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Abstract: The article presents selected results of analytical and design works undertaken at the
Air Force Institute of Technology (AFIT) in the field of building a computer support and software
lifecycle management system that is critical for flight safety. The aim of the work undertaken is to
develop methods and carry out verification and testing in order to detect errors in the developed
avionics software for compliance with the requirements of the DO-178C standard and its production,
certification, and implementation on board aircraft. The authors developed an original computer
system within the implemented requirements used in the construction and certification of avionic
onboard devices and their software (among others, DO-254, DO-178C, AQAP 2210, ARP 4761, ARP
4754A). The conducted analysis involved three basic groups of avionics software development
processes, i.e., software planning, creation, and integration. Examples of solutions implemented in
the constructed computer system were presented for each of these process groups. The theoretical
basis of the new method for predicting vulnerabilities in the software implemented within integrated
avionic systems using branching processes is discussed. It was demonstrated that the possibility of
predicting vulnerabilities in future software versions could have a significant impact on assessing
the risk associated with software safety in the course of its lifecycle. It was indicated that some of
the existing quantitative models for analyzing software vulnerabilities were developed based on
dedicated software data, which is why actual scenario implementation may be limited. DO-178C
standard requirements for the process of developing avionics software were implemented in the
helmet-mounted flight parameter display system constructed at AFIT. The requirements of the DO-
178C and AQAP 2210 standards were shown to be met in the example of the software developed for
a graphics computer, managing the operating modes of this system.

Keywords: sustainable air transport; computer system; software security; DO-178C standard; AQAP
2210 standard; branching process; helmet-mounted flight parameter display system

1. Introduction

Contemporary aircraft, both civilian and military, are equipped with various radio–
electronic onboard devices, which support a pilot in executing complex air missions. The
rapid development of digital electronics and IT, increasingly distinct over the recent years,
requires a pilot of a modern aircraft to have the in-flight support of onboard equipment,
which, in fact, are already “smart” computers with sophisticated and comprehensive
avionics software. Such computerization of a modern aircraft should ensure its required
operating reliability and the safety of both the crew and the passengers [1–4].

The process of producing digital onboard devices and systems enables their reliable
operation under all flight conditions that are critical to them, among others, due to changes
in the pressure and temperature of ambient air and the occurrence of linear overloads,
e.g., during a maneuvering flight. It is quite easy to imagine the consequences of, e.g.,
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ILS landing-system software failure during an aircraft’s approach to an airport in diffi-
cult weather conditions or damage to a helmet-mounted weaponry control system when
indicating a target, selecting weapon type, or using it in the course of a combat flight.

In order to satisfy the stringent reliability-related requirements within the process
of developing electronic air equipment and their dedicated avionics software, specialists
have drawn up relevant standards, such as standard DO-178C, containing software require-
ments, and standard DO-254, containing hardware requirements, supported by additional
standardizing documents, including ARP 4761 and ARP 4754A (Figure 1).
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Figure 1. Manufacturing process diagram for avionic devices and software critical to flight safety, as
per standard DO-178C.

Standard ARP 4761 is a set of processes and techniques used to ensure the required
assurance level of designed devices and systems; it is intended for installation on board
aircraft. This standard defines five damage levels for onboard equipment and their conse-
quences [5]. Level A covers damage, the occurrence of which may lead to severe casualties
and material losses (e.g., air crash). Level B covers major damage that may lead to severe
injuries (e.g., injury of a pilot or passengers). Level C covers major damage of a lower
exposure degree, meaning the failure of main onboard systems but the flight being allowed
to continue (e.g., through manual steering). Level D covers minor damage, e.g., when the
flight is allowed to continue without a specific functionality (e.g., main radio damage).
Level E covers damage, the occurrence of which is insignificant to the flight continuation
process and pilot’s actions (e.g., mechanical wear of steering element buttons). Standard
ARP 4754A is a set of functional system requirements in terms of software and hardware.

Standard DO-178C is the basic document applied within the international aviation
market to the process of manufacturing and certifying the software of onboard electronic
devices. It consists of a basic part and supplementary standards DO-331, DO-332, and
DO-333 as well as DO-330, DO-248C, and DO-278A, which define additional requirements
and activities to be provided for in the software development process, depending on the
adopted implementation technique (Figure 2).
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Standard DO-331 describes software and hardware designs using a modeling tech-
nique (model-based designs). Computational algorithms or their fragments are imple-
mented using external tools, and the designing process is executed by combining blocks
that execute various mathematical operations. A computation diagram implemented this
way is subject to testing and verification. The final stage of algorithm implementation is the
automatic generation of a diagram based on the developed software source code. When
using this method, computational algorithms are implemented visually, with automatic
generation of the resultant software code.

Standard DO-332 is applied when projects are implemented with the use of object-
oriented programming languages (including C++, Java, Ada). The fundamental issue in
the case of object-oriented languages is the verification of such software, which follows
three basic techniques, namely, inheritance, polymorphism, and dynamic linking. An
embodiment of such a standard can be the occurrence of yet another method of the same
name within the same class hierarchy, which ensures that when a relevant class is called,
the appropriate method is executed.

