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Abstract: Multi-dimensional transportation problems denoted as multi-index are considered as the
extension of classical transportation problems and are appropriate practical modeling for solving real–
world problems with multiple supply, multiple demand, as well as different modes of transportation
demands or delivering different kinds of commodities. This paper presents a method for detecting
the complete nondominated set (efficient solutions) of multi-objective four-index transportation
problems. The proposed approach implements weighted sum method to convert multi-objective
four-index transportation problem into a single objective four-index transportation problem, that
can then be decomposed into a set of two-index transportation sub-problems. For each two-index
sub-problem, parametric analysis was investigated to determine the range of the weights values
that keep the efficient solution unchanged, which enable the decision maker to detect the set of
all nondominated solutions for the original multi-objective multi-index transportation problem,
and also to find the stability set of the first kind for each efficient solution. Finally, an illustrative
example is presented to illustrate the efficiency and robustness of the proposed approach. The results
demonstrate the effectiveness and robustness for the proposed approach to detect the set of all
nondominated solutions.

Keywords: multi-objective; multi-index transportation; parametric analysis

1. Introduction

The conventional transportation problem is a two-index transportation problem that
can be represented as a special mathematical modelling which comprises a cost function
subject to certain constraints. In classical methods, transporting costs from s sources to d
destinations are to be minimized [1–4]. Multi-dimensional transportation problems denoted
as multi-index are the extension of classical transportation problems and are appropriate
practical modelling for solving real-world transportation problems with multiple supply,
multiple demand as well as networks using diverse modes of transportation demands or
delivering different kinds of commodities [5,6].

Many researchers have studied the practical investigation of multi-index transporta-
tion problem in optimization, mathematical modelling, and in industry. Wang et al. [7]
implemented a decomposition method based on the sequential modification of the opti-
mality criterion for dealing with the classical three-index transportation problem. They in-
vestigated the solutions of the transportation problem with a linear and quadratic objective
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function. Zitouni et al. [8] investigated a numerical study of a capacitated transportation
problem with four subscripts (four indices) in order to realize a practical software to meet
real needs. Manal et al. [9] presented an adaption of a classical crisp method to solve the
four-index fuzzy transportation problem. Also, they found the optimal solution by im-
provement of the initial solution. Pham el al. [10] aimed to find a solution on the minimum
transportation cost for the four-index transportation problem. They also developed an
exact method to solve this problem with real variables. Skitsko et al. [11] developed an
approach for applying the genetic algorithm for solving four-index transportation problems
using evolutionary algorithms. Also, their conclusions promoted the application of the
genetic algorithm for solving four-index transportation. In [12], the authors aimed to find
a solution for the minimum transportation cost of the four-index transportation problem.
They also developed a resolution method based on the coupling of a mathematical model,
an algorithm, and a database.

In [13], the researchers implemented the modified distribution method to obtain an
optimal solution for the four-index transportation problem. Djamel et al. [14] focused on
the theoretical study and numerical solution of a capacitated four-index transportation
problem, and constructed an algorithm for solving the problem. In [15], researchers
investigated construction and algebraic formulation of a four-index transportation problem.
The researchers in [16] dealt with bi-objective multi-index bulk transportation problem as
an extension of a single objective multi-index bulk transportation problem. Their method
was presented to minimize time and cost simultaneously. In [17], researchers dealt with
the multi-index transportation problem, their method considering the indeterminacy of
the demand parameters and the cost of cargo transportation. They developed a software
application to solve a multi-index distribution problem with fuzzy parameters. In [18],
an approach based on the study of reducibility of the multi-index transport problems
to that of seeking a flow on the network was proposed. Pasa [19] aimed through his
research to model the multi-index transportation problem which implies solving the non-
linear problem with a non-linear objective function and linear restrictions. In [20], a fuzzy
multi-index bi-criteria fixed charge bottleneck transportation problem was considered, and
for the first time all parameters were taken as trapezoidal fuzzy numbers. El-Shorbagy
et al. [21] presented an improved genetic algorithm for dealing with a multi-objective
fuzzy multi–index multi-objective transportation problem (FM-MOTP). In [22], researchers
presented the application of fuzzy theory for handling a multi-objective multi-index real-
world transportation problem. In [5], the authors investigated a constrained multi-index
transportation problem with axial constraints, and with bounds on source availabilities, on
destination demands, and various types of commodities. In [23], researchers investigated
a constrained multi−objective multi−index transportation problem, in which demands,
supplies, and requirements were represented by triangular fuzzy numbers. The research
in [24] represents a generalized nonlinear bi-objective multi-index transportation problem.

In this paper, we intend to locate the set of all efficient solutions (nondominated
solutions) of the multi-objective multi-index transportation problem, which is considered a
large-scale problem due to the curse of dimensionality. The proposed algorithm implements
a weighted sum method to transform the multi-objective problem into a single objective
problem; then the decomposition technique was applied to decompose the problem to a
smaller-size two-index transportation sub-problem. Stability analysis for the weighted
parameters was applied to determine its range to retain the optimal solution. Finally, a
numerical illustrative example is presented for the sake of illustration.

