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Abstract: Runoff simulations are of great significance to the planning management of water resources.
Here, we discussed the influence of the model component, model parameters and model input on
runoff modeling, taking Hanjiang River Basin as the research area. Convolution kernel and attention
mechanism were introduced into an LSTM network, and a new data-driven model Conv-TALSTM
was developed. The model parameters were analyzed based on the Conv-TALSTM, and the results
suggested that the optimal parameters were greatly affected by the correlation between the input data
and output data. We compared the performance of Conv-TALSTM and variant models (TALSTM,
Conv-LSTM, LSTM), and found that Conv-TALSTM can reproduce high flow more accurately. More-
over, the results were comparable when the model was trained with meteorological or hydrological
variables, whereas the peak values with hydrological data were closer to the observations. When the
two datasets were combined, the performance of the model was better. Additionally, Conv-TALSTM
was also compared with an ANN (artificial neural network) and Wetspa (a distributed model for
Water and Energy Transfer between Soil, Plants and Atmosphere), which verified the advantages
of Conv-TALSTM in peak simulations. This study provides a direction for improving the accuracy,
simplifying model structure and shortening calculation time in runoff simulations.

Keywords: deep learning; ANN; WetSpa; runoff simulation; HanJiang basin

1. Introduction

Runoff simulations are of great significance to the planning management and rational
utilization of water resources [1–4]. Simulations based on hydrological models are a hot
topic in hydrological research [5,6]. Hydrological models are classified into physical models
and data-driven models [7]. Physical models are centered on structure and parameters.
Parameters describe the effect of surface and underground conditions on model input,
while structure reflects the physical relationship between model input and output. The
model simulates the physical process of watershed runoff formation through the coupling
of structure and parameters [8]. With the development of computer technology, geographic
information and remote-sensing technology, rich basin spatial information (such as topog-
raphy, soil, and vegetation types) is gradually integrated into the structure of the physical
model, and the physical meaning of model parameters is clarified. At the same time,
the theoretical research of producing and conflux of runoff gradually matures, and the
model structure improves. A physical model has been developed and applied rapidly
from lumped type to distributed type [9–15]. Although the distributed hydrological model
based on complex physical mechanism can truly reflect the spatial variability of runoff and
concentration process, the models have their applicable physical background, which limits
the generality in all basins [16]. Due to the high degree of non-linearity, uncertainty and
variability of the hydrological process, even if the model is improved, the runoff simulation
may not meet expectations. It will also encounter other problems, such as the same effect
with different parameters, difficulty in obtaining data and expensive calculations [17,18].
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Data-driven models make predictions by mining the relevant information between
input and output variables without studying physical processes. Many studies have
applied data-driven models to water-quality simulations, runoff forecasting, water level
forecasting, wind speed forecasting, etc. [19–23]. Maniquiz et al. [24] used multiple linear
regression (MLR) to establish an equation for estimating pollutant load with rainfall as a
variable, indicating that total rainfall and average rainfall intensity can be used as predictors
of pollutant load. Ouyang et al. [25] preprocessed the precipitation data based on ensemble
empirical mode decomposition (EEMD), and then applied support vector regression (SVR)
technology to forecast monthly rainfall. The performance of the EEMD-SVR model was
satisfactory. Okkan and Serbes [26] suggested that a discrete wavelet transform-feed-
forward neural network (DWT-FFNN) model is better than other models in simulating
reservoir runoff. Chua and Wong [27] compared the runoff prediction performance of
artificial neural network (ANN), kinematic wave (KW) and autoregressive moving average
models (ARMA). The prediction results of the ANN model are more in line with the
observations. From the above examples, we can see that the data-driven models have
achieved good simulation results.

In recent years, artificial intelligence and big data-driven technology have provided
new ideas and technical methods to hydrological study. The new generation of artificial
neural networks represented by deep learning has begun to explore applications in rainfall
forecasts, flood forecasts, etc. [28]. Deep-learning methods have evolved from simple
linear networks to classic generative adversarial networks (GANs) [29]. The field has
experienced the fast iterations of the deep belief network (DBN) [30], sparse coding, the
convolutional neural network (CNN) [31] and the recurrent neural network (RNN) [32].
RNN has the ability to transfer historical information and is suitable for processing time
series [33,34]. The long short-term memory network (LSTM) introduces a memory-gated
unit to alleviate the disappearance of the gradient, which is more advantageous than the
original RNN simulation with long-term dependent hydrological data. Bowes et al. [35]
demonstrated that LSTMs perform better than traditional RNNs by predicting the response
of groundwater level to flood events. Zhang et al. [36] established a multilayer perceptron
(MLP), a wavelet neural network (WNN), a long short-term memory (LSTM) and a gated
recurrent unit (GRU) model to simulate the water level of an urban drainage pipeline,
which showed that LSTM had good multi-step prediction ability of time series. In runoff
prediction, LSTM models have attracted more attention. Kratzert et al. [37] confirmed
that the regional model based on LSTM has a higher forecasting ability in different basins,
indicating that the model has good general applicability. Yin et al. [38] showed that the
LSTM model performed better than the Xinanjiang model in different forecast periods.
They also discussed the hyperparameters of the LSTM. The results suggested that the
number of hidden layer neurons significantly affects the prediction accuracy and training
speed. Yuan et al. [39] optimized the parameters of the LSTM through the antlion opti-
mization algorithm (ALO), and proposed a high-precision monthly runoff forecast method.
Jiang et al. [40] analyzed the simulation effect of LSTM driven by daily scale rainfall data
of weather stations and monthly scale TRMM data. Xiang et al. [41] used the LSTM-based
seq2seq model to predict the 24-h runoff, indicating that the model outperforms LSTM.
Similarly, Liu et al. [42] demonstrated that the LSTM coupled with the k-nearest neighbor
algorithm (LSTM-KNN) is more superior than pure LSTM in real-time flood forecasting
under different climatic conditions.

