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Abstract: Fly ash, as a supplemental pozzolanic material, reduces concrete’s adverse environmental
footprint by decreasing the emission of carbon dioxide (CO2) during the cement manufacturing
process. Fly ash, which is a waste material, can enhance both the mechanical characteristics and dura-
bility of concrete, and has the capability to play an important role in sustainable design. Considering
the widespread interest in applying Fly ash, and despite research studies, the level of replacement is
still unclear. In this paper, a novel method using artificial neural networks (ANN) is presented to
predict concrete’s mechanical characteristics by adding Fly ash. In this regard, a host of available
experimental data, such as the properties of Fly ash, along with concrete additives, was fed into an
ANN model. Concrete samples’ tensile and compressive strengths, in addition to their modulus of
elasticity, were defined as outputs. It was observed that the predicted outcomes agreed well with the
experimental results. To further enhance the research outcomes, simple but practical equations are
presented to assess the effect of using Fly ash on concrete’s mechanical characteristics.

Keywords: compressive strength; Fly ash; artificial neural network; prediction

1. Introduction

Three major aspects—Resource Conservation, Life Cycle Costing (LCC), and Human-
Friendly Designs (HFD)—fully affect the Sustainability of the Built Environment (SBE).
Nowadays, the concept of the 3Rs, i.e., Reduce, Reuse, and Recycle, are commonly utilized
in Resource Conservation [1]. Embodies Energy, defined as the energy consumed for
raw material extraction, transportation, manufacture, assembly, installation, disassembly,
and deconstruction for any product system over the duration of a product’s life, based
on [2], is one of the important considerations when measuring the sustainability of a
building material. Concrete, as one of the most important and most consumed construction
material, which has a negative impact on the environment, needs to be considered in
sustainable development. The amount of embodied CO2 (ECO2), i.e., the total amount of
CO2 produced in the extraction and transportation of raw materials and their manufacture
into the final product, is directly compatible with cement content in concrete mix designs,
since in the production process of Portland cement, a huge amount of energy is consumed,
and a remarkable amount of CO2 is produced [3–5]. The ECO2 is stated as CO2 produced
per unit of volume or mass. For example, the ECO2 of Portland cement is about 910 ECO2
kg/tonne [6], which is responsible for 7% of total worldwide CO2 emissions [7]. The high
amount of cement consumption and CO2 emissions have led to increased global awareness,
and inspired researchers to develop sustainable options.

Supplementary Cementitious Materials (SCMs), which are mineral admixtures with
pozzolanic activity, can be used to partially replace Portland cement in concrete, to cover
the other 3Rs concept in SBE, i.e., reducing. The application of SCMs in the concrete
industry has been gaining wide attention as an environmentally-friendly and cost-effective
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approach. Adding SCM to concrete leads to denser calcium silicate hydrate (C–S–H),
which reduces permeability and enhances the concrete’s compressive strength. In this
regard, further studies are required regarding the pozzolanic reactions, and the proper
utilization of these additives to optimize the mechanical properties of the mixtures, as well
as reducing the substantial volume of CO2 emissions, to gain a sustainable material [8].
In the past decade, there has been increasing interest in evaluating the cementing efficiency
parameter, which is defined as the effect of SCMs on enhancing a specific property, re-
specting the ratio of water/binder or the cement content, and the recognition of effective
parameters of a mineral admixture [9–11]. One of the 3Rs in resource conservation to
obtain a sustainable design is reusing material. Fly ash, as the solid waste of coal-firing
power stations, predominantly consists of ferric oxide (Fe2O3), aluminum oxide (Al2O3),
silicon dioxide (SiO2), and calcium oxide (CaO). Fly ash is a waste material in the power
generation industry, and reusing this highly active pozzolan in the construction industry
may bring about several advantages. The other benefit of using Fly ash in concrete is the
reduction of ECO2 (about 230 times less than Portland cement [6]) which consequently
leads to the achievement of sustainable materials.