The proposal is arranged as follows. Section 2 introduces problem formulation of
the transportation problem with different dimensions. Section 3 discusses the theoretical
preliminaries. Section 4 investigates the proposed algorithm. For the sake of illustra-
tion, a numerical example is presented in Section 5. Section 6 presents the analysis of
computational complexity. Finally, Section 7 presents conclusions.
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2. Problem Formulation

The multi-index transportation problem can be described as follows: There is a group
G with s supplies sites (sources) that produces p raw materials types. The group network
G can possess v vehicle types to transport the commodities. The production network
uses the flow “just-in-order” to avoid the storage of raw materials in the manufacturers.
Therefore, these raw materials are stored in a logistics network that consists of d destinations
(warehouses). To maintain the production flow, the production sites send their requests
on raw materials to the management center. Based on this obtained database, the center
can calculate the ordered total quantity of product type taking into consideration the
vehicle type, and then sends the order to its subcontractor. This transportation network is a
transportation problem that must be developed to provide the ordered quantity of different
commodities. Moreover, the commodities are acquired from sources and delivered to
destinations by the existing conveys with at least one objective, that is, to minimize the
total transportation cost.

2.1. Mathematical and Graphical Representation of Three Index Transportation Problem

An extension of the transportation type of problem was stated by Haley [25], and may
be thought of as a block in which the layers in all directions form a restricted transportation
problem. The multi-index problem can be described as minimizing the cost and time of
moving a set of p different commodities (l = 1, 2, . . . , p) from S origins (I = 1, 2, . . . , s) to d
destinations (j = 1, 2, . . . , d).

The three-dimensional multi-index transportation problem can be visualized as a
block of sdp cells for i = 1, 2, . . . , s; j = 1, 2, . . . , d; k = 1, 2, . . . , v. Each cell of this block
represents one of the xijl

′s. When summed along the rows (for constant j and k) they
equal Ajl . When summed along the columns (for constant l and i) they equal Bli. The
arrangement of xijl

′s and the boundary conditions are shown in Figure 1. According to the
previous notations, the formulation of three index transportation can be stated as follows:

3ITP :

Min z =
s
∑

i=1

d
∑

j=1

v
∑

k=1
c i j k x i j k,

subject to
d
∑

j=1
x i j k = A i k, i = 1, 2, . . . , s, k = 1, 2, . . . , v,

s
∑

i=1
x i j k = B j k, j = 1, 2, . . . , d, k = 1, 2, . . . , v,

x i j k ≥ 0, ∀ i, j, k,
s
∑

i=1
A i k =

d
∑

j=1
B j k, k = 1, 2, . . . , v,

(1)
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Figure 1. Structure of Transportation network for the three-index transportation problem with m sources, n destinations,
and v vehicles.

2.2. Mathematical Formulation of the Four-Indextransportation Problem

The mathematical formulations of four-index transportation problem are presented
according to earlier description. For illustrating, different notions will be used and defined
as follows:

• i, i = 1, 2, . . . , s are s sources which represent the production sites.
• j, j = 1, 2, . . . , d are d destinations which represent the warehouses where the product

types are transported.
• k, k = 1, 2, . . . , v represent the vehicle types or the means of transporting the product

from sources to the required destinations.
• l, l = 1, 2, . . . , p represent the product types.
• A i k l represents the quantity of goods that can be transported from the source i by

vehicle type k of product type l.
• B j k l represents the ordered quantity to be transported to destination j by vehicle type

k of product type l.
• c i j k l represents the average unit cost for transporting a unit from source i to destina-

tion j by vehicle type k of product type l. This unit cost will be calculated to cover the
fixed and variable costs such as the distance between the sources and destinations,
transit fees, and amortization costs of vehicles.

• x i j k l represents the quantity of goods in units transported from source i to destination
j by vehicle type k of product type l.
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Figure 2 declares the structure of Transportation network for four-index transportation
problem with m sources, n destinations, v vehicles, and p commodities.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 21 
 

to cover the fixed and variable costs such as the distance between the sources and 
destinations, transit fees, and amortization costs of vehicles. 

• i j k lx  represents the quantity of goods in units transported from source i  to des-

tination j by vehicle type k  of product type l . 

Figure 2 declares the structure of Transportation network for four-index transporta-
tion problem with m sources, n destinations, v vehicles, and p commodities. 

  

1l =  2l =  l p=  

Figure 2. Structure of transportation network for the four-index transportation problem with m 
sources, n destinations, v vehicles, and p commodities. 

According to the previous notations, the objective function of minimizing total cost 
of transportation can be defined as follows: 

1 1 1 1

ps d v

i j k l i j k l
i j k l

Min z c x
= = = =

=  (2) 

Depending on the real economical requirements, agreements, and contracts, the var-
iable can be constrained differently. According to the previous description, the constraints 
are defined as follows [10]: 

1
, 1,2, , , 1,2, , , 1,2, ,

d

i j k l i k l
j
x A i s k v l p

=

= = … = … = …  (3) 

1
, 1,2, ,d, 1,2, , , 1,2, ,

s

i j k l j k l
i
x B j k v l p

=

= = … = … = …  (4) 

0, , , ,  i j k lx i j k l≥ ∀  (5) 

The first set of constraints (3) restricts the total quantities that can be transported from 
a source i  to all destinations by vehicle type k  of product type l  equal to the availa-
ble quantity at source i that can be transported by vehicle type k  of product type l . 
The second set of constraints (4) restricts the total quantities that can be transported from 
all sources to destination j  that can be transported by vehicle type k  of product type 

Figure 2. Structure of transportation network for the four-index transportation problem with m sources, n destinations, v
vehicles, and p commodities.