The above studies provide new ideas for runoff simulation, and improve the simula-
tion accuracy compared with physical models. Because of its advantages of simulating time
series, the LSTM network has become the first choice of deep learning in the hydrological
field. Also, its combination with other networks has been widely used in text classification,
behavior prediction and other fields [43–45]. Sun et al. [44] made forecasts of the soybean
yield in-season and at the end of the season based on a CNN-LSTM model. And the results
were better than the pure CNN or LSTM models. Kim and Cho [45] trained a CNN-LSTM
model to predict housing energy consumption, and achieved an almost perfect prediction
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performance. The spatial feature vector was extracted by CNN and then predicted as
the input of LSTM in CNN-LSTM. Although the combination of LSTM with CNN has
demonstrated good performance in these studies, its application in hydrological field is
rarely seen. Besides, these combined models have not highlighted the input of key time
points. Therefore, it is worth discussing how the LSTM network and its combination with
deep-learning networks perform in the hydrological field. In addition, input data is the
key to the data-driven model, and previous studies have shown that more meteorological
variables can improve the performance of the model [46]. Therefore, it is necessary to study
the model effect of meteorological data and hydrological data as inputs.

In this study, we constructed several deep-learning models of LSTM combined with
CNN and attention mechanism, and first applied them on the runoff simulation in Hanjiang
River Basin. Separate and combined input methods for meteorological data and hydrologi-
cal data were adopted. The purpose of this article is to analyze model performance from the
perspective of model component, parameters and inputs. The following work was carried
out: (1) the convolution kernel and attention mechanism were introduced into LSTM to
establish the Conv-TALSTM model, and the comparisons between Conv-TALSTM and its
variants (LSTM, TALSTM, Conv-LSTM) were conducted; (2) the influence of different in-
puts on the optimization of key parameters was analyzed; (3) the performance of the model
under different input data was compared; (4) the performance of the deep-learning model
(Conv-TALSTM), data-driven model(ANN) and physical model (Wetspa) was compared.

2. Materials and Methods
2.1. Study Area

The Hanjiang River Basin was selected as the research area. The Hanjiang River Basin
is the second-largest watershed in Guangdong Province behind the Pearl River Basin, and
is located between 115◦13′~117◦09′ E and 23◦17′~26◦05′ N. The drainage area is 30,112 km2,
and the outlet is the Chaoan hydrological station (Figure 1). The Meijiang and Tingjiang
rivers are called the Hanjiang after meeting. The Hanjiang River flows into the Hanjiang
Delta from north to south, and then flows into the South China Sea through Shantou
City. The terrain of the Hanjiang River Basin slopes from northwest and northeast to
southeast. The landform is dominated by mountains, accounting for 70% of the total area
of the basin. The Hanjiang River Basin is located in the subtropical and Southeast Asian
monsoon climate zone. The climate is hot and humid with abundant rainfall. The average
annual rainfall is approximately 1600 mm, but the annual distribution is uneven, mainly
concentrated in April to September. The runoff during this period accounts for 80% of the
annual runoff. The mean annual flow is approximately 24.5 billion m3 and the recorded
maximum peak flow is 13,300 m3/s.

2.2. Data Introduction

The data of four meteorological stations and three hydrological stations in the Han-
jiang River Basin from 2005 to 2018 were used in this study. They are all on a daily scale.
Meteorological data include daily precipitation, maximum temperature, minimum temper-
ature, average temperature, average wind speed, relative humidity and sunshine duration.
Hydrological data include daily flow data. The Shanghang station is a hydrological station
for both meteorological and hydrological observation. The training period was from 2005
to 2016, and the verification period was from 2017 to 2018. The Z-score standardized
algorithm was used to normalize the data input, and inverse normalization was used for
output [38].