The presence of SiO2 and Al2O3 are the main reasons accounting for the pozzolanic
activity of Fly ash. The presence of calcium aluminate hydrate (C-A-H), along with the
C-S-H gel, forms a denser matrix, which in respect, improves strength and durability due
to reaction with the calcium hydroxide in the hydration process of the cement [12,13].
The spherical-shaped particles of the Fly ash create a ball bearing effect, in that such
particles perform as a miniature ball that densifies the paste and improves the particle
packing [14]. A host of improvements have been reported regarding the use of Fly ash in
concrete [15]. These include increasing concrete characteristics such as durability, mechan-
ical properties, and workability, along with reducing concrete deficiencies; in particular,
decreasing the early-age thermal cracking, and reducing heat hydration are deemed as
major advantages of the implementation Fly ash in concrete [16–19]. According to chemi-
cal compositions, Fly ash is categorized as Class F and Class C. The Class C Fly ash has
high-pozzolanic and self-cementing characteristics, while Class F represents the reaction
of Fly ash with the excess lime that is incorporated in the Portland cement’s hydration
process [20].

The prime objective of the current study is to present a simple but reliable empirical
formula based on artificial neural networks (ANN) to predict the mechanical properties
of concrete, namely the compressive strength, tensile strength, and modulus of elasticity,
in mixtures including Fly ash. The results of this study will lead to more employment
of Fly ash as an alternative SCM to replace cement, which will ultimately bring about
sustainable development by reusing waste material, and environmental protection by
reducing cement consumption. To fulfill this aim, three perceptron neural networks were
used, along with a backpropagation algorithm. The number of neurons and hidden layers
were specified, and the network was trained using 291 samples containing Fly ash to
evaluate the compressive strength, 56 samples to gauge the tensile strength, and 55 samples
for predicting the modulus of elasticity. In this matter, the input parameters were selected
based on the most influential parameters on the strength of concrete containing Fly ash.

The input parameters considered in the neural network are cement content (C), water
content (W), and Fly ash replacement level (F.A.), along with amounts of coarse aggregates
(G), fine aggregates (S), and SiO2 (Si) in Fly ash. Accordingly, the output parameters were
defined as tensile and compressive strengths, in addition to the concrete’s modulus of
elasticity. The inputs were selected in such a way that the effects of physical and chemical
factors on the mechanical properties of the concrete could be considered. One of the
novelties of this paper is considering the various types of Fly ash, by taking into account
the Fly ash reactivity, i.e., SiO2 content. The predicted outcomes were compared to the
experimental results, and the error rate was determined. Moreover, simple empirical
equations are presented for predicting compressive and tensile strengths, along with
the modulus of elasticity of the concrete samples in the presence of Fly ash. In this
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paper, practical applications of neural networks in engineering are used to enhance the
research outcomes.

2. Artificial Neural Network

Simplifying the models to use and increase their accuracy from complex natural
systems with large inputs are the advantages of neural network applications [21]. Neural
networks consist of simple operating elements that work in parallel. These systems are
information manager models inspired by the human brain. In nature, the performance of
neural networks is determined by the way in which the components are interconnected [22].
Therefore, it is possible to construct an artificial structure in accordance with natural
networks and determine the relationship between its components by adjusting the values
of each connection, as the weight of the connection. After adjusting or training the neural
network, researchers apply a specific input leads to a particular result as the output.
The most important part of the training is minimizing the error. This is done by changing
the weight during the learning step continuously until the error function, like mean square
error, is less than a specified limit. The error is determined as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

where N stands for the samples number; and yi and ŷ are the target and predicted results,
respectively. The prediction procedure is iterative, which initializes the w value, estimating
ŷ, and calculating the corresponding error. In the initial step, due to the randomly-selected
weights, the error is high. The challenge of network learning is to determine the weights
that result in less error for all data sets. In most artificial networks, the numbers of weights
are high, and so they cannot be found directly. Estimating weights by trial and error also
wastes effort and time. The gradient descent approach is an effective way to determine
the minimum sets of the error more quickly during the training of the network. Gradient
descent, as the name implies, uses the error gradient to descend the error [23]. The error
is related to the output of the network; it depends on the weighted output of the hidden
neurons, and it depends on the weights. Thus, the chain rule of differentiation can be
extended from the error to weight of the first layer, ∂E

∂wnm
. This method, i.e., backpropagation,

which was first proposed by Werbos [24] and then by Rumelhart [25], is a gradient descent
algorithm that is based on shifting the network weights to the opposite direction of the
performance function slope.

A neural network is based on the following assumptions:

1- processing of information occurs in simple members called neurons;
2- signals are passed to neurons over connection links;
3- every connection has an associated weight;
4- each neuron transmits inputs from the activation function and determines outputs.

A neural network is known based on its architecture, the learning algorithm, and the
activation function. Using neural networks reduces the number of experiments and saves
time [26–28].