According to the previous notations, the objective function of minimizing total cost of
transportation can be defined as follows:

Min z =
s

∑
i=1

d

∑
j=1

v

∑
k=1

p

∑
l=1

c i j k l x i j k l (2)

Depending on the real economical requirements, agreements, and contracts, the vari-
able can be constrained differently. According to the previous description, the constraints
are defined as follows [10]:

d

∑
j=1

x i j k l = A i k l , i = 1, 2, . . . , s, k = 1, 2, . . . , v, l = 1, 2, . . . , p (3)

s

∑
i=1

x i j k l = B j k l , j = 1, 2, . . . , d, k = 1, 2, . . . , v, l = 1, 2, . . . , p (4)

x i j k l ≥ 0, ∀ i, j, k, l (5)

The first set of constraints (3) restricts the total quantities that can be transported
from a source i to all destinations by vehicle type k of product type l equal to the available
quantity at source i that can be transported by vehicle type k of product type l. The second
set of constraints (4) restricts the total quantities that can be transported from all sources to
destination j that can be transported by vehicle type k of product type l equal to the ordered
quantity from destination j to be transported by vehicle type k of product type l. Finally,
the set of constraints (5) restricts the variables to a non-negative value. See [10,11,25].

Moreover, balanced conditions must be considered, since a balanced transportation
problem is a feasible problem. Balanced conditions guarantee that for each product type l
can be transported by vehicle type k, the quantities transported from all sources are equal
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to the quantities transported to all destinations. Therefore, balanced conditions can be
defined as follows:

s

∑
i=1

A i k l =
d

∑
j=1

B j k l , k = 1, 2, . . . , v, l = 1, 2, . . . , p (6)

According to the previous description, the mathematical formulation of the balanced
four-index transportation problem can be defined as follows:

4ITP :

Min z =
s
∑

i=1

d
∑

j=1

v
∑

k=1

p
∑

l=1
c i j k l x i j k l ,

subject to
d
∑

j=1
x i j k l = A i k l , i = 1, 2, . . . , s, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

s
∑

i=1
x i j k l = B j k l , j = 1, 2, . . . , d, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

x i j k l ≥ 0, ∀ i, j, k, l
s
∑

i=1
A i k l =

d
∑

j=1
B j k l , k = 1, 2, . . . , v, l = 1, 2, . . . , p,

(7)

2.3. Multi-Objective Four-Index Transportation Problem

In this section, we present the mathematical formulation of the multi-objective four-
index transportation problem (M4ITP) that has H, (H ≥ 2) objectives and four indices,
which can be formulated as follows:

M4ITP :

Min zh =
s
∑

i=1

d
∑

j=1

v
∑

k=1

p
∑

l=1
ch

i j l k x i j k l , h = 1, 2, . . . , H,

subject to
d
∑

j=1
x i j k l = A i k l , i = 1, 2, . . . , s, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

s
∑

i=1
x i j k l = B j k l , j = 1, 2, . . . , d, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

x i j k l ≥ 0, ∀ i, j, k, l
s
∑

i=1
A i k l =

d
∑

j=1
B j k l , k = 1, 2, . . . , v, l = 1, 2, . . . , p

(8)

3. Theoretical Preliminaries

Since M4ITP is a multi-objective programming problem, the concept of optimality is
exchanged with the concept of efficiency or nondominated solutions [26]. Therefore, in
general M4ITP has a set of efficient solutions called the Pareto set or the set of all efficient
solutions.

Definition 1. The index space (IS) of problem M4ITP can be defined as follows:

ISi j k l = {(i, j, l, k)| i = 1, 2, . . . , s, j = 1, 2, . . . , d, l = 1, 2, . . . , p, k = 1, 2, . . . , v} (9)

Definition 2. A feasible solution x∗ ∈ X, whereX represents the feasible domain of M4ITP, is an
efficient solution for problem M4ITP if there is no other feasible solution x ∈ X satisfying both:

(1) zh(x) ≤ zh(x∗), h = 1, 2, . . . , H
(2) zh(x) < zh(x∗), for some h ∈ {1, 2, . . . , H}
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Relative to M4ITP, the weighted-sum problem W4ITP can be defined as follows:

W4ITP :

Min z =
H
∑

h=1

s
∑

i=1

d
∑

j=1

v
∑

k=1

p
∑

l=1
wh ch

i j k l x i j k l ,

subject to
d
∑

j=1
x i j k l = A i k l , i = 1, 2, . . . , s, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

s
∑

i=1
x i j k l = B j k l , j = 1, 2, . . . , d, k = 1, 2, . . . , v, l = 1, 2, . . . , p,

x i j k l ≥ 0, ∀ i, j, l, k
s
∑

i=1
A i k l =

d
∑

j=1
B j k l , k = 1, 2, . . . , v, l = 1, 2, . . . , p,

H
∑

h= 1
w h = 1, w h ≥ 0, ∀ h

(10)

Theorem 1 [26]. If x ∈ X is an optimal solution of the weighted-sum problem W4ITP where
either w > 0, or x is a unique optimal solution, then x is considered a Pareto optimal solution of the
M4ITP.

