,bt+1)
ρt

k(xt+1,yt+1,bt+1)

] 1
2

=

[
ρt+1

k (xt ,yt ,bt)
ρt

k(xt ,yt ,bt)
× ρt

k(xt+1,yt ,bt)
ρt+1

k (xt+1,yt ,bt)

] 1
2
×
[

ρt
k(xt+1,yt+1,bt+1)

ρt+1
k (xt+1,yt+1,bt+1)

× ρt+1
k (xt+1,yt ,bt)
ρt

k(xt+1,yt ,bt)

] 1
2

= IBTCt,t+1
k ×OBTCt,t+1

k

(6)

i.e.,
TCt,t+1

k = MATCt,t+1
k × IBTCt,t+1

k ×OBTCt,t+1
k (7)

MATC represents the scale effect of technological progress and is a neutral transfer
of the technological frontier, while BTC means the bias of technological progress and is
a “non-neutral” transfer of the technological frontier. IBTC and OBTC reflect the impact
of input and output changes on technological progress. If IBTC (OBTC) >1(<1), indicates
progress (regression) in input-biased technology. When IBTC and OBTC = 1, it means that
the technology change is Hicks-neutral.

It needs to be pointed out that the input-biased technological change indicates the tech-
nological change range of different inputs when the output remains unchanged. Drawing
on the ideas of Weber and Domazlicky [54] and Li et al. [32] on the discriminative approach
to the relationship between the direction of technological change and the elements. When
xt+1

1 /xt+1
2 > xt

1/xt
2 IBTC>1 indicates an x1-saving/x2-using biased technological change

and IBTC<1 indicates an x1-using/x2-saving biased technological change. When IBTC = 1,
the input-biased technological change is Hicks-neutral. When xt+1

1 /xt+1
2 < xt

1/xt
2 IBTC>1

indicates an x1-using/x2-saving biased technological change and IBTC<1 indicates an x1-
saving/x2-using biased technological change. The x1-saving/x2-using biased technological
change implies that the technological change is biased in favor of using more x2 relative to
x1, while the x1-using/x2-saving biased technological change implies that the technological
change is biased in favor of using more x1 relative to x2.

The principle of OBTC is similar to that of IBTC as described above. When yt+1
1 /yt+1

2 >
yt

1/yt
2 OBTC>1 indicates a y2-producing biased technological change and OBTC<1 indi-

cates a y1-producing biased technological change. When OBTC = 1, the output-biased
technological change is Hicks-neutral. When yt+1

1 /yt+1
2 < yt

1/yt
2 OBTC>1 indicates a

y1-producing biased technological change and OBTC<1 indicates a y2-producing biased
technological change. The y1-producing biased technological change means that output-
biased technology tends to produce more y1 relative to y2. While the y2-producing biased
technological change tends to produce more y2 relative to y1.

Specific descriptions of technical bias relationships are listed in Table 1. xl represents
labor factor inputs, xk represents industry capital investment, xe represents energy factor
inputs; yg represents desired output; yb represents the undesired output.

In general, there are two main conclusions about the impact of environmental reg-
ulations on technological progress. One view is that environmental regulations increase
production costs and affect R&D investment, which in turn affects firm performance and
productivity. Another view is that when the intensity of environmental regulation is low,
firms tend to pay certain environmental taxes and emissions costs rather than research
and development on green technologies and that emissions costs have a crowding-out
effect on research and development technologies. When environmental regulations reach a
certain level of intensity, the increase in environmental taxes and emissions costs leads to
rising production costs, which in turn leads to technological innovation in the direction
of cleaner technologies, just as the environmental Kuznets curve depicts the relationship
between the level of economic development and environmental quality. Therefore, when
investigating the mechanism of the influence of environmental regulations on technological
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progress, this paper considers applying a threshold model to study it as the following
empirical model:

LncTCit = α0 + α1ERit × I(ERit ≤ γ1) + α2ERit × I(γ1 < ERit ≤ γ2)+
α3ERit × I(ERit > γ2) + β1LnPROPit + β2LnR&Dit + β3LnEDVit
+β4LnASEit + β5LnSECit + εit

(8)

TC contains TC and breaks down items like BTC IBTC OBTC technical bias indicators.
For the sake of space, only the TC model is listed here, i representing Industries, t repre-
senting years, εit is random perturbation terms. ERit is for the environmental regulation
intensity variable, LnPROPit, LnR&Dit, LnEDVit, LnASEit, LnSECit are the control vari-
ables for R&D intensity of ownership structure, industry exports, average industry size,
and energy consumption structure by industry, respectively.

Table 1. Biased technical change direction in input and output mix.