2.1. Dataset

An in-depth literature review was conducted to develop a neural network that can
evaluate the mechanical properties of the concrete containing Fly ash. The dataset includes
about 296 samples with six distinguishing features. The collected dataset contained in-
formation about the water content (W), cement (C), Fly ash (F.A.), gravel (G), sand (S),
and SiO2 content of Fly ash (Si). Besides, the mold of specimens was considered, so the
compressive strength was converted to a 150 mm cubic standard mold. The 28-day com-
pressive and tensile strength, along with the modulus of elasticity, were considered as
outputs of the network. The datasets are used to train and test the network. The distribu-
tion of the parameters considered is presented in Figure 1. Table 1 summarizes statistical
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parameters for the concrete containing Fly ash dataset. As can be seen, the amount of
cement consumption can be limited by implementing Fly ash as a SCM. This may result in
a reduction of ECO2 in the practical usage of concrete.

Table 1. Statistical parameters for the concrete including Fly ash dataset.

Attribute Unit Min Max Average Standard Deviation

Water kg/m3 100 255 173.25 30.35
Cement kg/m3 90 675 273.9 100.44
Fly ash kg/m3 10 544 139.04 87.1

Coarse Aggregate kg/m3 436 1278 976.83 195.03
Fine Aggregate kg/m3 279 1293 749.27 178.25

SiO2 % 26.61 79.34 52.63 9.31
28-day compressive strength MPa 5 121 41.35 20.64

Tensile strength MPa 1.5 6.2 3.62 1.09
Modulus of elasticity GPa 5 45.8 25.28 9.13
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Figure 1. The histograms of input and the output parameters for mechanical properties of concrete
containing Fly ash, (a) Cement (kg/m3), (b) Fly ash (kg/m3), (c) Water (kg/m3), (d) Coarse aggregate
(kg/m3), (e) Fine aggregate (kg/m3), (f) Sio2 content of Fly ash (%), (g) 28-day compressive strength
(MPa), (h) Tensile strength (MPa), and (i) Modulus of elasticity (GPa).

2.2. Network Modeling

In general, modeling is the procedure of simulating real-world issues using math-
ematical functions [21,29]. It is important to optimize the network’s configuration to
simultaneously save time and maintain the relativity of the prediction process. Due to
the fact that there is no relation to compare the numbers of neurons and hidden layers,
such numbers were specified using the Trial and Error procedure. In this regard, the most
suitable configuration was selected for the ANN model, following the analysis of various
arrangements of hidden layers and assigned neurons in each single layer. It was observed
that the network with a single hidden layer including 13, 6, and, 15 neurons for 28-day
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compressive strength, tensile strength, and modulus of elasticity had the best performance.
The linear normalization of database parameters ranged from 0 to 1. The existing rela-
tionship in the initial gleaned database was preserved by the linear transformation [22].
The Levenberg–Marquardt algorithm was used to train the network, considering the al-
gorithms’ suitable convergence, high precision, and time efficient characteristics [30–36].
This algorithm randomly divided the data into three parts, 70% for training, 15% for valida-
tion, and the remaining 15% for testing the network’s performance. TANSIG (Equation (2))
and PURELIN (Equation (3)) are respectively considered as the hidden and output layers’
activation functions. The learning process was set to be completed should the desired
performance of the network be accomplished.

y = tansig(x) =
2

(1 + e−2x)
− 1 (2)

y = purlin(x) = x (3)

Network Performance

The mechanical properties of concrete containing Fly ash can be predicted, once the
network is appropriately trained. Moreover, the complex relation between the input pa-
rameters and their effects on output can be determined. Figure 2 presents the network’s
performance regarding the evaluation of the compressive and tensile strengths, and modu-
lus of elasticity. The best validation performance was obtained as 0.0038 at the 28th epoch
for compressive strength, 0.0080 at the 3rd epoch for tensile strength, and 0.0027 at the
11th epoch for concrete’s modulus of elasticity in the presence of the Fly ash. The esti-
mation quality is presented in Figure 2 based on the correlation coefficient (R) for all the
incorporated data in the network. The coefficient illustrates the correlation between the
ANN output and the target, i.e., the experimental data. The R values of almost 1 verify
the reliability of outcomes by the network. These values for the compressive strength,
tensile strength, and modulus of elasticity are 0.9729, 0.9658, and 0.9955, respectively.
This indicates that the outcomes of the proposed network are in good agreement with the
experimental results.
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Figure 2. (a) Regression of Fc, (b) performance of Fc, (c) regression of Ft, (d) performance of Ft,
(e) regression of E, (f) performance of E.