Theorem 2 [26]. If x ∈ X is a Pareto optimal solution of the M4ITP, then x is an optimal solution
of the W4ITP for some w = (w1, w2, . . . , wk) ≥ 0.

This theorem requires convexity assumption which was guaranteed in transportation
problems and hence cannot be applied for nonconvex problems. The weighting method [26]
was implemented to transform multi-objective optimization to single objective optimiza-
tion, due to the convexity of M4ITP. The weighting method is considered an efficient and
robust method for generating all efficient solutions for convex problem. Therefore, by
implementing the weighting method, we get a single objective problem W4ITP. We get
different Pareto optimal solutions for the original problem M4ITP; when solving W4ITP for

different weights
H
∑

h= 1
w h = 1, w h ≥ 0, ∀ h, then the problem W4ITP could be considered

a parametric problem in wh.

Definition 3. The parametric space of problem W4ITP can be defined as follows:

W =

{
w ∈ R h

∣∣∣∣∣ H

∑
h= 1

w h = 1, w h ≥ 0, ∀ h

}
(11)

Due to the linearity of the M4ITP, all nondominated solutions of M4ITP can be obtained
by solving the W4ITP for all possible weights. Obviously, solving the W4ITP for all possible

weights (
H
∑

h= 1
w h = 1, w h ≥ 0, ∀ h) by assigning different values is an impossible process,

because there are infinite different values of weights. Therefore, it is proposed to use the
Kuhn-Tucker conditions to identify the range of the weights value that retain a certain solution
to be an efficient one in this range, which will be defined as the stability sets of the first kind.

In general, the W4ITP is a four-index transportation problem that has (s × d × p × v)
decision variables. In addition, per Equations (2) and (3), it has ((s + d) × p × v) constraints.
Obviously, it is hard to be solved by the techniques of the classical transportation problem
using the curse of multi-index dimensionality. In other words, the W4ITP is characterized as:

• Large-scale problem with respect to multi-index, not efficiently solvable with respect
to time and effort.

• Impossible to be solved for all possible weights.
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Therefore, we propose a decomposition approach, which developed by decomposing the
W4ITP into sub-problems, such that each sub-problem is a two-index transportation problem
that can be handled easily by any suitable traditional technique. In addition, by implementing
a parametric study for each sub-problem using the concept of the stability set of first kind, we
can get all efficient solution sets of the original problem. The proposed approach saves time
and effort for handling both M4ITP and W4ITP by reducing the dimension of the original
problem. It also saves time to solve W4ITP for all possible weights.

Definition 4. The sub-problem can be defined as W4ITPkl , k = 1, 2, . . . , v, l = 1, 2, . . . , p.

Definition 5. The index space of the sub-problems W4ITPkl , k = 1, 2, . . . , v, l = 1, 2, . . . , p can
be defined as follows:

IS ij = {(i, j)| i = 1, 2, . . . , s; j = 1, 2, . . . , d} (12)

The W4ITP [27] can be decomposed into (v× p) sub-problems W4ITPkl , k = 1, 2, . . . , v,
l = 1, 2, . . . , p. Each sub-problem is a two-index transportation problem with a dimension
of (s × d) where the sub-problem can be defined as follows:

W4ITPk l : k = 1, 2, . . . , v, l = 1, 2, . . . , p,

Min z =
H
∑

h=1

s
∑

i=1

d
∑

j=1
wh ch

i j k l x i j k l ,

subject to
d
∑

j=1
x i j k l = A i k l , i = 1, 2, . . . , s,

s
∑

i=1
x i j k l = B j k l , j = 1, 2, . . . , d,

x i j k l ≥ 0, ∀ i, j, l, k
s
∑

i=1
A i k l =

d
∑

j=1
B j k l ,

H
∑

h= 1
w h = 1, w h ≥ 0, ∀ h

(13)

Each sub-problem is a two-index classical transportation problem that has (s × d)
decision variables and (s + d) constraints. Therefore, each sub-problem can be solved by
the classical transportation techniques.

The parametric space for any sub-problem W4ITPkl equals the parametric space of all
possible weights of problem W4ITP

Definition 6. The optimal solution of W4ITPkl , k = 1, 2, . . . , v, l = 1, 2, . . . , p at w ∈ W is
defined as

xw
i j 1 1 =

(
xw

1 1 1 1, xw
1 2 1 1, . . . , xw

i j 1 1

)
, (k, l) = (1, 1), i = 1, 2, . . . , s, j = 1, 2, . . . , d

xw
i j 1 2 =

(
xw

1 1 1 2, xw
1 2 1 2, . . . , xw

i j 1 2

)
, (k, l) = (1, 2), i = 1, 2, . . . , s, j = 1, 2, . . . , d

...
xw

i j v p =
(

xw
1 1 v p, xw

1 2 v p, . . . , xw
i j v p

)
, (k, l) = (v, p), i = 1, 2, . . . , s, j = 1, 2, . . . , d

(14)