Input mix IBTC>1 IBTC=1 IBTC<1

xt+1
k

xt+1
l

>
xt

k
xt

l

xk-saving, xl-using Neutral xl-saving, xk-using

xt+1
k

xt+1
l

<
xt

k
xt

l

xl-saving, xk-using Neutral xk-saving, xl-using

xt+1
k

xt+1
e

>
xt

k
xt

e
xk-saving, xe-using Neutral xe-saving, xk-using

xt+1
k

xt+1
e

<
xt

k
xt

e
xe-saving, xk-using Neutral xk-saving, xe-using

xt+1
l

xt+1
e

>
xt

l
xt

e
xl-saving, xe-using Neutral xe-saving, xl-using

xt+1
l

xt+1
e

<
xt

l
xt

e
xe-saving, xl-using Neutral xl-saving, xe-using

Output mix OBTC > 1 OBTC = 1 OBTC < 1

yb
t+1

ygt+1 >
yb

t

ygt Promote desirable output Neutral Increase undesirable output

yb
t+1

ygt+1 <
yb

t

ygt Increase undesirable output Neutral Promote desirable output

3.2. Data and Sources

In this paper, we use the panel data of Chinese manufacturing industries to measure
the green TFP and examine technological progress bias. Based on the completeness and
reliability of the manufacturing data and the availability of influencing factor data required
for the following analysis, we set the research time span as 2003–2015. Based on input-
output data from 27 manufacturing industries, the SBM model with undesired output and
the MI index are used to measure the growth rate of green TFP in China’s manufacturing
industry, which is decomposed into input-biased technological progress, output-biased
technological progress, technological scale change, and technological efficiency change.
Input/output data and how they are processed are as follows:

1. Labor input. The labor force data is measured by using the average annual number
of employees of enterprises above designated size in 27 subindustries of China’s
manufacturing industry, which is taken from the “China Industrial Economic Statistics
Yearbook.”

2. Capital investment. The average annual balance of net fixed assets of enterprises
above designated size in 27 subindustries in China’s manufacturing industry is used
as an approximate estimate of the capital stock, and the fixed asset investment price
index of each industry is converted into the constant price in 2000.

3. Energy input. The total energy consumption of enterprises above designated size in
27 subindustries in China’s manufacturing industry is measured by the data from the
“China Energy Statistical Yearbook,” which is converted into 10,000 tons of standard
coal according to the conversion factor from the attached list in the “China Energy
Statistical Yearbook.”
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4. Expected Output. The expected output is expressed using the main business income
of above-scale enterprises in 27 subindustries of China’s manufacturing industry, with
price index deflations using 2000 as the base period.

5. Undesired Output. Using the calculation method of carbon emissions in the Guide-
lines for National Greenhouse Gas Inventories compiled by the Intergovernmental
Panel on Climate Change (IPCC, 2016), the carbon emissions of enterprises above
designated size by industry are obtained by summing the estimates using coal, coke,
crude oil, gasoline, kerosene, diesel, fuel oil, and natural gas as benchmarks.

The formula is:

CO2 =
8

∑
i=1

CO2,it =
8

∑
i=1

Eit × NCVi × CEFi

Among them, CO2 represents the amount of carbon dioxide emissions to be estimated,
i represents different types of energy, Eit represents the combustion consumption of various
energy sources, and NCVi represents the average low calorific value of various energy
sources. The value comes from the “China Energy Statistical Yearbook”. CEFi represents
the carbon dioxide emission factor of various energy sources, and the value comes from
IPCC (2016).

In order to identify the factors influencing the technological progress bias, this paper
also includes variables such as Environmental regulation, Proportion of state-owned Assets,
R&D investment, Export delivery value, Average size of enterprises, Structure of energy
consumption in the analysis.

Environmental regulation (ER): Environmental regulations can represent a country’s
need for greening. The intensity of environmental regulations is expressed as ER using the
current year operating costs of wastewater treatment facilities and the operating expenses
of exhaust gas treatment facilities in each industry.

The proportion of state-owned Assets (PROP): Given that a large proportion of Chinese
manufacturing enterprises are either state-owned or collectively owned, the choice of
environmental protection varies significantly among different types of enterprises, so
the impact of the ownership structure on the environment cannot be ignored, and the
proportion of state-owned assets is used to characterize this variable.

R&D investment (R&D): This variable represents the actual innovation intensity of
the industry and is measured by the R&D expenditure.

Export delivery value (EDV): The development of international trade can expand the
market scale of China’s domestic enterprises. Chinese enterprises can improve the level
of green technology through export learning and technology import, and this variable is
represented by the export value of the industry.

The average size of enterprises (ASE): Firms with greater monopoly power in the
market are able to invest continuously in innovation and thus maintain a stronger capacity
for technological innovation. The larger the size of an enterprise, the higher its profitability
and market position will be, so the average size of the industry is used to characterize
this variable.

Structure of energy consumption (SEC): Coal consumption as a percentage of total
consumption is a measure to the structure of energy consumption in an industry, with
higher levels of this variable indicating that the industry is less green. Coal consumption,
as a percentage of total energy consumption, is used to characterize the structure of the
energy consumption variable.

The data for the above industry economic variables are from China Industrial Sta-
tistical Yearbook, the data for environmental regulations are from China Environmental
Statistical Yearbook, and the data for energy are from China Energy Statistical Yearbook.
Descriptive statistics for each of the above indicators are shown in Table 2.
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4. Empirical Results and Discussion
4.1. The Green TFP Growth and Technological Bias in China’s Manufacturing Sector

In order to better understand the sources of green TFP growth and technology change
in the Chinese manufacturing sector from 2003 to 2015, Table 3 presents the average of
green TFP and its decomposition over the observation period for 27 industries in the
Chinese manufacturing sector. According to the literature review, the current research
on the details of China’s manufacturing technology progress is not sufficient [29,32,50,51].
The interpretation of the results can effectively enable us to better understand the cur-
rent situation of China’s manufacturing industry and pave the way for the following
environmental regulations.