3. Results and Discussion

After ensuring the network’s suitable performance and the response accuracy, to esti-
mate the mechanical characteristics of concrete made with Fly ash, three separate networks
were trained using 70% of the data, and their performance was evaluated using 15% of the
data. The comparison of the 28-day compressive strength of the experimental specimen
with the predicted results, based on the ANN is shown in Figure 3a. The results of the
network and experimental values regarding the tensile strength and modulus of elasticity
are presented in Figure 3b,c, respectively. As can be seen, the networks can predict the real
experimental results with suitable accuracy, which is sufficient for practical use. This may
encourage the further usage of ANNs to predict the mechanical properties of concrete
containing Fly ash. Consequently, a simple method to estimate the behavior of concrete
containing Fly ash could result in more employment of this type of concrete by engineers
in practical use. The greater the reduction in cement consumption in concrete leads to
a greater reduction in ECO2, and further realization of sustainable development in the
construction industry.

The statistical error values for the predicted mechanical properties of Fly ash-based
concrete are stated as mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency
(NSE) coefficient, correlation coefficient (R), and root mean square error (RMSE). Such
metrics can be determined according to Equation (4). Furthermore, Table 2 compares
the mentioned metrics (including MSE) following all data sets gleaned from the network.
A zero value is the optimal option for the metric (except for NSE and R). On the other hand,
one is the desired value regarding the R and NSE parameters. The RMSE represents the
existing deviation within the experimental and predicted values. MAPE estimates the error
and the ratio of the error regarding the experimental values [37,38]. NSE is used to evaluate
the predictive capability of the model. The statistical indicators in Table 2 demonstrate that
the estimated compressive strength using the ANN were very close to the experimental
values. This further confirms the suitability of the proposed ANN model in predicting the
mechanical properties of concrete containing Fly ash.

RMSE =

√
∑(ŷ − y)2

N
NSE = 1 − ∑(ŷ − y)2

∑(ȳ − y)2

MAPE =
100
N ∑

∣∣∣∣ ȳ − y
y

∣∣∣∣ R =
∑(ŷ − ¯̂y)(y − ȳ)√

∑(ŷ − ¯̂y)2
√

∑(y − ȳ)2

(4)

where y and ŷ are the target and predicted values; and the ȳ and ¯̂y parameters are the
averages of the target and the predicted values, respectively.
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Figure 3. The comparison of the predicted result and real experimental data for (a) Fc, (b) Ft, (c) E.

Table 2. MSE, root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), R coefficient for All
data in network.

Target Response
Network Performance

MSE RMSE MAE MAPE NSE R

28-day compressive strength 0.0016 0.0401 0.028 14.89 0.9639 0.9729
Tensile strength 0.0036 0.0602 0.0436 11.87 0.9324 0.9658
Modulus of elasticity 0.0004 0.0221 0.0119 3.78 0.9902 0.9955

3.1. Stability Analysis

The ratio of predicted to experimental result, versus the affecting parameters, which
indicate the stability in estimating the mechanical properties of concrete made with Fly
ash, are presented in Figure 4. The affecting parameters, which are normalized in [0, 1]
domain, due to large range of variety, are listed in Table 1. The variation of data about the
horizontal line started from the ratio of 1 shows the stability of parameters, and the closer
the data are to this line, the more stability in the parameters. As can be seen in Figure 4,
all the data indicate a suitable stability and capability of presenting accurate results.
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Figure 4. Stability of mechanical properties prediction for inputs parameters for (a) Fc, (b) Ft, (c) E.

3.2. Sensitivity Analysis

As discussed earlier in Section 2, the weight of each neuron indicates its importance.
The Garson’s factor [39] is used to assess the relative importance of the parameters in the
network. The equation for a network with a single hidden layer can be written as follows:

Qxz =
∑L

y=1

(
wxy

∑N
r=1 wry

vyz

)
∑N

x=1

(
∑L

y=1
wxy

∑N
r=1 wry

vyz

) (5)

where ∑N
r=1 wry is the weights summation within the neurons of N input and the y hidden;

vyz stands for weight of each connection of y and the output neuron z [40]. The sensitivity
analysis result is plotted in Figure 5.