We analyzed the correlation between the daily rainfall series of the meteorological
stations and the daily flow series of the hydrological stations. The result is provided in
Figure 2. Shanghang1 and Shanghang2 represent rainfall and discharge of the Shanghang
station, respectively. Figure 2 shows a clearer correlation between the same types of
variables. For example, there is a strong correlation between the runoff of Chaoan and
Shanghang (Shanghang2 in Figure 2), and a weak correlation between the runoff of Chaoan
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and the rainfall of Shanghang (Shanghang1 in Figure 2). Correlation analysis can offer
basic information for the following analysis.

Figure 1. Topography, river networks and observation stations of the Hanjiang River Basin.

Figure 2. The correlation between the meteorological variables and the hydrological variables. Changting, Shanghang1,
Meixian and Wuhua represent the rainfall of the meteorological stations; Shanghang2, Xikou, Hengshan and Chaoan
represent the flow of the hydrological stations.
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2.3. Models
2.3.1. Deep Learning

1. Convolution Neural Network
A convolution neural network (CNN) is a kind of multilayer feed-forward neural

network that can express raw data in a more abstract way [47]. Sparse connection and
weight-sharing greatly reduce the number of weights and improve the efficiency of the
model [48]. The basic structure of a CNN generally includes a convolution layer, a pooling
layer and a full-connection layer. Figure 3 shows the convolution operation process. Its
output feature C can be expressed as:

C = σ
(

X
⊗

W + b
)

(1)

where X is the input data; ⊗ is the convolution operation; W is the weight vector of the
convolution kernel; b is the offset; σ is the activation function; and relu, sigmoid, tanh, etc.
are commonly used.

Figure 3. The convolution operation process. * represents convolution operation.

2. Long Short-Term Memory Network
The original RNN connects the historical information with the current task, and can

learn the inherent characteristics of time series. However, with the increase of training
time and network layers, the disappearance of the gradient prevents it from transmitting
information of long-distance data. To overcome this problem, a gate unit is introduced into
the LSTM, which is an adapted version of an RNN [49,50]. The LSTM consists of an input
gate, a forget gate and an output gate [51]; its internal structure is shown in Figure 4.

Figure 4. The architecture of the Long Short-Term Memory (LSTM) cell.
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The input at time t includes current input xt and historical information of the hidden
layer ht−1 and the gate control unit ct−1. First, the forget gate selectively discards cell ct−1
information. Next, the input gate determines how much current external information xt is
retained, and generates candidate cell ct. Then, the cell ct is updated. Finally, the output
gate decides which features of the cell ct to output, and generates the hidden layer variable
ht. The corresponding formula of the above process is as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

it = σ(Wi·[ht−1, xt] + bi) (3)

ct = tanh(Wc·[ht−1, xt] + bc) (4)

ct = ct−1 � ft + ct � it (5)

ot = σ(Wo·[ht−1, xt] + bo) (6)

ht = o� tanh(ct) (7)

where Wf, Wi, Wc and Wo are the weight vectors of forget gate, input gate, output gate
and gate unit, respectively; bf, bi, bc and bo are the bias vectors of the forget gate, input
gate, output gate and gate unit, respectively; σ is sigmoid activation function; and tanh is
hyperbolic tangent activation function.
3. Attention Mechanism

An attention mechanism is an efficient information-processing method inspired by
human vision [52]. There are two types, hard attention and soft attention. Hard attention
only takes the focus-position information as input and ignores other meaningless informa-
tion. The existing attention models are mainly based on soft attention, which selectively
ignores part of the information to update the weight of the rest of the information. The
calculation process can be divided into two steps. One is to calculate a score si for each
input information xi, and then to obtain the attention weight αi of xi by normalizing si
using softmax function [53]. The other is to weight the original input and merge it into the
intermediate semantic c, a new expression of information. The corresponding formula for
the above process is as follows:

si = σ
(

WTxi + b
)

(8)

αi = so f tmax(si) (9)

c =
k

∑
i=1

αixi (10)

where WT and b are trainable parameters; and σ is activation function.

2.3.2. Modeling Process

1. Model Framework
The runoff time series is Y = (y1, y2, · · · , yT) ∈ RT , and the input data time series

is X = (x1, x2, · · · , xT) =
(
x1, x2, · · · , xN)T . Matrix X includes two dimensions, time

dimension and space dimension, which can be expressed as the following formula:

X =


x1

1 x2
1 · · · xN

1
x1

2 x2
2 · · · xN

2
...

...
...

...
x1

T x1
T · · · xN

T

εRT×N (11)
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where xt =
(

x1
t , x2

t , · · · , xN
t
)

is the set of observation of N variables at time t, and
xn =

(
xn

1 , xn
2 , · · · , xn

T
)

is the sequence of observation of the nth variable during
historical time.