Table 2. The descriptive statistics of China’s manufacturing sector’s input and output indicators during 2003–2015.

Variable Description of Variable Unit Min Max Average SD

Inputs
and

Outputs

L Labor Ten thousand-person 18.610 909.260 262.219 183.058
K Capital stock 100 million yuan 146.400 57,316.290 4218.415 6620.155
E Energy consumption Ten thousand tons 109.380 69,342.000 7493.792 13,175.540

MBI Main business income 100 million yuan 510.522 77,389.360 15,784.550 15,952.750
CO2 Carbon dioxide emission Ten thousand tons 66.537 376,910.800 22,802.300 61,013.560

Influencing
Factors

ER Environmental regulation 0.027 0.052 0.036 0.004
PROP Proportion of state-owned Assets 0.008 0.993 0.282 0.253
R & D R&D investment 0.001 0.027 0.009 0.006
EDV Export delivery value 21.230 46,165.140 2824.249 6052.567
ASE Average size of enterprises 0.221 70.232 3.458 8.093
SEC Structure of energy consumption 0.153 0.980 0.653 0.235

From the mean results over the sample period, although the overall green TFP growth
rate in China’s manufacturing industry is always greater than 1, the growth rate is declining,
with an average annual growth rate of −0.622%. From the decomposition term, technical
efficiency EC received an average annual growth rate of −0.105%, and technical progress
TC received an average yearly growth rate of −0.497%. Compared with efficiency change,
technical change is the leading cause of green TFP regression, accounting for 79.9% of the
contribution to green TFP regression.

Figure 1 shows the change of green TFP and its decomposition term in the Chinese
manufacturing industry from 2003 to 2015. From Figure 1, combined with Table 3, we can
see that the green TFP growth index (MI) of China’s manufacturing industry is always
greater than 1, indicating that its overall green TFP is growing. Still, the growth rate is on the
whole declining, and the trend is roughly the same as that of TC. It shows that the regression
in the growth rate of green TFP is mainly caused by technological regression. From the
diagram of the TC decomposition term, we can see that the trend of MATC indicator, i.e.,
technology scale change, is closer to the TFP trend than the bias indicator, indicating that
the green TFP change in the Chinese manufacturing industry is more influenced by the
size of technology scale change. This phenomenon shows that Chinese manufacturing
enterprises are small in size and large in number and have not achieved economies of scale,
which is consistent with the reality of the Chinese manufacturing industry.

To better understand the bias of green TFP growth and technological progress in
China’s manufacturing sector during 2003–2015, the green TFP and its decomposition, TC
and its decomposition, and BTC and its decomposition are multiplied cumulatively, as
shown in Figure 2. From Figure 2, the trends in green TFP and its decomposition terms
EC and TC again demonstrate that green TFP growth during the observation period was
dominated by technological progress rather than efficiency gains. From the cumulative
trend of the TC and its decomposition term, the impact of scaled technological change
on technological progress is important. This result is consistent with previous findings in
Figure 1 and indicates that the development of China’s manufacturing sector relies heavily
on the expansion of firm size to increase output and efficiency. From the cumulative trend
of BTC and its decomposition term, the technology bias (BTC) index is permanently greater
than 1 during the observation period and shows an increasing trend, indicating that the bias
of technological progress from 2003 to 2015 promoted green TFP in Chinese manufacturing.
Combined with Figures 1 and 2, the technology bias grew sluggishly during 2007–2009,
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and the TFP growth rate experienced a downward trend during this period, which is
related to the global economic crisis that broke out during this period. Since 2010, when
the Chinese government issued a series of measures such as the Targeted Responsibility
System for Energy Conservation and Emission Reduction for local governments at all
levels and the Action Plan for Prevention and Control of Air Pollution in 2013, the growth
rate of green TFP in China’s manufacturing industry slowed down during 2011–2015.
This is due to the tough environmental regulations that the industry faces as it grows.
Environmental regulations force the development of green technologies, while outdated
production capacities and technologies face obsolescence. Different types of enterprises
show several choices when faced with the green technology transition. SOEs or well-
capitalized enterprises may go through the “pains” of technology transition and invest
a large amount of capital in research and development of green production technologies
to achieve the goal of energy-saving and emission reduction. However, in this period
of technological change, some companies that have not developed and applied green
technologies are facing a crisis of obsolescence, which is also the growth rate curve of MATC.
The reason for the fluctuation during this period. The BTC index and its decomposition
went from flat to rising during the period 2011–2015, indicating that China’s manufacturing
sector’s technological progress was biased toward green growth during this period.

Table 3. The geometric means of green TFP of China’s manufacturing sector and its decomposition from 2003 to 2015.