Standard DO-333 is applied when formal methods are used within the designing
process. Formal methods are mathematical techniques, which are applied within the
software development and verification process. The task of formal methods is to develop
a mathematical system for the constructed system and to verify its behavior in order to
prove that the system under construction is functional and satisfies the assumed safety
requirements. Standard DO-333 describes the qualification process for software tools
used within the process of software development, testing, launching, and modification. A
qualification process is understood as an evaluation of software tools, the output of which
is not verified and which simplify, accelerate, and automate a DO-178C standard process.

Standard DO-248C is an additional and supplementary document for the DO-178C
standard, explaining its incomprehensible and problematic aspects.

The above requirements of the DO-178C standard became the basis for the ITWL
to build a computer system supporting the lifecycle management of avionic software,
developed and certified for electronic devices, where the main goal is to develop software
and implement it into the SWPL-1 CYKLOP helmet flight-parameter display system [6–8].

2. Materials and Methods

The lifecycle of avionics software is associated with the implementation of numerous,
various types of interlinked tasks, the objective of which is to design and develop software
of appropriate quality that meets the requirements of the ordering party as well as to ensure
the required security level of the designed avionic systems and devices [9–11].

Standard DO-178C defines three primary projects, namely, software planning, devel-
opment, and integration, which are mutually concurrent within selected areas. This means
that the commencement of one process does not have to be linked with the completion of a
previous one. An example would be starting the tests of an encoded software fragment
prior to the stage of total encoding completion [12–17].

There are many software lifecycle models, which include the cascade model. The
following major steps, to be executed in order to meet the requirements of standard DO-
178C, are distinguished within this model. They involve collecting the requirements and
their analyses as well as software design, development, testing, and implementation.

Each of these steps allows us to go back to the previous state, enabling interaction
between the executed tasks, which is of particular importance in the case of detecting
software bugs that have to be fixed. The implementation of the developed avionics software
also covers its operation until its disposal.

2.1. Avionics Software Planning Process and Possible Computer-Aided Support

Software planning involves processes associated with planning and standards, after
which software development will follow. At this stage, standard DO-178C defines five
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major plans and three software standards. It also distinguishes other documents that are
required for the certification of any developed software [18–20].

The major avionics software plans are as follows:

• Plan for Software Aspects of Certification (PSAC): a kind of “contract” between the
contractor and the certification body.

• Software Development Plan (SDP): contains the requirements concerning software
planning, coding, and integration stages. The SDP was written for software developers
and is, a kind of a guide on how to develop the software in order for it to satisfy the
adopted requirements.

• Software Verification Plan (SVP): contains aspects associated with verifying software
functionality and is intended for software testers. The SVP is associated with the SDP
because the assumptions that were thought out at the software development stage are
verified at this stage.

• Software Configuration Management Plan (SCMP): defines procedures, tools, and
methods aimed at achieving the objectives associated with managing the requirements
throughout the entire software lifecycle. It covers the procedures in terms of defining
the baseline version and identifying software versions, reporting issues, controlling
and reviewing modifications, archiving, controlling software loading and recovery.

• Software Quality Assurance Plan (SQAP): defines the procedures and methods to be
applied in order to satisfy the quality requirements associated with standard DO-178C.
It determines the procedures in terms of quality management, audit execution, actions
associated with issue reporting, and corrective action methodology.

The major software development standards are as follows:

• Software Requirements Standards (SRS), which define principles, methods, and tools
to be applied for developing high-level requirements. They include methods used for
software development, notations for requirement implementation (algorithms, flow
diagrams), and project tool limitations, which will be used for software development,
as well as criteria related to the requirements.

• Software Design Standards (SDSs): They define methods, tools, and limitations within
the software design process. They include low-level requirements and software
architecture. They are intended for a software development team and explain how
to implement a design effectively. They cover, among other things, nomenclature
methods, design tool limitations, and software complexity (e.g., procedure length).

• Software Coding Standards (SCSs); They define methods, tools, and limitations within
the software coding process. They include, among other things, coding standards,
programming languages used, code presentation standards, nomenclature standards,
compilator limitations, and restrictions arising from programming standards.

• The aforementioned documents, as reference templates, have been implemented
within the constructed computer system, which supports the process of managing
avionics software development and certification.

2.2. Avionics Software Development Process and Possible Computer-Aided Support

The avionics software development process consists of four detailed processes:

• The software requirement process, which leads to the development of high-level
requirements (HLRs);

• The software design process, which develops low-level requirements (LLRs) and
software architecture based on HLRs;

• The coding process, which leads to the creation of a source code and a nonintegrated
object code;

• The software integration process, which involves consolidating the software into the
form of executable programs and its integration with external devices.

High-level requirements (HLRs) are implemented based on system architecture and
system requirements. They involve time waveforms, memory management, planned
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links with external devices, methods of responding and detecting errors, system operation
monitoring, and software partitioning. HLRs constitute a base to develop low-level re-
quirements used in the software design process, which include descriptions of connections
with external devices, definitions and manner of data flow, communication mechanisms,
and software components.

The coding process involves translating LLRs into source code and a precompiled
object code. It is associated with the verification process because the preliminary execution
of a partially developed code is conducted at this stage. The integration process involves
compiling and combining the compiled code into executable applications (one or more)
and embedding this software on the target platform (the onboard device).