In the Hanjiang River Basin, meteorological stations include Changting, Shanghang,
Wuhua and Meixian, which are represented by M1, M2, M3 and M4, respectively. Hydro-
logical stations include Shanghang, Xikou, Hengshan and Chaoan, which are represented
by H1, H2, H3 and H4, respectively. The Chaoan station is the target station for the
simulation. In order to compare the impact of hydrological variables and meteorological
variables on the simulation results, we adopted three different input matrixes (A1~A3) to
simulate the runoff of the target station. A1 includes the meteorological variables of four
meteorological stations and the historical flow of the target station. A2 includes the flow
of four hydrological stations, three upstream hydrological stations and the target station
(using the historical flow data). A3 includes all data of the meteorological stations and
hydrological stations. The input data contains the information of simulation time t and
history time t-i. The input details of three matrixes are summarized in Table 1. All of the
meteorological variables, including daily precipitation, maximum temperature, minimum
temperature, average temperature, average wind speed, relative humidity and sunshine
duration were used as the input meteorological data. All the input data were normalized
first, and then the input matrix was formed. In order to keep the same length for all input
variables in the matrix, the flow of H4 at time t was set to 0. Similar methods can be found
in previous studies [38,54]. When the simulation was completed, anti-normalization was
used for the output sequence.

Table 1. Details of Input Data.

Input Data No. of Inputs
Detailed Inputs

Data Information at Time t History Information at Time t-i (i > = 1)

A1 29 M1t; M2t; M3t; M4t M1t-i; M2t-i; M3t-i; M4t-i; H4t-i
A2 4 H1t; H2t; H3t H1t-i; H2t-i; H3t-i; H4t-i
A3 32 M1t; M2t; M3t; M4t; H1t; H2t; H3t M1t-i; M2t-i; M3t-i; M4t-i; H1t-i; H2t-i; H3t-i; H4t-i

In this study, a convolution kernel and an attention mechanism were introduced into
the LSTM model, and the Conv-TALSTM model was proposed. As shown in Section 2.2,
there is a correlation between meteorological variables and hydrological variables. The
one-dimensional convolution layer of the CNN was used to express the correlation between
input variables in a higher level and more abstract way. The information after processing
was transferred into the LSTM network. The attention mechanism was based on the
temporal dimension. It can enhance the influence of key time points, and reduce the
influence of other time points. This effectively solves the problem of the model being
unable to distinguish the difference between the importance of time series. The framework
of Conv-TALSTM is shown in Figure 5; it is mainly composed of the input layer, convolution
layer, LSTM layer, attention-mechanism layer and full-connection layer.

The details are as follows:

(1) Convolution layer: The preprocessed data was input into the convolution layer, and a
convolution kernel with the size of 1 * k was selected to extract more abstract feature
structures of different variables in space. The number of convolution kernels was
n and the time steps were T. Then, we output the T *n dimensional feature vector,
WCNN.

(2) LSTM layer: WCNN was used as the input for LSTM, and the significant features of
time dimension were extracted by LSTM. The number of hidden layer units in LSTM
was m. Specifically, xt in formula (2) is WCNN, and the output of WCNN was WLSTM.

(3) Attention-mechanism layer: We took WLSTM as the input of the attention-mechanism
layer. The influence degree of different time points on the model was expressed as
“weight.” The weight was normalized by softmax function [30], and the numerical
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value was restricted to 0~1. The weight output was Wattention. We performed a
weighted summation of Wattention and WLSTM to obtain the final comprehensive
timing information. Specifically, xi is WLSTM and αi is Wattention in formula (10).

(4) Full-connection layer. A full connection layer was set up as the output layer.

Figure 5. The model framework.

2. Model Experiments
In this study, the initial parameters of the model were set with reference to the existing

studies. The window size was 7, and the number of convolution kernels was 32. The
kernel_size was 1. One LSTM layer with 32 LSTM neurons was set. The loss function was
the mean squared error function. An Adam algorithm was adopted to optimize the loss
function with an initial learning rate of 0.0001. Furthermore, we set the maximum number
of epochs and the number of batch size to 500 and 64, respectively. A rectified linear unit
was used.

The window size, the number of convolution kernels and the number of neurons are
the key parameters of each layer in the model framework. The window size represents the
length of historical information, and the number of convolution kernels and the number of
neurons represent the depth of the model. In this study, we analyzed the influence of these
parameters on the simulation effect under three inputs based on the Conv-TALSTM model.
The number of convolution kernels and the number of neurons were set to 2, 4, 8, 16, 32, 64,
128, 256, and 512, and the window size was from 2 to 10 days. Other parameters were set
as initial parameters.

The different variant models of the Conv-TALSTM model were established, including
a pure LSTM model (LSTM), an LSTM model with convolution kernels (Conv-LSTM)
and an LSTM model with a time attention mechanism (TALSTM). We compared the
Conv-TALSTM with its variants to analyze the influence of the model component on
model performance.

Based on the four models above, the influence of input data on the simulation results
was considered. The comparison of three different inputs was used to analyze whether
meteorological variables or hydrological variables can better simulate runoff, and whether
the combined input had a positive impact on the results.