Sector
MI EC TC BTC IBTC OBTC MTC

Value SD Value SD Value SD Value SD Value SD Value SD Value SD

Processing of Food from Agricultural
Products 1.062 0.086 1.041 0.098 1.022 0.053 1.001 0.003 1.011 0.030 0.990 0.028 1.021 0.054

Manufacture of Foods 1.073 0.061 1.020 0.042 1.052 0.038 1.001 0.006 1.000 0.007 1.002 0.004 1.051 0.039
Manufacture of Liquor, Beverages and
Refined Tea 1.099 0.058 1.025 0.040 1.072 0.043 1.001 0.007 1.001 0.007 1.001 0.005 1.070 0.039

Manufacture of Tobacco 1.019 0.033 1.032 0.056 0.990 0.044 0.992 0.011 1.005 0.016 0.987 0.017 0.998 0.046
Manufacture of Textile 1.070 0.037 1.028 0.054 1.043 0.056 1.003 0.005 1.000 0.010 1.003 0.008 1.041 0.057
Manufacture of Textile, Wearing
Apparel and Accessories 1.047 0.070 0.990 0.053 1.061 0.100 1.013 0.018 0.999 0.008 1.013 0.018 1.047 0.090

Manufacture of Leather, Fur, Feather
and Related Products and Footwear 1.009 0.030 0.994 0.136 1.036 0.177 1.003 0.040 1.026 0.064 0.980 0.055 1.039 0.210

Processing of Timber, Manufacture of
Wood, Bamboo, Rattan, Palm and Straw
Products

1.045 0.070 1.012 0.048 1.034 0.067 1.011 0.015 1.003 0.013 1.008 0.012 1.024 0.077

Manufacture of Furniture 0.946 0.074 0.955 0.117 0.999 0.078 1.010 0.043 0.993 0.050 1.017 0.030 0.994 0.122
Manufacture of Paper and Paper
Products 1.109 0.058 1.016 0.065 1.094 0.066 1.001 0.005 0.998 0.008 1.003 0.008 1.093 0.066

Printing and Reproduction of
Recording Media 1.001 0.260 1.013 0.248 0.991 0.088 1.022 0.054 0.989 0.048 1.035 0.049 0.970 0.079

Manufacture of Articles for Culture,
Education, Arts and Crafts, Sport and
Entertainment Activities

1.000 0.070 1.002 0.057 0.998 0.030 1.006 0.007 1.000 0.027 1.007 0.028 0.992 0.025

Processing of Petroleum, Coking and
Processing of Nuclear Fuel 1.017 0.013 1.001 0.013 1.016 0.006 1.001 0.003 1.001 0.001 1.000 0.003 1.015 0.007

Manufacture of Raw Chemical
Materials and Chemical Products 1.176 0.085 1.080 0.081 1.092 0.089 0.997 0.051 0.998 0.010 0.999 0.052 1.097 0.092

Manufacture of Medicines 1.084 0.078 1.022 0.065 1.062 0.048 1.002 0.006 1.002 0.006 1.000 0.005 1.060 0.046
Manufacture of Chemical Fibers 1.093 0.124 0.993 0.121 1.104 0.064 1.018 0.014 1.007 0.013 1.011 0.014 1.084 0.066
Manufacture of Rubber and Plastics
Products 1.071 0.035 1.020 0.038 1.051 0.050 1.003 0.007 1.000 0.009 1.003 0.005 1.048 0.050

Manufacture of Non-metallic Mineral
Products 1.13 0.050 1.054 0.069 1.079 0.072 1.001 0.010 0.997 0.007 1.004 0.012 1.078 0.075

Smelting and Pressing of Ferrous Metals 1.098 0.182 1.050 0.181 1.050 0.078 0.987 0.030 0.992 0.031 0.995 0.035 1.066 0.103
Smelting and Pressing of Non-ferrous
Metals 1.121 0.184 1.088 0.172 1.030 0.044 0.998 0.008 1.010 0.030 0.989 0.027 0.998 0.008

Manufacture of Metal Products 1.064 0.050 1.008 0.051 1.057 0.052 1.005 0.007 1.001 0.008 1.004 0.006 1.052 0.053
Manufacture of General Purpose
Machinery 1.088 0.047 1.033 0.052 1.055 0.057 1.001 0.008 0.996 0.008 1.005 0.008 1.053 0.055

Manufacture of Special Purpose
Machinery 1.084 0.028 1.028 0.057 1.057 0.051 0.998 0.007 0.997 0.005 1.001 0.006 1.058 0.048

Manufacture of Transport Equipmem 1.075 0.096 1.051 0.085 1.027 0.109 0.999 0.037 1.007 0.034 0.992 0.038 1.030 0.114
Manufacture of Electrical Machinery
and Apparatus 1.081 0.068 1.018 0.078 1.065 0.077 0.993 0.031 0.997 0.026 0.996 0.032 1.074 0.092

Manufacture of Computers,
Communication and Other Electronic
Equipment

1.022 0.018 1.006 0.026 1.016 0.020 1.002 0.004 1.001 0.002 1.001 0.004 1.014 0.019

Manufacture of Measuring Instruments
and Machinery 1.034 0.074 1.003 0.040 1.031 0.062 1.007 0.039 1.011 0.034 0.996 0.038 1.027 0.102

Average 1.064 0.076 1.022 0.079 1.044 0.064 1.003 0.018 1.002 0.019 1.002 0.020 1.041 0.068
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From the previous analysis, we can see that technological progress is an important
component of TFP and dominates the growth trend of green TFP in China’s manufacturing
industry. A technological progress indicator is composed of scale technological progress
and biased technological progress. Biased technological progress represents the directional-
ity of the production technology when BTC = 1, i.e., when both IBTC and OBTC are equal
to 1, indicating a Hicks-neutral technological change at this time. The results in Table 2
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show that the mean value of the BTC index is 1.003, which is very close to 1, indicating
that the overall technological progress in China’s manufacturing sector during the sample
period was neutral technological change. However, the maximum, mean, and minimum
values of BTC, IBTC, and OBTC for each year shown in Figure 3 show that the bias of
technological progress in China’s manufacturing industry deviates greatly from industry
to industry.
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As shown in Figure 3, the trends and sizes of the maximum and minimum values
are very different. This shows that with time changes, the specific details of technological
progress fluctuate greatly. Both input bias and output bias of technological progress bias
are significantly higher than in others in some industries. A higher technology bias can
lead to higher input and output efficiency, driving TFP growth in the industry effectively.
However, here is not to emphasize the development of a specific industry, but to explore the
relationship between such fluctuations and environmental regulations based on subsequent
analysis. In terms of mean values, the change in BTC is not significant. Still, the large
variability in technology bias in BTC between industries, especially the fit between input-
output ratios and technology progress bias, deserves further discussion.