It was observed that almost all of the parameters have comparable participation
in determining the mechanical properties of concrete made with Fly ash. Besides, as no
parameters have relatively low effectiveness, it can be concluded that no irrelevant or excess
parameters have been incorporated. By excluding the excess parameters in the prediction
process, the degradation of learning algorithm is prevented, which in respect results in
further accuracy of the prediction [41–43]. The results of the sensitivity analysis indicate
that the presence of coarse aggregate and water have a significant effect on enhancing the
28-day compressive strength of a concrete with Fly ash. On the other hand, the SiO2 content
of Fly ash has a negligible effect on 28-day compressive strength. This may be attributed
to the time-consuming effects of SCM on improving the compressive strength of concrete.
The mechanical characteristics of concrete with Fly ash are considerably influenced by Fly
ash’s physical properties and chemical composition. These findings are in accordance with
the results of [44–46], which further confirm the accuracy of the network in estimating the
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mechanical properties of concrete containing Fly ash. In addition, this further determines
the efficiency of the proposed network in estimating the mechanical properties of concrete
containing Fly ash, taking into account its chemical characteristics.

W C F.A. G S Si
0

10

20

30
Fc Ft E

Figure 5. Effectiveness of the input parameters in the proposed model.

Regarding the tensile strength, the effective parameter is the SiO2 content, which
is responsible for the pozzolanic reaction. In general, the presence of silica in cement
enhances its mechanical characteristics, e.g., increases in the tensile strength by forming
Si–O–Si bonds, which are stronger compared to the bonds of Al–O–Al and Si–O–Al [47].
Therefore, it is essential to consider the chemical characteristic of SCM in predicting the
mechanical properties of concrete. Furthermore, all parameters affect the modulus of
elasticity of concrete containing Fly ash equally. By comparing the results of the sensitivity
analysis with experimental evidence and facts, it can be said that the proposed network
is able to accurately anticipate the mechanical properties of concrete with less cement
than ordinary concrete. The network can be used as a tool for technicians to further
utilize this type of concrete due to its benefits in terms of sustainable development and
environmental protection.

3.3. Validation of ANN Model

Soft computing tools, as powerful computational methods, have been utilized to
solve complex problems, especially in the engineering field, and also can be utilized for
simulating, assessing, and approximating with high accuracy. The accuracy of the model
to produce new results based on new input parameters, i.e., generalization, should be
determined according to proven facts or theoretical results. A generalization of an ANN is
its ability to handle unseen data. In other words, engineers can use the results of a network
to predict the outcomes of an assumed mix design.

Following the objective of this research to estimate the properties of concrete with
less ECO2, the dosages of Fly ash, which replaced the cement content, and SiO2 as a
chemical characteristic of Fly ash, were considered as variables. Changes in the concrete’s
tensile and 28-day compressive strength, along with variations of the modulus of elasticity
were determined. This evaluation is necessary, as the mechanical properties of concrete
containing Fly ash are influenced by the physical and chemical characteristics of Fly
ash [44,46]. The other independent variables in the input layer were chosen to be around
their median, in order to gain a various compressive strengths. The assumed mix design is
listed in Table 3. The w/(c + F.A.) ratio was presumed to be 0.5, and the Fly ash replaced
the cement in the mixture up to 50% of cement weight. It should be mentioned that all of
these outcomes have been determined in the absence of experimental evaluation, which is
only possible using neural networks. However, the accuracy of the network in predicting
the results were evaluated in Sections 3.1 and 3.2.
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Table 3. The assumed mixture of concrete (All units in (kg/m3)).

Mixture Cement Water Coarse Aggregate Fine Aggregate Fly Ash

C30 370 185 1232 698 18.5–185

For many years, the utilization of Fly ash as a partial replacement of cement in concrete
has been a common practice. However, the quantity of Fly ash to replace the cement for
typical application to obtain optimum results has not yet been determined, despite the
many advantages of this type of concrete in sustainable development. Figure 6a shows
the variations of concrete’s compressive strength after 28 days based on Fly ash and SiO2
contents. The replacement level of Fly ash varies from 5 to 50%. This amount of replacement
leads to a reduction in cement use. As is shown, an increase in Fly ash dosage in the C30
mixture decreases the 28-day compressive strength if the SiO2 content is more than 40%.
Moreover, the optimum Fly ash replacement level can be considered between 10 to 20%,
which is in accordance with the results of previous tests [48–51]. In a concrete with a
low Fly ash replacement level, Fly ash has the characteristics of the pozzolanic material,
however; by using higher volumes of Fly ash, i.e., a replacement level more than 50%,
merely a portion of Fly ash contributes in the pozzolanic reaction, and the remaining
portion has no contribution during either short or long curing times, and acts as a packing
material [52–54]. American and British standards limit replacing the cement with Fly ash
to up 35% in the preparation of concrete for the structural applications [55,56]. The tensile
strength and compressive strength show comparable trends for concrete made with Fly
ash, see Figure 6b.