2.3.3. Artificial Neural Network

An artificial neural network (ANN) is inspired by the biological neural system. The
core of the artificial neural network is the artificial neuron, which uses large-scale inter-
connection and parallel processing to form a complex network [54]. Each neuron receives
input from other neurons and then converts it into output according to certain rules. The
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most common artificial neural network consists of an input layer, a hidden layer and an
output layer [46]. The model structure is shown in Figure 6. The input layer receives the
data from the external source, and the output layer outputs the prediction target. They
are connected by one or more hidden layers. In this study, a simple feed-forward network
with three layers was established to simulate the runoff of the Chaoan station under A3
input. After parameter optimization, a fully connected layer with 16 neurons was set as
the hidden layer, and a fully connected layer with one neuron was set as the output layer.

Figure 6. The architecture of the artificial neural network (ANN).

2.3.4. Physical Model

To compare the performance of the deep-learning model and the physical model,
the Wetspa (a distributed model for Water and Energy Transfer between Soil, Plants
and Atmosphere) model was selected to simulate the runoff of the Hanjiang River Basin.
The Wetspa model is a distributed watershed hydrological model that was proposed by
Wang et al. of the Free University of Brussels, Belgium in 1996 [55]. Bahremand et al. [56]
improved the time step of the Wetspa model from fixed-day to optional-day, hour and
minute. The improved Wetspa model discretizes the entire study area into grids, in which
the water and energy balance are simulated in layers. Rainfall first meets the interception of
forest canopy. Part of the rainwater falling on the ground fills the depression and produces
surface runoff, while the other part infiltrates into the soil. According to the different
soil water content, the water entering the soil is stored in the root zone in the form of
soil water, or flows along the horizontal direction to form interflow, or continues to move
downward to form groundwater recharge. Evapotranspiration mainly includes vegetation
transpiration, evaporation of rainwater intercepted or filled by plants and evaporation
of soil moisture. In addition to the meteorological data mentioned in Section 2.2, the
input of the model includes terrain, land use, soil type and other digital data. The input
data are transformed into surface runoff, interflow and groundwater flow. The routing
of runoff from different cells to the watershed outlet depends on flow velocity and the
wave-damping coefficient using the method of diffusive wave approximation. The detailed
calculation formulas are shown in [57].

The improved Wetspa model is a distributed physical hydrological model based
on GIS technology. The 90-m digital elevation model (DEM) dataset was provided by
Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy
of Sciences. Taking ArcView3.2 as the operation platform, the DEM was used to extract
the digital features of the watershed, which provided the input of underlying surface
data. It mainly included flow direction, cumulative flow, confluence network, slope,
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hydraulic radius and boundary division of sub-basins. The model soil data obtained
from the Harmonized World Soil Database (HWSD) constructed by FAO and IIASA were
classified according to the soil triangle method proposed by the USDA (U.S. Department
of Agriculture), and there were four main soil types (clay, clay loam, loam and sandy clay
loam.) in the HanJiang basin. The land-use data, provided by Resource and Environment
Science and Data Center, Chinese Academy of Sciences, was categorized into eight types
(evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest, closed
shrublands, savannahs, croplands, urban and built-up, and water bodies) according to
the IGBP (International Geosphere Biosphere Program) land-use classification standard.
The land use and soil types are shown in Figure 7. All spatial distribution parameters in
the Wetspa model were derived from terrain, land use and soil type data [57]. Therefore,
the model can not only simulate the dynamic change of runoff process at each point, but
also can be used to analyze the impact of changing environment on hydrological processes.
Global parameters need to be set to run the model [18]. We used daily-scale simulation
results of runoff to compare with the Conv-TALSTM model. The scaling factor for interflow
computation (Ci), groundwater recession coefficient (Cg), correction factor for potential
evapotranspiration (K_ep), surface runoff exponent for a near-zero rainfall intensity (K_run)
and rainfall intensity corresponding to a surface runoff exponent of 1 (P_max) were selected
to calibrate using the SCE-UA (shuffled complex evolution) algorithm, which is widely
used in parameter optimization of distributed hydrological models [58,59].

Figure 7. Characteristics of the Hanjiang River Basin: (A) soil types; (B) land use.

2.3.5. Model Evaluation Criteria

In this study, three indices were adopted to quantitatively evaluate the performance
of the model: the root mean square error (RMSE), the R-squared score (R2) and the Nash–
Sutcliffe efficiency (NSE). The specific formulas are as follows:

RMSE =

√
∑n

i=1(yt − y′t)
2

n
(12)
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R2 =

(
∑n

i=1(yt − yt)
(

y′t − y′t
))2

∑n
i=1(yt − yt)

2 ∑n
i=1

(
y′t − y′t

)2 (13)

R2 =

(
∑n

i=1(yt − yt)
(

y′t − y′t
))2

∑n
i=1(yt − yt)

2 ∑n
i=1

(
y′t − y′t

)2 (14)

where yt and y′t represent observed and simulated runoff at time t, yt and y′t represent the
average of observed and simulated runoff at time t, and n is the total number of samples.