4.2. The Direction of the Green-Biased Technological Change

It is worth noting that IBTC and OBTC reflect only TFP growth rates and not the
technological progress associated with a particular input or output bias. As shown in
Section 3, changes in IBTC and OBTC can either promote or reduce TFP growth. Changes
in the mix of inputs and outputs can lead to a bias in technological change. Based on what
we have studied in this paper, we analyze the bias between the input-output mix and
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technological progress for each year of the Chinese manufacturing subindustry, and the
resulting observations are shown in Table 4.

From the results of the analysis, it can be seen that all industries in China’s manufac-
turing sector have a bias for technological progress and a bias for input-output. With the
mind of Li, [32] classifying the observation periods according to China’s 10th Five-Year
Plan (2001–2005), 11th Five-Year Plan (2006–2010), and 12th Five-Year Plan (2011–2015),
it can be seen that the factor bias of China’s manufacturing technology progress has the
following characteristics.

Table 4. Distributions of annual input-biased and output-biased technological changes.

Year

IBTC OBTC K vs. L K vs. E L vs. E Desirable Output vs.
CO2

>1 <1 >1 <1 K-Using L-Using K-Using E-Using L-Using E-Using
Desirable
Output-

Producing

CO2-
Producing

2003 13 14 21 6 20 7 10 17 13 14 6 21
2004 10 17 21 6 14 13 7 20 9 18 15 12
2005 7 20 21 6 18 9 11 16 6 21 7 20
2006 9 18 22 5 19 8 12 15 7 20 5 22
2007 7 20 18 9 18 9 22 5 16 11 9 18
2008 11 16 18 9 16 11 19 8 17 10 9 18
2009 17 10 10 17 10 17 10 17 10 17 18 9
2010 12 15 12 15 16 11 11 16 11 16 14 13
2011 18 9 15 12 8 19 12 15 18 9 12 15
2012 12 15 12 15 13 14 15 12 12 15 15 12
2013 9 18 20 7 17 10 18 9 22 5 20 7
2014 14 13 19 8 14 13 12 15 17 10 10 17
2015 19 8 13 14 8 19 6 21 10 17 17 10

10thFYP >1 >1 L K L CO2
11thFYP <1 >1 K K L CO2
12thFYP >1 >1 L E L CO2

Chronologically, the Chinese manufacturing industry is characterized by an L-K-
L factor bias between capital and labor, which is related to the fact that the Chinese
manufacturing industry starts with labor-intensive production methods. The factor bias
between labor and energy is also confirmed by the fact that capital is scarcer than labor in
China at a relatively cheap level.

During the observation period, there is an L-L-L bias between labor and energy in
China’s manufacturing industry, which is also due to the relatively abundant supply of la-
bor compared to energy, and the fact that technological progress is biased toward labor factors,
which can progress the TFP growth and is more suitable for China’s national conditions.

There is a K-K-E bias between capital and energy, indicating a gradual approach from
a capital bias to an energy bias in the development of China’s manufacturing sector. China
is a relatively energy-poor country, relying on imports for most of its energy and relying
more on capital for rapid TFP growth at the beginning of the observation period. The
results of this analysis reinforce the importance of green energy for the development of
China’s manufacturing sector.

As for the output bias in Table 4, although the number of industries with output
bias toward the desired output is increasing, the number of sectors with CO2 bias is
decreasing from 2003 to 2015 with a trend of environmental protection and emission
reduction. However, China’s manufacturing industry as a whole has been biased towards
the generation of undesirable output CO2 during this period. This may be due to the fact
that China’s manufacturing industry was still in a phase of rapid development during the
study period, with companies focusing more on expanding scale and increasing production
capacity than on energy conservation and environmental protection.

It can be seen that although China has carried out a series of environmental regulatory
policies and support policies for green technology development, and the emission situation
of related industries has improved, the actual situation of energy conservation and emission
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reduction in China is still not satisfactory. The results of this analysis are more consistent
with the actual situation of China’s manufacturing development.

4.3. The Influencing Factors of Technological Bias and It’s Threshold Model

After completing the analysis of China’s manufacturing technology progress TC and
its decomposition items IBTC and OBTC, we use the above panel data to examine the
factors affecting China’s manufacturing technology progress and its bias. It should be
pointed out that, considering the need for continuity and stability of the technological bias
here, we adopt the cumulative technological advancement cTC, the accumulated input
biased technological advancement cIBTC, and the accumulated output biased technological
advancement cOBTC, and logarithmic all indicators.