Software development processes determine one or many system requirement levels.
High-level requirements are determined based directly on system architecture and system
requirements. They are developed within the software design process, thus creating inter-
related low-level requirements. However, when a source code is generated based directly
on high-level requirements, it also corresponds to low-level requirements and is subject
to recommendations on low-level requirements. Software requirement processes utilize
software lifecycle process outputs to create high-level requirements. The basic result of this
process is software requirement data.

Software requirement data define high-level requirements, including the requirements
provided by the ordering party. The data should include a description of the software
system requirement allocation, taking into account the safety requirements and potential
error conditions, functional and operational requirements for each operating mode, per-
formance criteria (e.g., precision and accuracy), time-related requirements and limitations,
memory size limitations, hardware and software interfaces (e.g., protocols, formats, in-
put/output frequency), error detection, safety monitoring, as well as the requirements of
software partitioning (how separated software components cooperate) and software levels
for each component.

The input into the avionics software design process includes software requirements,
a software development plan, and software design standards. If the planned transition
criteria are met, the high-level requirements are used within the manufacturing process for
creating software architecture and low-level requirements. They may include one or more
requirement levels.

The basic output in these processes is the design description, which contains software
architecture and low-level requirements. The data should include a detailed description
of how the software satisfies high-level requirements, including algorithms and data
structure, and how the software requirements correspond to the processes and tasks. It
should also provide the software architecture description defining software structure, with
implemented requirements, input/output descriptions (e.g., data dictionary, data and
control flow within the design), resource limitations, a management strategy for resources
and their limitations, and margins as well as methods for measuring these margins (e.g.,
time and memory, sequencing procedures). The description should include intraprocessors
and intratask communication mechanisms, including fixed interruption time sequences,
design methods, and details on their implementation (e.g., software loading). An important
element of the description is user-modified software, partitioning methods, and measures
to prevent partition breach as well a description of software components (regardless of
whether they are new or previously manufactured) and a reference to the baseline version
from which they were downloaded. This description should also include derivative
requirements arising from the software design process. If a system contains an inactive
code, a description of security measures for the activation of the code on the target computer
and a justification of design decisions are directly included in the system requirements
associated with its security.

The software design process is complete when its objectives and the goals of the asso-
ciated integration processes are achieved. Within the software coding process, the source
code is implemented based on software architecture and low-level requirements. Coding
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process inputs are low-level requirements and software architecture from the software
design processes, the software development plan, and software coding standards. The
software coding process can be commenced when planned transition criteria are met. The
source code is developed in the course of this process and is based on system architecture
and low-level requirements. The target computer and the source code from software cod-
ing processes are used in order to compile, combine, and load data within the integration
process; this is aimed at integrating an avionics system or its equipment constituents.

2.3. Avionics Software Integration Process and Possible Computer-Aided Support

The avionics software integration process consists of four detailed processes:

• Communication within software certification;
• Requirement management within software certification;
• Verification within software certification;
• Quality assessment within software certification.

Communication within certification is an essential process, the task of which is the
successful completion of software certification. It involves constant cooperation and
communication between the applicant and the certification body. The applicant is the
entity seeking certification. This process spreads over the entire software lifecycle, which
starts with planning and ends with its disposal. The task of the applicant is to determine
compliance measures, which define the manner in which the software will satisfy basic
certification requirements.

The process of requirement management, just like communication within certification,
spreads over the entire software lifecycle. It covers all data and documentation used
for software development and verification. Managing the requirements is the “art” of
identifying, organizing, and controlling changes at the software development stage. The
main task of this process is to achieve the highest possible efficiency while minimizing
errors. The requirement management method is associated with the onboard equipment
damage level. Standard DO-178C defines two software control levels: Levels CC1 and CC2.
Level CC1 must satisfy all DO-178C requirements, whereas Level CC2 only satisfies some
of them (related to Assurance Levels C and D).

The software verification process involves the detection and description of errors
introduced from the software planning stage to the development stage. Standard DO-178C
does not define the techniques utilized for verification but rather the objectives that must
be achieved.

The task of the quality assessment process is to demonstrate that the developed soft-
ware is compliant with the assumed requirements and standards, which, in consequence,
should result in a product meeting the expectations of the ordering party (or show discrep-
ancies relative to the adopted requirements). Software quality assessment is an ongoing
process, which starts at the planning stage and continues through the development and
testing stages until the final product.

All of the aforementioned features can be satisfied with regards to developed avionics
software through the use of appropriate computer-aided management [21].

2.4. A Method for Predicting Avionics Software Vulnerabilities Using Branching Processes

One of the latest approaches aimed at dealing with avionics software security vulner-
abilities is the application of vulnerability and hacker-attack predicting models (VPMs).
These models are based on machine-learning elements, which enables predicting software
components that may contain vulnerabilities in their future versions. VPM modules utilize
software attributes from their historical versions as input data, which are then used in
binary classification [22,23].

The most common learning techniques used in modeling software vulnerabilities are,
e.g., logistic regression, decision trees, k-nearest neighbors, naive Bayes, random forest and
support vector machine (SVM).