The RMSE is used to measure the deviation between a simulation and an observation.
The range of the RMSE is from 0 to +∞. The closer to 0, the better the overall simulation
effect is. R2 is the square of sample correlation coefficient between 0 and 1 to evaluate
the size of model variance. The NSE is often used to evaluate the simulation results in
hydrology fields. The variation range of the NSE is from −∞ to 1. A value approximating
to 1 means that the simulation process is perfect and the credibility of the model is high.

3. Results
3.1. Optimization of Parameters under Different Inputs

In this study, we analyzed the influence of input data on the optimization of Conv-
TALSTM model parameters, including the window size, the number of convolution kernels
and the number of hidden layer neurons. Taking NSE, R2 and RMSE as evaluation indices,
the corresponding evaluation results are shown in Figure 8. The common feature was that
when there were many input variables, the increase or decrease in the evaluation indexes
was relatively gentle.

Figure 8. Influence of the Conv-TALSTM model input on parameter optimization.

When the window size changed from 2 to 6 days, the RMSE under the A1 input
decreased quickly in an approximately linear trend as the window size increased. When
the window size was longer than 6 days, the RMSE became larger than that of 6 days. The
NSE and R2 reached the highest point when the window size was 6 days. Under the A2
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input, the RMSE was the lowest when the window size was 4 days. When the window size
was longer than 4 days, the effect of each evaluation index became worse. The window
size was shorter (2 days) under the A3 input when the evaluation indices achieved the
optimal value.

According to the analysis above, the correlation of the A3 input and the target series
was stronger than that of the A1 input and target series. The optimal window size decreased
as the correlation between input data and target value increased. There was a similar trend
in optimizing the number of convolution kernels. When the correlation between the input
and output data was weaker, the optimal number of convolution kernels was smaller. The
corresponding numbers were 256, 64 and 4 from the A1 input to the A3 input. When
the number of convolution kernels was less than the optimal value, the performance of
the model became better with the increase of convolution kernels. When the number of
convolution kernels was larger than 16, the effect of evaluation indices remained unchanged
to a certain extent under A3 input.

With the increase of the neurons in a certain range, the accuracy of the model was
significantly improved. When there were more input variables, more neurons were needed
to attain good results. The best performance was achieved when the number of neurons
was 128, 16 and 128 from the A1 input to the A3 input. When the number of neurons was
larger than the optimal value, there was no obvious change in all evaluation indices. It
should be noted that the optimization of a hyperparameter was based on the initial value
of other parameters.

3.2. Comparison of Different Model Components

To evaluate the effectiveness of the convolution network and the attention mechanism
in improving the performance of the model, we compared Conv-TALSTM with its variant
models. Table 2 shows the statistical indices of comparison. The performance difference of
the four models in the training period was less than that in the verification period. The
Conv-TALSTM produced satisfactory results, and the RMSE of flow simulation was less
than 210 m3/s in the verification period. Taking A3 input as an example, the influence of
the model components on the simulation effect was analyzed.

Table 2. Statistics of the runoff simulations.

Model
Input
Data

Time
Length

Calibration Period Validation Period

RMSE R2 NSE RMSE R2 NSE

WetSpa A3 1 542.22 0.73 0.68 341.79 0.70 0.65

ANN A3 6 324.02 0.85 0.85 237.69 0.81 0.78

LSTM
A1 6 293.87 0.87 0.87 232.91 0.81 0.79
A2 4 290.03 0.88 0.87 231.33 0.81 0.79
A3 2 289.79 0.88 0.88 217.14 0.82 0.81

Conv-
LSTM

A1 6 292.41 0.88 0.87 228.56 0.81 0.80
A2 4 288.30 0.88 0.88 219.16 0.83 0.81
A3 4 284.04 0.89 0.88 215.64 0.84 0.82

TALSTM
A1 6 286.29 0.88 0.88 220.55 0.81 0.81
A2 3 281.79 0.88 0.88 216.72 0.82 0.82
A3 3 279.06 0.89 0.88 205.70 0.84 0.83

Conv-
TALSTM

A1 7 283.71 0.88 0.88 210.00 0.83 0.83
A2 4 280.74 0.89 0.88 208.06 0.84 0.83
A3 2 277.70 0.90 0.89 205.11 0.85 0.84

LSTM and Conv-LSTM were regarded as the baseline models. TALSTM had a higher
R2 (0.84) and NSE (0.83) than the LSTM in the validation period. The R2 and NSE of
Conv-TALSTM were 0.1 and 0.2 higher than that of Conv-LSTM, respectively. The RMSE
of Conv-TALSTM was 0.1 lower than that of Conv-LSTM. Similarly, LSTM and TALSTM
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were used as baseline models. Conv-LSTM performed better than LSTM. For example, the
R2 of Conv-LSTM was 0.84, while the R2 of LSTM was 0.82. Compared with the TALSTM,
the three indicators of Conv-TALSTM are superior. Similar trends were witnessed under
the A1 and A2 inputs.