Figure 6c shows the variation of modulus of elasticity versus Fly ash replacement
level and its SiO2 content. As can be seen, an increase in Fly ash replacement level for low
SiO2 content leads to a decrease in the modulus of elasticity, and a contrasting trend can be
seen in SiO2 content higher than 60%. An increase in Fly ash replacement level leads to a
decrease in modulus of elasticity for lower SiO2 content, and an increase in higher content.
This can be attributed to the packing effect of a high replacement level of Fly ash, which
cannot participate in the hydration process.
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Figure 6. Variation of mechanical properties versus Fly ash dosage and SiO2 content for (a) Fc, (b) Ft,
(c) E.



Sustainability 2021, 13, 1469 11 of 16

3.4. Development of Empirical Approach to Determine Concrete Compressive Strength

The suitable accuracy of results, as well as the comparable contribution of the param-
eters in the network not only enhance the reliability of using ANN simulation, but also
can be used to develop an estimating equation to make it easier for technicians to use.
Such an equation considers the assigned weights and assumed biases of the ANN model
to predict the mechanical properties of eco-friendly concrete, i.e., concrete containing Fly
ash. The generation of empirical design charts and/or equations can reduce the limitation
of neural networks for use in design. The pattern formula used here for estimating the
mechanical properties of concrete with Fly ash was based on the research conducted by
Leung et al. [57]. To come up with an empirical formula, the most effective parameter
on the output, among the other parameters described in Table 1, needs to be determined.
Figure 5 indicates that the cement of the mixture has a more sustainable response than
the other parameters. The variations of 28-day compressive strength, tensile strength,
and modulus of elasticity versus cement value, while the other affecting parameters are
set in their reference values, is plotted in Figure 7. Table 4 lists the curve fitting equation,
along with MSE error of the equation to estimate each mechanical property. The same
procedure is performed for other inputs, while the cement is kept constant at its reference
value. It is assumed that the variation of mechanical properties with each parameter is
independent of the other parameters and can be expressed as Equation (6). In Equation (6),
(MechanicalProperties)chart is equal to the value of each mechanical properties that can be
directly read from Figure 7. A correction function has to be derived in order to account for
the effect of other input parameters on the mechanical property. Using the curve fitting
tools in MATLAB, a line that fits to the presented curve and has the lowest values of least
square error is determined.

MechanicalProperties = [Cw × CF.A. × CG × CS × Csi]× (MechanicalProperties)chart (6)

The equations are obtained based on each desired mechanical characteristic after the
curve fitting process ended. These equations are listed in Table 5. A simple empirical
approach to predict the mechanical properties of Fly ash concrete is provided using the
summarized equations in Table 5, along with the v chart presented in Figure 7. Additionally,
the results of the empirical approach are compared to experimental ones in Figure 8.
Table 6 indicates the error distribution as percentage difference within the experimental
and predicted outcomes. The MSE and correlation coefficient of the network in estimation
of the compressive and tensile strength of concrete, along with its modulus of elasticity,
are 0.0016 and 0.9729, 0.0036 and 0.9658, and 0.0004 and 0.9955, respectively. The ANN
model approached 83.16%, 83.92%, and 98.18% of samples, respectively, in the error range
of ±20% for various mechanical properties. The empirical approach exhibits a reasonable
precision. This approach can estimate 34.36% of compressive strength with ±20% range of
error, 64.94% with ±40% range of error, and more than 84% of samples with ±60% range of
error. The empirical approach can predict 7.14% and 14.54% with the range of errors equal
to ±20%, 32.14%, 21.1% with ±40% range of error, and the 64.28% and 80% of samples
with ±60% range of error, for the tensile strength and modulus of elasticity, respectively.
The empirical approaches proposed in this study are not only practical and convenient to
use, but are also developed with good correlation and low MSE error.
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Figure 7. Variation of mechanical properties versus cement (kg/m3) while other inputs set in their
reference value for (a) Fc, (b) Ft, (c) E.