The conducted analysis indicated the two most popular VPM types:



Sustainability 2021, 13, 1547 7 of 20

• The use of software metrics, which take into account a specific set of software metrics
when creating a binary classifier. The objective of preliminary testing is the empirical
evaluation and confirmation of expert opinions that software complexity is opposed to
software security. However, the generally observed weak link between complexity and
security vulnerabilities lead to the need to investigate various models for predicting
vulnerabilities, such as code modification, relationship, code coverage, conjugation,
consistency, and developer activity.

• The use of text exploration techniques, where the source code of tested software
components is parsed and represented as a set of tokens (i.e., keywords). Tokens are
combined into a data set and user together with the data on vulnerabilities for training
vulnerability predictors. During the second phase (called the prediction phase), a
trained classifier uses these datasets to determine whether a future version of a studied
code module is vulnerable to errors and hacker attacks or not.

The starting point of the developed method is determined according to which software
security can be defined as follows [24,25]:

R(t) = 1−Q(t) (1)

where R(t) is the software security state (no vulnerabilities discovered); Q(t) is the vul-
nerable state (vulnerabilities discovered in the examined software); λ(t) is the intensity of
transition from state R(t) to Q(t).

Software vulnerability occurrence intensity is defined as the density of vulnerability
occurrence probability in time, provided that no software vulnerabilities are discovered
during that time [26–30].

Software vulnerability occurrence intensity is described by the following formula:

λ(t) = lim
∆t→0

P{t < T ≤ t + ∆t|t < T}
∆t

(2)

The probability of discovering vulnerabilities in a single software occurrence is ex-
pressed by the formula:

q = 1− e−λt (3)

where q is the probability of vulnerability discovery in a single software instance; t is the
time of a single software instance operation in time interval (0, t).

Further transformations allowed to determine estimator (λ̂ ) of the unknown intensity
of discovered vulnerabilities—parameter λ. For this purpose, the maximum likelihood
method was used, which gives the result that can be written as follows:

λ̂ =
n1 + n2 + . . . + ni
T1 + T2 + . . . + Ti

(4)

The proposed method involves calculating the probability of eliminating software
vulnerabilities and the mean value of eliminated vulnerabilities (at a relevant time). The
proposed approach is based on using branching processes [31].

The method concept involves patching vulnerable software. Firstly, a scenario with
applied antivulnerability measures is considered. In such a case, it is assumed that after
one testing period, all software vulnerabilities are detected and patched. As a result,
these former vulnerabilities are either nonexistent in the following period or their impact
falls to a safe level; however, new vulnerabilities appear due to patching the previous
ones. Furthermore, there is always at least one software vulnerability, so for the sake of
simplifying the notation, it is assumed that the zero period has at least one vulnerability.
Let it denote the number of sensitivity descendants for each of them. This means that a
new population size appears from time to time, which can be obtained as follows:

Q(n + 1) = ∑Q(n)
k=Q(1) Y(n+1)

k (5)
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where (Yk)k≥1 forms a sequence of independent, identically distributed, non-negative (and
almost surely finite) random variables. Note that in this model, the Q(n) vulnerabilities in
the n− th period of time are patched at time n + 1 as they are not considered in (11).

Let Gn(s) = E
[
sQ(n)

∣∣∣Q(0) = 1
]

now denote the probability-generating function
of Q(n), n ∈ N (N is a set of non-negative integers) with G0 (s) = s and Gn(0) =
P(Q(n) = 0|Q(0) = 1), where E[·|·] denotes a conditional expectation. Moreover, let us
assume that µ = G′1(1), where by G′1 we mean the derivative of G1 (let us also recall that
the expression ‘ f : g’ means f is equal to g by definition).

Let µn denote the mean population size at generation n ≥ 0. We have the following
well-known fact:

Theorem 1.

µn = E[Q(n)|Q(0) = 1] = (E [Q(1)|Q(0) = 1])n = µn,
n ≥ 1

(6)

From the above theorem, it is easy to see that

E[Q(n)|Q(0) = k] = kE[Q(n)|Q(0) = 1]n

= k(E[Q(1)|Q(0) = 1]n = kµn (7)

The time of vulnerability elimination T0 can be defined by

T0 = inf{n ≥ 0|Q(n) = 0} (8)

where “inf” is the infimum of a set.
Let us denote the probability of elimination within a finite time interval, starting from

Q(0) = k by αk, i.e.,
αk := P(T0 < ∞|Q(0) = k) (9)

Similarly, as in Theorem 1, we can check that

αk := P(T0 < ∞|Q(0) = k) = (P(T0 < ∞|Q(0) = 1))k

= αk
1 , k ≥ 1

(10)

The above values can be computed using the following theorem:

Theorem 2. The probability of vulnerability elimination α1 := P(T0 < ∞|Q(0) = 1) is the
smallest solution of the equation G1(s) = s.