The comparison of daily runoff simulated and observed in the verification period
is displayed in Figure 9. It can be seen that four models can basically reproduce the
runoff process under any input. The daily runoff process simulated by Conv-TALSTM
was very close to the real runoff process. There was no significant difference between
TALSTM and Conv-LSTM. However, LSTM tends to underestimate high flow, except for
individual peak values.
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To further analyze the performance of the four models, Figure 10 shows boxplots of
them during the verification period. The median values of the four models are almost at
the same level as the actual values under A3 input. And the simulated runoff from the first
25% to 75% is similar to the observed runoff. All the outliers are located on the larger side,
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3.3. Comparison of Different Inputs

It can be seen in Table 2 that the average values of R2 were 0.88 and 0.82 for the training
period and verification period under the A1 input. The NSE of models except LSTM during
the validation period was greater than 0.80. In addition, the RMSE ranged from 210 m3/s
to 232.91 m3/s. Runoff is formed by precipitation, and other meteorological factors also
play an important role in its formation process. Therefore, the simulation results under
the A1 input are reliable. Figure 11 shows the comparison of evaluation indicators of all
models under three different inputs.

Figure 11. Bar graphs of RMSE, R2 and NSE for three different inputs (A1–A3) using four models.

Compared with that under the A1 input, the performance of each evaluation index
under the A2 input was slightly improved, but it was still at a similar level. The evaluation
indices of Conv-LSTM were significantly different under these two inputs, and the RMSE
during the verification period was reduced by about 10 m3/s. Conv-LSTM convolutes the
input data, which can be understood as giving each variable a certain weight according
to the correlation between the variable and the target value. The correlation between
upstream and downstream flow is greater than that flow and meteorological variables, so
Conv-LSTM is greatly influenced by the input data.

As can be seen in Figure 9, all models could capture the time pattern of runoff during
the validation period under the A1 and A2 inputs. However, the accuracy of the peak value
under A2 input was better than that of A1, where the peak value was underestimated.
Whether in the training period or validation period, the performance of each model under
the A3 input was significantly better than that under the A1 and A2 inputs. R2 exceeded
0.80 under any input, but R2 under the A3 input was higher than others, and the highest
values in the training and verification periods were 0.90 and 0.85, respectively. The NSE
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was also the highest under the A3 input, while the RMSE was much smaller than that under
A1 and A2, and the maximum difference was 15.77 m3/s and 14.19 m3/s, respectively. It
can be seen in Figure 8 that each model could simulate the peak value and runoff process
more accurately under the A3 input.

3.4. Comparison of Simulation Capability with Other Models

The ANN and Wetspa model were used to simulate the runoff of the Chaoan station.
The statistical results of different models are shown in Table 2. As seen in Table 2, the ANN
and Wetspa model performed well. But under the same input, the evaluation indices of
Conv-TALSTM were greatly improved compared with the ANN and Wetspa. In order
to analyze the simulation potential in detail, especially the accuracy of the flood peak
simulation, we selected representative years for comparison. During the training period
and the verification period, 2007 (the worst rainstorm flood in Hanjiang River since 1997)
and 2017 (the higher peak value during the verification period) were selected, respectively.

The errors of runoff simulation with the three models in representative years are shown
in Figure 12. If the error is positive, it means the simulation is high. It can be seen that the
deviation of the ANN and Wetspa was often negative at high flow, which illustrates that
they tended to underestimate high flow. The error of Conv-TALSTM fluctuated between
positive and negative, and the values were small. The simulation is in good agreement
with the observation. High errors often occur with the peak flows. But in most cases, the
error of the ANN and WetSpa was larger than that of the Conv-TALSTM.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 19 
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The results for Conv-TALSTM, ANN and Wetspa in non-flood periods were close,
which indicates that the three models had a similar simulation ability, and all of them
could reflect runoff processes well. During the flood period, the simulation errors of the
ANN and Wetspa were relatively large, while Conv-TALSTM could reproduce the large
flood process precisely. In 2007, the discharge of the catastrophic flood process decreased
rapidly after reaching the peak value, and the flow difference before and after the flood
peak was about 6000 m3/s. The error of Wetspa changes from negative value to positive
value before and after the peak value, indicating that the simulated flood had a large flow
in the process of water-lowering. The ANN also showed a similar trend, but the error at the
peak value was smaller than that of Wetspa. In addition, the ANN and Wetspa had a large
deviation for the multi-peak flow process in 2017. It was found that the simulation at the
largest flood peak was relatively low, while the latter two peaks were relatively high. This
can be considered to be caused by the peak time-lag. The simulation process of the ANN
was closer to the measured process compared with Wetspa, but it could not accurately
reproduce the magnitude of flood peak either. Nevertheless, Conv-TALSTM performed
better than both of them.
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4. Discussion

Many studies have shown that deep-learning models, especially LSTM, have great
potential in hydrological simulations. Chollet and Allaire [60] pointed out that it is neces-
sary to choose the right model structure through practice. In this study, we combined a
convolution kernel and an attention mechanism with an LSTM to compare the effect of the
model components on the simulation results. The convolution kernel was used to extract
the features of each dimension at the same time point, and the temporal attention mech-
anism learned the influence of different time points. Compared with a single LSTM, the
combined model took both data abstraction and time importance into account. It has been
shown that we can improve the simulation accuracy by changing the model component.
It was found that the improvement effect of the model with an attention mechanism is
better than that of a one-dimensional CNN, which may be due to the CNN’s limitations
in learning spatial-position information. The input form of the two-dimensional grid will
be explored.