Definition 7. The optimal solution of the problem W4ITP at w ∈W will be defined as:

xw =
(

xw
i j 11, xw

i j 1 2, . . . , xw
i j v p

)
, i = 1, 2, . . . , s, j = 1, 2, . . . , d (15)

where each component will be called sub-optimal at w ∈ W, where it is the optimal of a
sub-problem W4ITPkl , k = 1, 2, . . . , v, l = 1, 2, . . . , p.
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Definition 8. The stability set of the first kind at x w
i j k l can be defined as follows:

S
(

x w
i j k l

)
=
{

w ∈W
∣∣∣ x w

i j k l is the optimal solution of W4ITPkl

}
(16)

The stability set of the first kind of the optimal solution x w
i j k l of W4ITPk l , (k, l) ∈ IS k l

at w ∈W is the set of parameters that belong to the parametric space that retain the optimal
solution as the optimal one.

Definition 9. The stability set of the first kind of the efficient solution of the problem M4ITP at
w ∈W can be defined as

SS(x w) = {w ∈W| x w is an optimal solution of problem M4ITP} (17)

The stability set of the first kind of the optimal solution of the problem W4ITP at w ∈W
is equal to SS(x w). Therefore, SS(x w) can be determined by determining the stability set of
the first kind at x w

i j k l , k = 1, 2, . . . , v, l = 1, 2, . . . , p. In other words, SS(x w) is the weight
that retains x w

i j k l , i = 1, 2, . . . , s, j = 1, 2, . . . , d optimal solution of W4ITPkl, (k, l) ∈ IS kl .

Lemma 1. All the optimal solutions x i j k l
w of W4ITPkl at w ∈ W represent an efficient solution

for the problem M4ITP.

Proof. Since all optimal solutions x w
i j k l of W4ITPkl at w ∈ W represent all sub-optimal

components of the optimal solution of W4ITP at the same w ∈W, then all optimal solutions
x w

i j k l of W4ITPkl at w ∈W represent an efficient solution for W4ITP. �

The Lagrange function [26] for problem W4ITPkl, (k, l) ∈ IS kl can be defined as:

L =
H
∑

h=1

d
∑

j=1

s
∑

i=1
w h c h

i j k l x i j k l +
s
∑

i=1
u i

(
d
∑

j=1
x i j k l − A i k l

)
+

d
∑

j=1
v j

(
s
∑

i=1
x i j k l − B j k l

)
−

s
∑

i=1

d
∑

j=1
γ i j k l x i j k l ,

(18)

Therefore, the Kuhn-Tucker conditions [28] for W4ITPkl, (k, l) ∈ IS kl can be defined as:

∂L
∂x i j k l

= 0, i = 1, 2, . . . , s, j = 1, 2, . . . , d,

u i

(
D
∑

d=1
x i j k l − A i k l

)
= 0, i = 1, 2, . . . , s,

v j

(
S
∑

s=1
x i j k l − B j k l

)
= 0, j = 1, 2, . . . , d

γ i j k l x i j k l = 0, i = 1, 2, . . . , s, j = 1, 2, . . . , d,
γ i j k l ≥ 0, i = 1, 2, . . . , s, j = 1, 2, . . . , d,

(19)

On solving this system of equations and inequalities at the obtained optimal solution
of W4ITPkl , the range of the weights value that retain that solution is an optimal one.

4. The Proposed Algorithm

1. Formulate the corresponding W4ITP problem of the M4ITP problem.
2. Decompose W4ITP into (v× p) two dimensional sub-problems (W4ITPkl , (k, l) ∈ IS kl).
3. Select (k, l) ∈ IS kl .
4. Set initial weights w ∈ RH (i.e., w = (0, 0, . . . , 0)).
5. Determine an optimal solution x w

i j k l for the selected problem W4ITPkl , (k, l) ∈ IS kl at w.

6. Determine the stability set of the first kind S
(

x w
i j k l

)
by utilizing the Kuhn-Tucker

conditions.
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7. If the union of all determined stability sets of the first kind
⋃
kl

S
(

x w
ijkl

)
does not cover

all the parametric space then choose another w that does not belong to the union of all

determined stability sets of the first kind of the selected problem
{

w|w /∈ ⋃
kl

S
(

x w
ijkl

)}
and go to step 5, otherwise to step 3 until all sub-problems (W4ITPkl , (k, l) ∈ IS kl)
are solved.

8. Determine each optimal solution of W4ITP (all efficient solutions of M4ITP) and the
corresponding stability set of the first kind for each obtained efficient solution.

9. Stop.

Figure 3 illustrates the flow chart of the proposed algorithm.
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5. An Illustrative Example

The following problem is a multi-objective four-index transportation problem that
has two objectives to be minimized. In addition, the problem has two sources (i = 1, 2)
with three destinations (j = 1, 2, 3) and three types of products (l = 1, 2, 3) that can be
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transported by two vehicle types (k = 1, 2). The following mathematical model represents
that problem. Moreover, Table 1 illustrates the required data of the illustrative example.

Table 1. The required data of the illustrative example.