Now, let us assume that every generation of vulnerability is given by the Poisson
distribution; in particular, we have P(Y1 = n) = λ̂n

n! e−λ̂, λ̂ > 0, where λ̂ is estimated from (4).
Under the assumption that Q(0) = 1, one gets

G1(s) = E
[
sY1
]
= ∑∞

n = 1 snP(Y1 n)
= e−λ̂ ∑∞

n=0 sn λ̂n

n! = eλ̂s−λ̂ (11)

Moreover, G′1(s) = λeλ̂s−λ̂; therefore, by using Theorem 1, we obtain

E[Q(n)|Q(0) = 1] = µn =
(
G′1(1)

)n
= λ̂n (12)

Assuming that Q(0) = k, E[Q(n)|Q(0) = k] = kλ̂n.
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By Theorem 2, the probability of eliminating vulnerabilities (assuming that Q(0) = 1)
is the smallest solution to the following equation:

eλ̂s−λ̂ = s (13)

Assuming that s ∈ [−1, 1] and ex > 0 for any x ∈ R, where R is a set of real numbers
if we restrict to seek solutions within the interval (0, 1], obviously 1 is the solution of this
equation. Under the next assumption that Q(0) = k from (10), it is enough to raise (13) to a
power k.

We will next show that for λ̂ ∈ (0, 1), the smallest solution of (13) is 1. In other words,
it is necessary to show that for any s ∈ [0, 1], the tangent line to the graph of f(s) = eλ̂s−λ̂

has a strictly smaller slope than the function g(s) = s.
Indeed, for λ̂ ∈ (0, 1), we have

f′(s) = λ̂e
(λ̂s−λ̂)

< e(λ̂s−λ̂) < e(λ̂s) < 1 = g′(s) (14)

Using the same method, we can show that for λ̂ = 1, Equation (13) has exactly one
solution, i.e., s = 1. Let us then consider function F(λ̂) = e(λ̂s−λ̂). It is easy to see that if we
set s = 1, then for any λ̂, this function is equal to 1. Hence, F is strictly decreasing, and, by
(14), we obtain that for λ̂ ∈ (1,+∞), there is always s ∈ [0, 1), which is the solution of (13).

In our case, this means that when setting λ̂ ≤ 1, then the probability of eliminating
vulnerabilities will be equal to 1, and the mean value of vulnerabilities will converge to 0
by (12). On the other hand, if we set λ̂ > 1, the probability of eliminating vulnerabilities
will always be smaller than 1, and the mean value of vulnerabilities will diverge to +∞.

As we were saying, the most interesting situation is when the probability of eliminating
vulnerabilities is equal to 1. Otherwise, when the probability is less than 1, we are not sure
of elimination.

Finding avionics software security vulnerabilities that lead to errors or hacker attacks
is considered a useful activity that can highly impact flight safety and reliability. The ability
to predict the occurrence of software vulnerabilities or to quantitatively measure their
impact enables the forecasting of software security trends and the planning of a widely
understood process of managing its safety.

The developed method is aimed at improving the ability to predict vulnerabilities in
the tested software. Verifying and then improving the accuracy of the proposed method
requires further research, followed by empirical analysis using the data from vulnerability
databases or other types of resources on vulnerability.

3. Results

One of the solutions introduced at AFIT in the field of limiting errors within developed
avionics software is a computer-aided management system, as per the requirements of
standard DO-178C, and the implementation of these requirements in the form of a proce-
dure in the ISO-9001 Quality Assurance System. The constructed computer system enables
the implementation of verifications and the creation of documents required by standard
DO-178C (i.e., plans, reports, statements) directly from the AFIT IT network.

3.1. Basic Tasks and Functions of a Computer System Supporting the Management Process

The task adopted for the purposes of implementation was constructing a tool for
computer-aided management of software development for the purposes of a helmet-
mounted flight-parameter display system, to be developed and constructed at AFIT as per
standard DO-178C.

The main functions of the constructed computer support IT system included:

• Setting up a new project, which involves entering information on, among other things,
project title, personal data of the project manager and individual contractors, their
authorizations, and system accessibility levels to the system;
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• Entering data into the knowledge base regarding project implementation (details,
finances, and limitations);

• Automatic generation of document templates required in standard DO-178C (i.e.,
plans, standards, verification procedures and methods, reports, and other entries);

• Automatic generation of tests for the developed software and archiving the test results;
• Archiving correspondence between project contractors, program files, and their test results;
• Automatic backup of the files to a server located in another building within AFIT

premises (protection against data loss);
• Providing project implementation data as per entered authorization of system users;
• Reporting project status for the purposes of an audit or inspection, as per the entered

guidelines.

A computer system supporting the management of avionics software management,
after installing specialized software (including static and dynamic analyses, adapted to
software vulnerability and error detection, to determine its vulnerabilities to structural
damage of the avionics system and hacker attacks), enables direct, electronic cooperation
between project participants and its supervision by the project manager, who is responsible
for correct project implementation.

3.2. Structural Diagram of a Computer System Supporting the Management Process

The main structural element of the computer system supporting the management of
avionics software development is a special server built into the AFIT IT network (Figure 3). The
server cooperates with the workstations of individual system users. A file server, called
a backup, is used to protect the gathered information. Its task is to archive the files. The
current state of project progress is saved in its memory after each “working day”. It also
cooperates with an emergency server, which is turned on in the case of main server failure
(protecting the current project’s progress).
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The main server operating software includes a Windows Server operating system, a
Windows SQL Server database, and an MS Office editing and calculation suite as specialized
software for project management using guidelines as per standard DO-178C.