Table 4. Equation of curve fitting with its MSE for each output.

Target Response Curve Fitting Equation MSE

28-day compressive strength 1.76 × 10−6x3 + 1.89 × 10−3x2 − 0.7362x − 51.58 0.0002
Tensile strength −8.49 × 10−4e(0.013x) + 2.33e(0.0023x) 0.0055
Modulus of elasticity −1.385 × 10−6x3 + 1.156 × 10−3x2 − 0.2594x + 44.3 0.088

Table 5. Correction function for each output.

Correction Function Compressive Strength Tensile Strength Modulus of Elasticity

Cw −1.132
(

W
169

)
+ 2.132 −0.6669

(
W

193.7

)
+ 1.667 −1.416

(
W

179.8

)
+ 2.236

CF.A. −0.2379
(

F.A.
116.8

)
+ 1.238 0.1069

(
F.A.

112.76

)
+ 0.7876 −0.1752

(
F.A.
170.2

)
+ 1.181

CG −2.182
(

G
1025.4

)
+ 3.182 −1.154

(
G

997

)
+ 2.13 −2.562

(
G

955

)
+ 3.463

CS −0.5528
(

S
730.4

)
+ 1.48 0.004462

(
S

706

)
+ 1.244 −1.215

(
S

694.8

)
+ 2.215

Csi 0.1894
(

Si
52.9

)
+ 0.8106 −0.2364

(
Si

51.88

)
+ 1.313 0.5123

(
Si

55.49

)
+ 0.4564

Table 6. Precision of proposed methods and distribution of data in the error range.

Mechanical
Properties Approach MSE R

No. of Data in Error Range
and Percentage to Total Data

±20% ±40% ±60%

Compressive
strength

ANN Analysis 0.0016 0.9729 242 (83.16%) 275 (94.5%) 283 (97.25%)
Empirical 0.025 0.6358 100 (34.36%) 189 (64.94%) 245 (84.19%)

Tensile
strength

ANN Analysis 0.0036 0.9658 47 (83.92%) 52 (92.85%) 56 (100%)
Empirical 0.224 0.585 4 (7.14%) 18 (32.14%) 36 (64.28%)

Modulus of
elasticity

ANN Analysis 0.0004 0.9955 54 (98.18%) 55 (100%) 55 (100%)
Empirical 0.083 0.6196 8 (14.54%) 16 (29.1%) 44 (80%)
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Figure 8. Comparison between experimental and predicted results using artificial neural networks
(ANN) and empirical equation for (a) Fc, (b) Ft, (c) E.

4. Conclusions

A considerable amount of experimental data regarding the concrete containing Fly
ash was collected. The mechanical characteristics of eco-friendly concrete made with Fly
ash, which is a waste material in the power generation industry, were correlated with six
input parameters including cement, water, Fly ash, and coarse and fine aggregates, along
with the SiO2 content of Fly ash, through the development of artificial neural networks.
The network resulted in accurate prediction of concrete’s compressive and tensile strengths,
in addition to the modulus of elasticity, in the presence of Fly ash with MSEs of 0.0016,
0.0036, and 0.0004, respectively. The novelty of the paper is to consider the characteristics
of Fly ash in predicting the mechanical properties of concrete. With this in mind, any
type of Fly ash with any characteristics can be used to produce sustainable and eco-
friendly concrete. Almost 83% of the reported results based on the simulation were
between ±20% of the experimental compressive strength for the ANN model, which
indicated that the proposed ANN was successfully trained to generalize the provided
data. The ANN prediction for tensile strength, along with the modulus of elasticity, show
more than 83% and 98% within ±20% of the experimental values, respectively. Moreover,
the ANN’s simulation results were dispersed around the bisector, which indicates neither
over-estimation nor under-estimation. Simple but practical equations were derived based
on network results to use the achieved outcomes of the ANN simulation for predicting the
mechanical properties of concrete containing Fly ash to address the lack of such a study in
this area by ANN. The available experimental data was used to verify the precision of the
proposed equation and a suitable agreement was derived.
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The mechanical properties of concrete with less ECO2 can be anticipated using the
proposed ANN. The results of the generalization of the ANN indicated that the mechanical
properties of concrete with Fly ash are under influenced by the Fly ash replacement level,
as well as the SiO2 content. The results of the proposed network can be implemented to
obtain the optimum replacement level of Fly ash considering its characteristics.
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