(Vehicle Type, Product Type)=(k, l)

(1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)(
c1

1 1 k l , c2
1 1 k l

)
(150, 200) (800, 600) (250, 700) (500, 350) (600, 800) (1200, 1000)(

c1
1 2 k l , c2

1 2 k l
)

(400, 500) (700, 750) (450, 600) (400, 500) (800, 600) (800, 1200)(
c1

1 3 k l , c2
1 3 k l

)
(350, 300) (1000, 500) (550, 900) (600, 400) (430, 500) (1000, 800)(

c1
2 1 k l , c2

2 1 k l
)

(550, 600) (500, 550) (700, 600) (800, 600) (650, 700) (750, 800)(
c1

2 2 k l , c2
2 2 k l

)
(700, 800) (850, 600) (800, 750) (1000, 750) (1000, 900) (1100, 800)(

c1
2 3 k l , c2

2 3 k l
)

(300, 400) (600, 480) (600, 500) (900, 400) (850, 1100) (850, 750)

a 1 k l 100 175 150 300 200 250

a 2 k l 125 400 300 300 400 100

b 1 k l 80 175 210 225 180 140

b 2 k l 90 350 140 250 250 110

b 3 k l 55 50 100 125 170 100

For solving this illustrative example, we are going to apply the proposed algorithm as
follows:

Step (1):

By using the weighting method as a scalarization technique for solving a multi-
objective programming problem, formulate the W4ITP corresponding to the M4ITP as
illustrated below.

W4ITP :

Min z =
2
∑

i=1

3
∑

j=1

2
∑

k=1

3
∑

l=1

(
w c 1

i j k l x i j k l + (1− w)c 2
i j k l x i j k l

)
,

subject to
3
∑

j=1
x i j k l = A i k l , i = 1, 2, k = 1, 2, l = 1, 2, 3,

2
∑

i=1
x i j k l = B j k l , j = 1, 2, 3, k = 1, 2, l = 1, 2, 3,

x i j k l ≥ 0, ∀i, j, k, l
2
∑

i=1
A i k l =

3
∑

j=1
B j k l , k = 1, 2, l = 1, 2, 3,

(20)

Step (2):

Decompose the problem into six sub-problems W4ITPkl for all combination of k =
1, 2; l = 1, 2, 3 as illustrated below.

W4ITP11 coresponding to k = 1, l = 1
W4ITP21 coresponding to k = 2, l = 1
W4ITP12 coresponding to k = 1, l = 2
W4ITP22 coresponding to k = 2, l = 2
W4ITP13 coresponding to k = 1, l = 3
W4ITP23 coresponding to k = 2, l = 3

Clearly, each problem W4ITPkl is linear programming that has six variables and four
linearly independent equality constraints, which can be simply solved.

Step (3):
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For each sub-problem W4ITPkl , find the optimal solutions corresponding to different
weights that cover all parametric ranges, which can be defined as:

W =

{
(w 1, w 2) ∈ R 2

∣∣∣∣ 2
∑

h= 1
w h = 1, w h ≥ 0, ∀ h

}
=
{
(w 1, w 2) ∈ R 2|w 1 = w, w 2 = (1− w), w ∈ [0, 1]

} (21)

For instance, suppose that the selected sub-problem is defined as (k, l) = (2, l) ∈ ISk l .
Therefore, the sub-problem is formulated as follows:

W4ITP2 1 :

Min z =


(
w c 1

1 1 2 1 x 1 1 2 1 + (1− w)c 2
1 1 2 1 x 1 1 2 1

)
+
(
w c 1

2 1 2 1 x 2 1 2 1 + (1− w)c 2
2 1 2 1 x 2 1 2 1

)
+(

w c 1
1 2 2 1 x 1 2 2 1 + (1− w)c 2

1 2 2 1 x 1 2 2 1
)
+
(
w c 1

2 2 2 1 x 2 2 2 1 + (1− w)c 2
2 2 2 1 x 2 2 2 1

)
+(

w c 1
1 3 2 1 x 1 3 2 1 + (1− w)c 2

1 3 2 1 x 1 3 2 1
)
+
(
w c 1

2 3 2 1 x 2 3 2 1 + (1− w)c 2
2 3 2 1 x 2 3 2 1

)
,

subject to
x 1 1 2 1 + x 1 2 2 1 + x 1 3 2 1 = A 1 2 1,
x 2 1 2 1 + x 2 2 2 1 + x 2 3 2 1 = A 2 2 1,
x 1 1 2 1 + x 2 1 2 1 = B 1 2 1,
x 1 2 2 1 + x 2 2 2 1 = B 2 2 1,
x 1 3 2 1 + x 2 3 2 1 = B 3 2 1,
x s d 2 1 ≥ 0, s = 1, 2, d = 1, 2, 3,
A 1 2 1 + A 2 2 1 = B 1 2 1 + B 2 2 1 + B 3 2 1
w ∈ [0, 1]

where the required data for the selected sub-problem is given by the 2nd column in Table 1.
In general, a two-index classical transportation problem has one dependent constraint

that can be eliminated to get a linear programming problem in independent constraints
only [1]. Since W4ITPkl is considered a classical transportation problem, one of the con-
straints can be eliminated to get a linear programming problem that has six variables and
four constraints. Therefore, it can be reduced to a linear programming problem that has
(6 − 4) = 2 variables which can be solved graphically. For simplicity, the reduced form of
W4ITP2 1 will be denoted by R 2 1 that can be formulated as illustrated below:

R 2 1 :
Min z = (−130 w + 30) x + (−680 w + 130) y + (146750 w + 338250),
subject to
x ≤ 175,
y ≤ 350,
−x− y ≤ −125,

x + y ≤ 175,
x, y ≥ 0

where
x 1 1 2 1 = x, x 1 2 2 1 = y, x 1 3 2 1 = 175− x− y,
x 2 1 2 1 = 175− x, x 2 2 2 1 = 350− y, x 2 3 2 1 = −125 + x + y

Step (4):

Select initial w = 0 ∈ [0, 1]

Step (5):

Using the Lindo software package, find the optimal solution for x 0
i j 2 1 at w = 0 for the

problem R 2 1, which is (x, y) = (125, 0)

Step (6):
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Determine the stability set of the first kind S
(

x 0
12 2 1

)
by implementing the Kuhn-

Tucker conditions as follows:

(−130 w + 30) + u 1 − u 3 + u 4 − v 1 = 0,
(−680 w + 130) + u 2 − u 3 + u 4 − v 2 = 0,
u 1(x− 175) = 0,
u 2(y− 350) = 0,
u 3(−x− y + 125) = 0,
u 4(x + y− 175) = 0,
−v 1 x = 0,
−v 2 y = 0,
x− 175 ≤ 0,
y− 350 ≤ 0,
−x− y + 125 ≤ 0,
x + y− 175 ≤ 0,
x, y, u 1, u 2, u 3, u 4, v 1, v 2 ≥ 0

By assigning (x, y) = (125, 0) and solving the resulting system, the stability set of first
kind can be defined as follows:

S
(

x 0
i j 2 1

)
= {w ∈ [0, 2/11)| (125, 0) is optimal of problem R 2 1 } (22)

Step (7):

Since all determined stability sets of the first kind do not cover the parametric space
W = [0, 1], choose another w ∈

(
W −⋃ S

(
x w

s d 1 2

))
= [0, 1]− [0, 2/11) (i.e., w = 2/11)

and go to step 5 to find the optimal solution that covers all the range of parametric space.
By repeating the previous steps, the following stability sets of the first kind can be

determined:

S
(

x 2/11
i j 2 1

)
=
{

w = 2/11
∣∣∣ x 2/11

i j 2 1 is optimal of problem R 2 1

}
(23)

S
(

x 0.2
i j 2 1

)
=
{

w ∈ (2/11, 1]
∣∣∣ x 0.2

i j 2 1 is optimal of R 2 1 problem
}

(24)

where:

x 2/11
i j 2 1 = {(x, y)| (x, y) = λ(125, 0) + (1− λ)(0, 125), 0 ≤ λ ≤ 1, x, y integers}, (25)

x 0.2
i j 2 1 = {(x, y)| (x, y) = (0, 175)} (26)

Now, when all determined stability sets of the first kind cover the parametric space,
select different combination of k and l, that is, (k, l) ∈ ISk l − {(2, l)}.

By repeating the previous steps, the following stability sets of the first kind can be
determined as illustrated in Tables 2 and 3:
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Table 2. The optimal solution (x, y) of R lk with respect to w.

(k, l) w Optimal Solution (
-
x,

-
y)

(1, 1) ∈[0, 1] (80, 20)

(2, 1)

∈[0, 2/11] (125, 0)

=2/11 ∈ {(x, y)| (x, y) = λ(125, 0) + (1− λ)(0, 125), 0 ≤ λ ≤ 1, x, y integers}
∈(2/11, 1] (0, 175)

(1, 2)

∈[0, 5/7] (10, 140)

=5/7 ∈ {(x, y)| (x, y) = λ(10, 140) + (1− λ)(150, 0), 0 ≤ λ ≤ 1, x, y integers}
∈[5/7, 1] (150, 0)

(2, 2) ∈[0, 1] (50, 250)

(1, 3) ∈[0, 1] (0, 30)

(2, 3)

∈[0, 4/19] (140, 10)

=4/19 ∈ {(x, y)| (x, y) = λ(140, 10) + (1− λ)(40, 110), 0 ≤ λ ≤ 1, x, y integers}
∈[4/19, 1] (40, 110)

Table 3. The optimal solution (x, y) of R k l with respect to w.

(k, l)
w∈

[0,2/11] (2/11,4/19] (4/19,5/7] (5/7,1]

(1, 1) (80, 20) (80, 20) (80, 20) (80, 20)

(2, 1) (125, 0) (0, 175) (0, 175) (0, 175)

(1, 2) (10, 140) (10, 140) (10, 140) (150, 0)

(2, 2) (50, 250) (50, 250) (50, 250) (50, 250)

(1, 3) (0, 30) (0, 30) (0, 30) (0, 30)

(2, 3) (140, 10) (140, 10) (40, 110) (40, 110)

Step (8):

Determine each optimal solution of W4ITP (all efficient solutions of M4ITP) and
the corresponding stability set of the first kind for each obtained efficient solution. It
can be noted that four different solutions were obtained for the W4ITP. Therefore, all
efficient solutions of the illustrative example can be illustrated through the following tables
(Tables 4–7).