The specialized software installed on the server uses computational modules, which include:

• Basic analysis for preliminary testing and verification of the developed software (Static
Analysis, Dynamic Analysis, TBvision, TBrun, TBmisra, TBsafe);

• Advanced analysis for preliminary testing and verification of the developed software
(Modified Condition/Decision Coverage, Information Flow Analysis, Dynamic Data
Flow Coverage, Extract Semantic Analysis);
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• Complementary analysis for preliminary testing and verification of the developed
software (Test Vector Generation, TBeXtreme, TBmanager, Support for Target Testing,
Tool Qualification);

• Additional testing software, which provides ongoing support for the process of devel-
oping individual software components.

The presented specialized software, integrated with the computer system support-
ing avionics software development process management, was used to test the software
developed for a helmet-mounted flight-parameter display system.

3.3. Technical Implementation of a Computer System Supporting the Management Process

The technical implementation of the computer system supporting the avionics soft-
ware development management process utilized specialized modular computers (Figure 4),
operating as servers and built into an IT cabinet.
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The AFIT IT network also includes power supply modules, switches, connection
panels, cabling, and additional elements (including thermometers and hygrometers to
monitor the condition of the air in the server room area). A modular structure of the servers
and the application of connection panels (Figure 4b) enables the selection of an IT network
configuration that is optimal for the system administrator and users.

The additional equipment of the constructed computer system consisted of a launch
stand for the helmet-mounted flight-parameter display system that enables the testing of
the developed software. The construction test stand is called a technology demonstrator for
a computer system supporting the avionics software development management process.

4. Discussion

An example of a system utilizing avionics software that is critical to flight safety is, a
helmet-mounted flight-parameter display system.

The helmet-mounted flight-parameter display system is designed to display pilot
and navigational information in front of the eyes of Pilot 1 (crew commander) and Pilot 2
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(navigator). The system displays information as graphic symbols or in digital form. It
enables monitoring flight parameters while simultaneously observing the helicopter’s
surroundings, without the need to look at the instrument panel when flying. This is
particularly important during low-altitude maneuvering flights (e.g., in the mountains),
during both day and night, combined with NVG (night vision goggles), which supplement
the helmet-mounted system (Figure 5).
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The system is fitted with a feature to display pilot and navigational information, as
well as to monitor the propulsion system in the form of 16 flight parameters selected
on four different display boards and 27 warnings about dangerous situations on board
the helicopter (WARN) and helicopter onboard system failures (FAIL) (Figure 6). The
advantage of a helmet-mounted flight-parameter display system is the automatic preflight
diagnostics and the possibility of entering data into the system.
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As a part of the helmet-mounted flight-parameter display system’s lifecycle, the sys-
tem requirements are derived directly from the system’s operating requirements and other
conditions associated with flight safety and reliability, as well as operating requirements.

Flight safety requirements result from assessing the security level, which contains
functional, integration, and reliability requirements for a given system. Requirements on
the error level are defined in the course of the security assessment process in order to
guarantee system integrity through specifying the system protections and responses in the
event of such errors. These requirements are defined for software and hardware with the
aim of eliminating or limiting error effects as well as ensuring error detection, tolerance,
removal, and avoidance. System processes responsible for improving and assigning system
requirements to hardware and/or software lead to the development of the appropriate
architecture for the helmet-mounted flight parameter display system.

The software structure of the helmet-mounted flight-parameter display system, after
decomposition, covers such elements as graphic computer software and signal matching
system software. System software structure is understood as a combination of software
configuration and software architecture. Software structure configuration is understood
as a set of directories, subdirectories, and files organized in the form of a directory tree.
Software architecture is understood as a set of software modules, the interconnections
between them, and the external environment these modules work with. A software module
is understood as a set of computer files within an organized structure that executes, a
specific functional task.

BIOS configuration is understood as the process of setting the BIOS (Binary In-
put/Output System) parameters available to a programmer, which leads to improved
cooperation between the hardware and software layers.

The “Software documentation for the SWPL-1 helmet-mounted display system” and
the “Quality Plan for an IT project involving software for the SWPL-1 system” were
developed as a base for the construction of the helmet-mounted flight-parameter display
system. These documents attempt to satisfy the requirements set out in DO-178C. Quality
plan development was preceded by a detailed review of all requirements regarding the
product and contract, with particular attention to new and nonstandard requirements
according to AQAP 2210, cl. 2.2.2 and AQAP 2105, cl. 3.2.1.

The software, the nonstandard behavior of which, as indicated in the security assess-
ment process, can lead or contribute to a significant error, resulting in conditions limiting
the helicopter’s functionalities or an additional burden for the pilot, is subject to a special
analysis. If a given component is awarded such a level, it will not be approved by the
certification body.

4.1. Meeting the Software Planning Requirements

The planning process involving the software for the helmet-mounted flight-parameter
display system is defined in a way that the requirements are met and the confidence
level is adequate to the adopted software’s assurance level. The “IT project of SWPL-1
system software” was developed for the purposes of implementing this project. Based on
the aforementioned documents and the requirements set out in the “Initial tactical and
technical specifications of the flight parameter imaging system for a Mi-17 helicopter”
document, it satisfies the requirements of standard DO-178C. The basis for developing this
part of the design is, Procedure No. P115, Software Quality Assurance in accordance with
AQAP 2210.

The objective of the IT project was to develop software for a helmet-mounted flight-
parameter display system, as per the requirements determined by the ordering party.
The software, as the outcome of the IT project, ensures the correct functioning of the
helmet-mounted flight-parameter display system throughout its entire lifecycle.