According to the threshold regression principle, environmental regulations are first
made as threshold variables to fit the relationship between environmental regulations and
technological progress. To determine the specific form of the measurement model, it is
necessary to determine the number of thresholds for environmental regulation and the
corresponding thresholds. The model (8) is estimated under the assumption that there is no
threshold value, one threshold value, two threshold values, and three threshold values, and
the corresponding F statistics can be obtained. Using the Bootstrap proposed by Hansen to
repeatedly sample 300 times, the corresponding P value was obtained by simulation, and
the related inspection results are shown in Table 5.

Table 5. Threshold test effect.

The
Threshold

Test

LncIBTC LncOBTC LncBTC LncTC

Single
Threshold

Double
Threshold

Single
Threshold

Double
Threshold

Single
Threshold

Double
Threshold

Single
Threshold

Double
Threshold

F-Value 34.310 *** 22.800 *** 20.030 *** 11.87 *** 25.160 ** 12.71 * 20.77 *** 6.22
p-Value 0.004 0.000 0.000 0.003 0.003 0.0867 0.000 0.53

1% 30.213 15.839 16.046 9.89 29.47 32.7891 12.6947 15.013
5% 27.964 13.394 14.531 8.758 23.463 15.0074 10.3231 10.881
10% 26.553 11.595 13.156 7.864 20.977 11.8642 8.6902 9.594

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 5 shows that if the F value of the single threshold effect test of the LncIBTC
indicator is 34.31 > 30.213, the corresponding p-value is 0.004, indicating that LncIBTC
rejects the null hypothesis that there is no threshold effect at the 1% significance level, and
accepts the existence of a single threshold. In the same way, the double threshold effect
results show that the null hypothesis that there is only one threshold value is rejected at
the 1% significance level. The threshold test results of LncOBTC, LnBTC, and LncTC are
shown in Table 5. Because the hypothesis of the triple threshold value of all indicators
failed the significance test, it is not listed in Table 5.

After the threshold model test, the “grid search method” is used to determine the
threshold value. The 95% confidence interval of the threshold value is the interval formed
by the critical value at the significance level of the likelihood ratio statistic LR value less
than 5%. When the confidence interval is less than the 5% significance level of the LR value,
the estimated threshold value is valid. Therefore, the required likelihood ratio function
graph constructed here can more intuitively show the estimation of the threshold value and
the construction process of the confidence interval. As shown in Figure 4, the threshold
model’s LR values are all below the critical line, indicating the true validity of the model’s
threshold value.

The test result of the threshold model shows that environmental regulations have a
threshold effect on China’s manufacturing industry’s technological progress. There is a
double threshold effect in the biased technological progress indicators. This phenomenon
shows that the impact of environmental regulations on technological progress is con-
strained. In other words, the environmental regulation policy may have a positive impact
on the development of green technology in the early stage of implementation. However, the
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intensity of environmental supervision exceeds a certain level, the benefits of continuous
investment in environmental technologies may be less than the costs of applying non-
green technologies. This also confirms the U-shaped relationship between environmental
regulation and economic development in related studies indirectly. [19,55] Moreover, the
dual-threshold effect of biased technological progress also shows that environmental regu-
lation’s influence mechanism on technological progress is not a simple linear relationship.
The influence relationship between the two thresholds may be uncertain. The test results in
Table 5 show that the biased technological advancement BTC and its decomposition items
IBTC and OBTC both have double thresholds, but TC only has a single threshold. This
phenomenon may result from the environmental regulations, and other influencing factors
have different influence mechanisms on input and output-based technological progress.
The change of input-biased technological progress reduces a certain element input (IBTC)
based on a specific output. Output-biased technological progress relates to changes in the
marginal productivity of output items based on certain inputs. Therefore, the threshold
effects of IBTC and OBTC offset each other, resulting in differences in the threshold effects
of BTC and TC indicators.
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As shown by the estimated results of the threshold model in Table 6, for IBTC, when
LnER ≤ −3.822, the coefficient is 0.003, and it is significant at the 1% level, indicating that
under this level of environmental regulation, it can affect investment-oriented technological
progress tends to produce positive effects. When environmental regulations are greater
than this level, environmental regulations will have a negative effect on investment-based
technological progress. As the intensity of environmental regulations increases, their nega-
tive effects become more obvious. For OBTC, it is contrary to IBTC. When LnER ≤ −3.6218,
the coefficient is −0.019, and it is significant at the 1% level, indicating that under this level
of environmental regulation, environmental regulation is biased towards output-oriented
technological progress. A negative impact occurs. When the intensity of environmental
regulation rises to−3.6218 < lnER≤−2.6790, the coefficient turns from negative to positive,
but the significance level is not passed. However, it can still be seen that environmental reg-
ulation has an effect on output-oriented technological progress. The bias plays a promoting
role. When lnER >−2.6790, it turns into a negative role again. Under the combined effect
of the two, environmental regulations have always had a negative impact on the biased
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technological progress of BTC. Still, the magnitude of the impact varies with the intensity
of environmental regulations as shown in Table 6, when lnER≤−1.8297, environmental
regulations have a negative effect on BTC. The impact is small. When −1.8297 < lnER ≤
−1.2931, the impact coefficient increases, and with the continuous increase of environmen-
tal regulations, the impact coefficient decreases to −0.025. As far as the control variables
are concerned, the coefficients of IBTC and OBTC are mostly opposite. The nature of IBTC
and OBTC also determines this. Due to space limitations, only the influence of the control
variables on the overall technological progress (TC) is analyzed here. For TC, except for
the property rights structure (PROP), the other influencing factors are significant at the 1%
level. Among them, R&D intensity, industry experts, and energy structure have a positive
impact on technological progress, and industrial scale has a negative impact. Increasing
the R&D intensity can improve the level of enterprise innovation. The level of innovation
and the increase in the export value of the industry can improve the technological level of
the industry through export learning and technology introduction. The energy structure
represents the proportion of the industry’s coal consumption to the industry’s energy con-
sumption. The higher this indicator, the higher the industry’s demand for fossil energy. The
energy structure can promote the industry’s technological progress, as described in Section
4.2 China’s manufacturing output bias during the study period. The CO2 analysis results
show that most of the technology level of China’s manufacturing industry is still based on
fossil fuels as the main energy demand. It is clear that the development and supply of green
energy did not become the main demand of China’s manufacturing industry during the
study period. Industry scale has a negative impact on technological progress. This may be
due to the emergence of corporate monopolies within the industry when the industry scale
is oversized. As shown in the analysis in Section 4.2, China’s manufacturing industry is
more inclined to labor than capital and energy. The development of China’s manufacturing
industry, which is dominated by labor-intensive industries, is more dependent on China’s
demographic dividend. Technological progress dominated by green innovation often rep-
resents higher R&D investment. Obviously, Chinese manufacturing companies’ monopoly
has not been able to promote the continuous research and development of technology but
has inhibited technological progress.
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Table 6. Threshold estimates for China’s manufacturing sector biased-technological changes.