Table 4. The efficient solution and the corresponding objectives value for w ∈ [0, 2/11].

(k, l)

(1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)

x1 1 k l 80 125 10 50 0 140

x1 2 k l 20 0 140 250 30 10

x1 3 k l 0 50 0 0 170 100

x2 1 k l 0 50 200 175 180 0

x2 2 k l 70 350 0 0 220 100

x2 3 k l 55 0 100 125 0 0

(z 1, z 2) (2,021,100, 1,739,000)
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Table 5. The efficient solution and the corresponding objectives value for w ∈ [2/11, 4/19].

(k, l)

(1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)

x1 1 k l 80 0 10 50 0 140

x1 2 k l 20 175 140 250 30 10

x1 3 k l 0 0 0 0 170 100

x2 1 k l 0 175 200 175 180 0

x2 2 k l 70 175 0 0 220 100

x2 3 k l 55 50 100 125 0 0

(z 1, z 2) (1,937,350, 1,758,000)

Table 6. The efficient solution and the corresponding objectives value for w ∈ [4/19, 5/7].

(k, l)

(1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)

x1 1 k l 80 0 10 50 0 40

x1 2 k l 20 175 140 250 30 110

x1 3 k l 0 0 0 0 170 100

x2 1 k l 0 175 200 175 180 100

x2 2 k l 70 175 0 0 220 0

x2 3 k l 55 50 100 125 0 0

(z 1, z 2) (1,862,350, 1,778,000)

Table 7. The efficient solution and the corresponding objectives value for w ∈ [5/7, 1].

(k, l)

(1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)

x1 1 k l 10 0 150 50 0 40

x1 2 k l 90 175 0 250 30 110

x1 3 k l 100 0 0 0 170 100

x2 1 k l 80 175 60 175 180 100

x2 2 k l 90 175 140 0 220 0

x2 3 k l 55 50 100 125 0 0

(z 1, z 2) (1,848,350, 1,813,000)

In addition, for the determined efficient solutions, Figure 4 declares the objectives
space which represents the complete frontier of the four-index transportation problem.

From Figure 1, the proposed algorithm can locate four alternatives for the original
multi-objective four index transportation problem, which constitute the Pareto frontier: z =
(2, 021, 100, 1, 739, 000) corresponding the weights range [0,2/11), z = (1, 937, 350, 1, 758, 000)
corresponding the weights range [2/11,4/19), z = (1, 862, 350, 1, 778, 000) corresponding
the weights range [4/19,5/7), and z = (1, 848, 350, 1, 813, 000) corresponding the weights
range [5/7,1), which exhaustively cover all the parameter domain [0, 1]. We also observed
that the proposed algorithm locates all the set of nondominated solutions, avoiding solving
the large scale problem by transforming it to smaller size subproblems, which can be solved
efficiently using any available software package.
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6. Analysis of Computational Complexity

In this section we investigate the computational complexity of the proposed algorithm
which deals with multi-objective multi-index transportation problem. The algorithm
converts the multi-objective formulation to a single objective formulation, and hence
decomposes it to a set of two-index transportation problem. In what follows, we assume
that the proposed algorithm is to be performed on a set consisting of T sub-problems
with n variables. As described in the previous section, the proposed algorithm consists
of three main steps. First, transforming multi-objective formulation to single objective
formulation. Second, applying decomposition technique to generate T subproblems. Third,
solving each sub-problem. As a result, we show that the proposed method becomes
strongly polynomial time solvable; the computational complexity in terms of the number
of arithmetic operations is O(n3LT), where n is the number of variables, L is the input
size of the problem, and T is the number of sub-problems. The suggested approach also
has a better computational complexity than the other one dealing with the original four-
index problem. This makes the proposed approach computationally cheap due to the
decomposition process.

7. Conclusions

In this paper, a mathematical formulation of multi-objective multi-dimensional trans-
portation problem is defined. Moreover, an efficient algorithm is proposed for solving the
four-index transportation problem. The proposed algorithm implements the weighting
sum method for transforming a multi-objective four-index formulation to a single objective
four-index formulation, hence a decomposition approach was applied to decompose the
problem to a set of two-index transportation sub-problems, which can be solved efficiently
with any suitable software package. On the other hand, the stability set of the first kind is
applied in order to determine the weight parameter ranges that keep the optimal solution
unchanged. The proposed algorithm can effectively detect all the efficient solutions of
the multi-objective four-index transportation problem. Finally, a numerical simulation
demonstrates the ability of the proposed algorithm to deal with a multi-objective four-index
transportation problem easily. The main features of the proposed algorithm are as follows:

(a) Capable of decomposing the main problem with four-index into a set of sub-problems
with two dimensions, which can be easily solved.
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(b) Capable of detecting all the set of nondominated solutions to the original problem.
(c) Capable of dealing with low dimensional problem decreasing the time complexity.
(d) Capable of determining the ranges of the weighted parameters that keep the optimal

solution unchanged.

Until now, the multi-index transportation problem is one of the most adaptable trans-
portation problems for engineering and industry applications. Following this direction of
research, in the future, we will develop a multi-index formulation for real world application
under uncertainty with fuzzy parameters.
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