AFIT, as the software developer, has additionally prepared a series of requirements
associated with the software development process. These requirements are included in the
following documents:
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• Internal study: “Preliminary requirements regarding the SWPL-1 flight parameter
display system software”;

• Internal study: “Detailed requirements regarding the SWPL-1 flight parameter display
system software”.

The software structure of the SWPL-1 flight-parameter display system was described
in the document “Software documentation for the SWPL-1 helmet-mounted flight param-
eter display system”. Recognized software engineering methods, supporting programs,
resources, and procedures were applied in the course of the IT project’s implementation.

4.2. Meeting the Software Development Requirements

According to the requirements of standard DO-178C, software development processes
for a helmet-mounted flight-parameter display system is contained in the software plan-
ning process and the software development process. Processes associated with software
development include software requirement definition processes, software design processes,
processes associated with software coding, and integration-related processes.

4.3. Meeting the Software Integration Requirements

The integration process of the software for a helmet-mounted flight-parameter display
system involves software integration and hardware/software integration. Integration
processes can be executed when planned transition requirements are met. Integration
process inputs are software architecture from software design processes and the source
code from software coding processes, whereas the integration process outputs are the object
code files with compilation. Integration processes are complete when their objectives and
the goals of associated integral processes are met. The object code should be generated
from the source code and then compiled.

All files with data parameters should be generated, and software should be integrated
into the main computer, target device emulator, or the target device. The software should
be implemented in the target computer for the purposes of hardware/software integration.
Inappropriate or erroneous inputs detected during the integration process should be
forwarded to software requirement processes, software design processes, coding processes,
or software planning processes as feedback that requires verification.

4.4. Selected Test Results Involving Software Developed for a Helmet-Mounted Flight-Data
Display System

The graphic computer of the helmet-mounted flight-parameter display system conveys
flight parameter information on the DWN-1 daytime helmet-mounted display or the NWN-
1 night-time helmet-mounted display. The information received from the signal matching
system, the GPS satellite navigation receiver, and the ADU aerodynamic data unit is
presented as graphic symbols or in digital form.

The graphic computer software structure comprises the following elements:

• BIOS processor direct operation system configuration;
• WINDOWS XP Embedded operating system configuration;
• Graphic computer user software configuration;
• Graphic computer user software architecture (Mi17sys main module, Mi17konfigurator

configuration module, and Mi17hud display module).

Graphic computer software is embedded in the permanent memory of the CPU
motherboard. The calibration results for individual measurement channels are saved in the
computer’s external memory on the FLASH packet.

Graphic computer software identification contains such information as software name,
software ID number, software version ID, software component modules, and the granted license.

The system software is tested in order to demonstrate that it satisfies the basic re-
quirements set out in AQAP 2210 and DO-178C and to demonstrate, with a high degree of
confidence, that the errors, which can lead to the unacceptable failure conditions defined in
the ARP 4761 security assessment process, have been removed.
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The objective of graphic computer software testing is to demonstrate that the object
executable code (software code implemented directly in the device) satisfies high-level
requirements and is closely related to low-level requirements.

Three test types were distinguished for the graphic computer software:

• Hardware/software integration testing in order to verify the correct functioning of
software on the target computer;

• Software integration testing in order to verify the relationships between software and
component requirements and verify the implementation of software requirements and
their components within the software architecture;

• Low-level testing in order to verify the implementation of low-level requirements.

If the test cases and the corresponding test procedures that were developed in order
to test the hardware/software integration or software integration satisfy the basic coverage
and structural coverage requirements, there is no need to duplicate low-level testing.
Replacing equivalent low-level tests with high-level tests can lower testing efficiency due
to the reduced number of tested functionalities.

Such an example is a “software module” implementing configuration and calibration
functions called the “Mi17Konfigurator”, which was embedded in a specific hardware
environment; this is significantly different from a standard configuration of an IT system.
This is why special “human–machine” communication methods were used.

The “Mi17Konfigurator” module, implemented on the graphic computer, closely
cooperates with other software modules. The input devices that the software cooperates
with are the “BRIGHTNESS” manipulator-knob and the “OPERATING MODE” button.

As the software system implementing configuration and calibration functions within
the helmet-mounted flight-parameter display system was embedded in a specific hard-
ware environment, which is significantly different from standard IT system configuration,
satisfying the requirements of user-friendly communication methods was ensured.

The created graphical interface met the requirements of user-communication using, a
very limited set of “inputs–outputs”. The application of a window-based interface enabled
the intuitive operation of the software.

The output device for a military aircraft pilot is the DWN-1 daytime helmet-mounted
display. The software recognizes it as a monochrome computer monitor. The “BRIGHT-
NESS” manipulator is used as a device to select software system options, and the “OPER-
ATING MODE” button acts as a device confirming the selection. Manipulation results are
displayed on the helmet-mounted display on an ongoing basis. The graphical interface
system consists of cooperating graphic elements called widgets. Widget examples include
graphical buttons, labels, check-boxes, and numerical fields.