A deep-learning model consists of several layers [60], and is much simpler than
physical model. In addition, the evaluation indices of all the deep-learning models are
better than that of the physical model. The deep-learning method for runoff simulations
has the advantages of simple feasibility and high accuracy. The trained model can be
used for real-time prediction, which can provide important information for flood control.
Despite such good results, such models have no physical base. Kratzert et al. [37] suggested
that the basin dynamics can be reflected by LSTM internal variables, but its rationality
needs to be proved. On one hand, we can use the data-driven model to modify the results
of the physical model in real-time. On the other hand, we can improve the data-driven
model by adding the input data.

The method of selecting the model parameters is also a problem to be considered when
the model framework is determined. The number of hyperparameters of deep-learning
models is less than that of physical models, but the value range of each hyperparameter is
huge. Artificial intelligence is often required to determine some parameter values. Most
researchers analyzed the influence of other parameters on the premise of determining
the initial values of some parameters and certain input data. In our study, we discussed
the effect of window size, the number of convolution kernels and the number of neurons
on the simulation results under different input conditions. The correlation between the
target station and other stations was considered, which provides useful information for
parameter optimization. Due to the shorter time required for single operation, it takes
less time to optimize hyperparameters than to calibrate a physical model. However, we
cannot exhaust all the parameter values, and the final parameter combination might not be
the optimal combination of the whole hyperparametric space. This also limits the further
improvement of the model performance. Therefore, it is necessary to develop an effective
algorithm for automatic optimization of parameters.

Data characteristics also determine the performance of the model. We analyzed the
influence of meteorological variables and hydrological variables on the results in detail.
Runoff in the Hanjiang River Basin is formed by rainfall. The process of rainfall-runoff
is affected by other meteorological variables. In this study, the results of meteorological
variables and hydrological variables were comparable, indicating that they contain similar
information. The peak value with hydrological variables is more accurate, which results
from the stronger correlation between the same type of stations. The amount of data is also
an important factor affecting the data-driven model other than data relevance. The A3 input,
including the source (rainfall) and intermediate process (other meteorological variables
and upstream flow) of outlet runoff formation, had more abundant data information
than A1 and A2. There is no doubt that the simulation effect was the best under the A3
input. Compared with other research, the performance of the deep-learning model in this
study was not the best, although its accuracy was higher than that of the hydrological
model. The main reason was the input condition with sparse data and short time series.
Tian et al. [61] showed that whether a neural network model or a hydrological model
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is used for hydrological simulation, the basin with high station density will have more
abundant data information and more accurate simulation results. With meteorological
variables as input, the highest value of the NSE exceeded 0.9 during the validation period
in the study of Fan et al. [46], while it was close to 0.83 in our study. It was found that the
station density studied by them was 1248 km2/station, which is about six times that of
our study (7528 km2/station). Hu et al. [62] obtained great simulation results when the
density of rain-gauging stations was 200 km2/station. The data conditions and research
results of Yin et al. [38] were similar to those of Hu et al. [62]. Jiang et al. [40] simulated
runoff based on long series data of 50 years, and the model performance was satisfactory.
In future research, we will consider replacing monitored data with other meteorological
products such as TRMM (Tropical Rainfall Measuring Mission). Converting the site location
information and underlying surface conditions into more abundant input data is also a
further research direction. In addition, the deep-learning models proposed in this paper
are also suitable for the prediction of water quality, groundwater and other factors, which
is of great significance to realize the sustainable development of river basins.

5. Conclusions

This study investigated the application of deep learning in runoff simulations. Several
deep-learning models were developed to discuss the effects of model component, model
parameters and model input on model performance. Additionally, the results for the Conv-
TALSTM model were compared with the data-driven model (ANN) and the distributed
hydrological model (Wetspa). A convolution kernel and a temporal attention mechanism
were introduced to the Conv-TALSTM model, which can extract spatial data correlation
and highlight key time-point information. Compared with different variant models (ANN
and Wetspa), the Conv-TALSTM model showed a much better performance. Therefore, the
simulation accuracy can be improved by changing the model composition. The optimal
parameters were strongly influenced by different input data. When the input data had
a strong correlation with the target value, the optimal window size and the number of
convolution kernels was always small. When the input data had more information, more
hidden layer units were needed. Moreover, the overall difference among the simulation
results was small with meteorological data or hydrological data as the model input, but
the peak value could be captured more accurately with hydrological data. The accuracy of
the model was improved when both of them are input. Therefore, enriching input data is
another effective method to improve the performance of the model.
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