Variable lncIBTC Variable lncOBTC Variable lncBTC Variable lncTC

Coef. t-Stat. Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

lnER ≤ −3.822 0.003 *** 1.250 lnER ≤ −3.6218 −0.02 *** −4.600 lnER ≤ −1.8297 −0.006 ** −2.22 lnER ≤ −2.2132 0.052 *** 6.270
−3.822 < lnER ≤ −2.6491 −0.004 −1.030 −3.6218 < lnER ≤ −2.6790 0.0002 0.030 −1.8297 < lnER ≤ −1.2931 −0.043 *** −3.89 lnER > −2.2132 −0.021 −0.960

lnER > −2.6491 −0.023 −0.850 lnER > −2.6790 −0.021 *** −2.470 lnER > −1.2931 −0.025 ** −2.07 - - -
lnPROP −0.032 *** −6.200 lnPROP 0.026 *** 3.560 lnPROP −0.004 −0.81 lnPROP −0.010 −0.610
lnR&D 0.020 *** 3.300 lnR&D −0.012 −1.400 lnR&D 0.005 0.85 lnR&D 0.117 *** 6.210
lnEDV 0.002 0.680 lnEDV −0.018 *** −4.290 lnEDV −0.011 *** −4.05 lnEDV 0.032 *** 3.320
lnASE 0.038 *** 7.910 lnASE −0.069 *** −10.830 lnASE −0.03 *** −7.40 lnASE −0.036 *** −2.430
lnSEC 0.013 1.340 lnSEC −0.011 −0.870 lnSEC 0.002 0.25 lnSEC 0.116 *** 3.930
Cons. 0.009 0.25 Cons. 0.849 * 1.48 Cons. 0.115 *** 3.1 Cons. 0.811 *** 6.26

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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5. Conclusions and Policy Implications

Based on incorporating the SBM measurement model and the Malmquist productivity
index, this paper measures the green total factor productivity, technological progress,
and the input-biased and output-biased technological change of China’s manufacturing
industry from 2003 to 2015. It also investigated the mechanism of environmental regulation,
property right structure, enterprise-scale, energy consumption structure, and other factors
on technological progress and its decomposition items. Admittedly, we have noticed that
this article may have some limitations. For example, we have not separately analyzed the
appropriate environmental regulation policies for certain specific industries. Because we
focus more on the perspective of technological progress. In the next research, we will start
from the industry perspective and examine the relationship between pollution levels and
the application of green technology to environmental regulations. This paper provides
significant value and meaning as a powerful reference for adjusting policies to improve
the green and sustainable development in China’s manufacturing sector. According to the
previous analysis, there are several conclusions and recommendations as follows:

(1) During the study period, the growth rate of green total factor productivity in China’s
manufacturing industry showed an overall downward trend, with an average annual
growth rate of −0.622%. As for the decomposition, the average annual growth
rate of technical efficiency EC was −0.105%. Technological progress TC is −0.497%.
Compared with efficiency changes, technological changes are the main reason for
the decline of green total factor productivity, which accounts for 79.9% of the decline
in the growth rate of green total factor productivity. The average value of the BTC
index is 1.003, which is very close to 1. This indicates that the overall technological
progress of China’s manufacturing industry during the sample period is a neutral
technological change, but the technological progress bias between industries is more
obvious with significant differences.

(2) By analyzing the elements of the Chinese manufacturing subsector combined with
technical progress bias, we found that, in the input bias, the manufacturing sector
showed significant L-Using/k-saving, L-using/E-saving, and K-using/E-saving are
factor-biased characteristics. This shows that China’s manufacturing sector was
mainly labor-intensive industries during the study period, with obvious labor input
preferences, which benefited from China’s demographic dividend. In the output
bias, the manufacturing industry has a clear bias toward the undesirable output CO2
characteristics, which indicates that the sector still uses fossil energy as the main
energy consumer. The input of fossil energy has positive significance in promoting
the technological progress of the sector. This also shows that green energy has not yet
occupied China’s manufacturing industry’s main energy consumption, and the level
of green technology innovation needs to be improved.