The reliability of pilot and navigational information presented on the SWPL-1 helmet-
mounted flight-parameter display system consists of three levels:

• Level I is the test of system readiness and efficiency (reporting and alerting malfunc-
tions); integrity is the system’s ability to notify the user about the fitness for use within
the navigation process in a timely manner;

• Level II is the correction of system errors and scaling; a data-sensitive (faulty measure-
ment data) sent to a pilot or system user as a result of processing individual datasets
within this system;

• Level III is matching the indications and pilot supports; reliability is the measure of
the pilot’s confidence in the correctness of information indicated on board an aircraft.

In order to ensure the required reliability of pilot and navigational information pre-
sented on the helmet-mounted flight-parameter display system, the developed software
was subject to complex tests utilizing a constructed computer system supporting the
avionics software development process.

Selected results of conducted tests involving a fragment of the developed software for
a helmet-mounted flight-parameter display system are shown in the figures below.

Figure 7 shows the types and number of errors detected in the software by the MISRA
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C:2012 module within the static analysis [32–38].
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Figure 9 shows a software quality assessment in terms of satisfying selected require-
ments, implemented by the MISRA C:2012 module within the static analysis.
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The conducted verifications showed the presence of numerous errors within individual
sections of the software, which enabled their elimination in the target version of the software
developed for a helmet-mounted flight-parameter display system [42].

5. Conclusions

The progressive computerization of a modern aircraft induces the fitting of onboard
equipment with appropriate software, which should satisfy the requirements of flight
safety and reliability. Software failures in onboard electronic devices can lead to enormous
casualties and material losses. This is why developing such software requires its designers
to use particular methods and procedures that are aimed at minimizing errors.

Currently, widely used electronic onboard equipment consists of two fundamental
layers, for which appropriate standards have been developed and adopted by international
aviation institutions: DO-254 (which sets out requirements in terms of equipment, com-
prised of various types of electronic circuits, e.g., logic gates, specialized ASIC circuits, PLF
programmable logic structures, FPGA) and DO-178C (which sets out requirements in terms
of software for various hardware layers, including BIOS, BSP, and operating systems that
applications referring to libraries and drivers ).

As the aforementioned layers interact, e.g., through generating interruptions and
exchanging data, in order to ensure an appropriate level of reliability and safety of elec-
tronic onboard equipment, it is required for their design and manufacturing processes to
implement operations in conformity with standards DO-254 and DO-178C. The task of this
process is to create an electronic device and software, the operation of which will comply
with the adopted assurance levels (A, B, C, D, or E), pursuant to standards ARP 4761 and
ARTP 4754A.

Standard DO-178C is a basic document containing issues related to software within
the certification of avionic systems and devices. Standard DO-178C is not responsible
for the determination of software security guarantees. Security attributes within an IT
project, the requirements, and functionality must receive additional, mandatory tasks
associated with system security. A certification body requires the DO-178C standard to
exhibit comprehensive analysis methods aimed at determining the software level. The
software level, also called the project guarantee level or object development assurance level,
is determined based on a security assessment and risk analysis, studying the outcomes of a
failure within a system. Every bit of software that steers, controls, and monitors critical
functions in terms of flight safety should receive the highest level of assurance. The number
of achieved objectives depends on the software assurance level.

Standard DO-178C is based on formulating appropriate requirements and their sub-
sequent verification in order to demonstrate meeting them. An advantage of standard
DO-178C, a very practically valuable one, is that it does not define the way in which given
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requirements are to be satisfied and verified. This means that it enables the use of various
tools, methods, and techniques within the software creation process. However, it should
be noted that standard DO-178C is a multifaceted process; hence, its implementation at
AFIT required a lot of effort and resources. Being aware of the need to satisfy appropriate
quality and reliability standards, relative to the developed avionics software, meeting the
requirements of standard DO-178C seems obvious and necessary.

The objectivity of verification and validation processes is ensured through their “in-
dependence” from the development team. Implementing the requirements of standard
DO-178C within the process of developing avionics software dedicated to the SWPL-1
CYKLOP helmet-mounted imaging system, AFIT developed “Documentation of the soft-
ware for the SWPL-1 system” and “Quality Plan for an IT project involving software for
the SWPL-1 system”.

The ability to predict vulnerabilities and bugs within the developed software (i.e., the
impact of structural damage or hacker attacks) in future software versions can be crucial in
assessing the risk associated with avionics software security throughout its lifecycle. Some
of the existing quantitative models for analyzing software vulnerabilities were developed
based on dedicated software data, which is why actual scenario implementation may
be limited. The proposed method for predicting software vulnerabilities based on the
use of branching processes supports the avionics software development process, with a
minimized impact on flight safety.

The constructed system for computer-aided management of avionics software de-
velopment, in accordance with standard DO-178C, has been executed based on modular
servers and specialist software, with implemented applications testing the developed
source code. AFIT, as the source code owner, has the right to modify it by adapting the
constructed avionics devices to new functions on board modernized aircraft.

One of the main advantages of the constructed system is the feature of electronic
supervision over documents created within a project, both at the software planning stage
as well as the software development and integration stage, hence allowing us to obtain the
collective information required by the project manager and for audits and inspections.

The system at AFIT is a significant research tool in the computer-aided management
of the avionics software development process. It enables the expansion of the features
of the current ISO-9001 and AQAP 2210 quality assurance systems existing at AFIT with
procedures associated with meeting DO-178C standard requirements.
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