(3) Through the analysis of the threshold model of environmental regulation on the
technological progress of China’s manufacturing industry. Environmental regula-
tion has obvious dual-threshold characteristics for biased technological change bias
(BTC), input-biased and output-biased technological change, as well as obvious single
threshold characteristics for technological progress, which shows that the relationship
between environmental regulation and technological progress is not a simple linear
relationship. For BTC, environmental regulation has a negative impact on BTC. As the
intensity of environmental regulation increases, its impact on BTC first increases and
then decreases. For IBTC, as the intensity of environmental regulations increases, its
impact on IBTC has changed from positive to negative. For OBTC, as the intensity of
environmental regulations increases, its impact on OBTC has changed from negative
to positive and then to negative ultimately. For TC, as the intensity of environmen-
tal regulations increases, its impact on TC has changed from a positive impact to a
negative impact. Regulating the intensity of environmental regulations can improve
the technological progress of China’s manufacturing industry in a targeted manner.
For example, for resource conservation requirements, more attention is paid to the
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intensity of IBTC’s environmental regulations; for pollution reduction requirements,
more attention is paid to the intensity of OBTC’s environmental regulations.

(4) In terms of other influencing factors, except for the property rights structure (PROP),
the other influencing factors are all significant at the 1% level. Among them, R&D
intensity, industry experts, and energy structure positively impact technological
progress. The scale of the industry has a negative impact. This shows that R&D and
foreign exports can effectively promote technological progress. At present, China’s
manufacturing industry still uses fossil energy as the primary energy consumption,
and all factor inputs are more biased towards labor factors. This analysis result is also
consistent with the previous conclusion on technological progress biased factors.

Based on these conclusions, this paper puts forward the following policy suggestions
in the hope of providing policy enlightenment and help for China’s greening process. First
of all, through the analysis of the article, we have noticed that the expansion of China’s
manufacturing industry mainly relies on economies of scale. There is still a certain gap
in technology and total factor productivity compared with developed countries. Only by
promoting the development of innovation and environmental protection technology can we
achieve sustainable economic development. Therefore, enterprises should be encouraged to
make technological innovation and increase investment in green technology-related fields.
In fact, the Chinese government has implemented policies targeting sectors, such as electric
vehicle production subsidies and photovoltaic industry support and issued “Guidelines
on building a market-oriented green Technology Innovation System” and other policies,
leading the banking and financial institutions to finance green technology innovation
enterprise and project effectively. It is a long process from research and development
to innovation of environmental protection and energy-saving technologies, but only by
relying on innovation and environmental protection technologies to realize the sustainable
and healthy development of China’s manufacturing industry can we avoid excessive
dependence on resources and the environment.

Secondly, the strength and implementation scope of environmental regulation should
be flexibly grasped. As the results of this paper show, from the perspective of environmen-
tal regulation strength, the most suitable policy intensity is different for different aspects of
technological progress. Different from existing related studies that directly use environ-
mental regulations in green TFP or technological progress, we decompose technological
progress into biased technological changes and scale technological changes, and further de-
compose biased technological changes into input and output biased technological changes.
The analysis of the impact of environmental regulations on these decomposing items will
help to study the relationship with environmental regulations from the internal perspective
of technological progress. For example, environmental regulations have different effects
on the technological bias of input and output projects. From the perspective of pollution
emission, the focus should be on the environmental regulation intensity of output-oriented
technology progress bias. Further, from the perspective of resource-saving, the focus
should be on the environmental regulation intensity Input-oriented technology progress
bias. In response to different needs, with the perspective of circular economy and sustain-
able development [56], specifying a reasonable intensity of environmental regulation can
achieve the purpose of reducing greenhouse gas emissions and resource conservation, and
effectively promote the green technological progress of the manufacturing industry, which
is beneficial to the realization of circular economy and sustainable development [57,58]. In
addition, the formulation of environmental regulations can differentiate between compa-
nies that have applied or are developing green technologies and companies that have not
invested in green technologies. Charge corresponding environmental protection fees to
companies that do not have green R&D investment, which can promote the green trans-
formation of some companies with backward production methods. Moreover, from the
perspective of the scope of environmental regulation, it can effectively regulate the benign
promotion between environmental protection and economic development by formulating
corresponding environmental regulation policies for different industries. For example,
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according to the degree of green technology application or pollution emissions in differ-
ent industries, environmental regulations of different intensities are formulated to avoid
one-size-fits-all policies.

Finally, in order to achieve the goal of both technological progress and green sustain-
able development. Enterprises are supposed to be encouraged to export, which will help
the introduction of advanced technologies. The increase in international trade will help
expand the scale of domestic industries, and enterprises can learn advanced international
experience and related technologies through export behavior and gain trade spillovers.
Increasing the value of exports enables enterprises to acquire green technologies and elim-
inate existing polluting technologies. It must be noted that the coefficient of the energy
structure index is positive, which shows that the current energy consumption demand and
technological system of China’s manufacturing industry are still based on coal consump-
tion. Therefore, the energy consumption structure should be changed and increase the
proportion of green energy applications.
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