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Abstract: As an emerging biomedical image processing technology, medical image segmentation
has made great contributions to sustainable medical care. Now it has become an important research
direction in the field of computer vision. With the rapid development of deep learning, medical image
processing based on deep convolutional neural networks has become a research hotspot. This paper
focuses on the research of medical image segmentation based on deep learning. First, the basic ideas
and characteristics of medical image segmentation based on deep learning are introduced. By ex-
plaining its research status and summarizing the three main methods of medical image segmentation
and their own limitations, the future development direction is expanded. Based on the discussion of
different pathological tissues and organs, the specificity between them and their classic segmentation
algorithms are summarized. Despite the great achievements of medical image segmentation in
recent years, medical image segmentation based on deep learning has still encountered difficulties in
research. For example, the segmentation accuracy is not high, the number of medical images in the
data set is small and the resolution is low. The inaccurate segmentation results are unable to meet
the actual clinical requirements. Aiming at the above problems, a comprehensive review of current
medical image segmentation methods based on deep learning is provided to help researchers solve
existing problems.

Keywords: image segmentation; deep learning; convolutional neural network; medical image

1. Introduction

Image segmentation is an important and difficult part of image processing. It has
become a hotspot in the field of image understanding. This is also a bottleneck that restricts
the application of 3D reconstruction and other technologies. Image segmentation divides
the entire image into several regions, which have some similar properties. Simply put, it is
to separate the target from the background in an image. At present, image segmentation
methods are developing in a faster and more accurate direction. By combining various
new theories and new technologies, we are finding a general segmentation algorithm that
can be applied to kind of images [1].

With the advancement of medical treatment, all kinds of new medical imaging equip-
ment are becoming more and more popular. The types of medical imaging widely used
in clinic are mainly computed tomography (CT), magnetic resonance imaging (MRI),
positron-emission tomography (PET), X-ray and ultrasound imaging (UI). In addition, it
also includes some common RGB images, such as microscopy and fundus retinal images.
There is very useful information in medical images. Doctors use CT and other medical
images to judge the patient’s condition, which has gradually become the main basis for
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doctors’ clinical diagnosis [2]. Therefore, the research on medical image processing has
become the focus of attention in the field of computer vision.

With the rapid development of artificial intelligence, especially deep learning (DL) [3],
image segmentation methods based on deep learning have achieved good results in the
field of image segmentation. Compared with traditional machine learning and computer
vision methods, deep learning has certain advantages in segmentation accuracy and speed.
Therefore, the use of deep learning to segment medical images can effectively help doctors
confirm the size of diseased tumors, quantitatively evaluate the effect before and after
treatment, greatly reducing the workload of doctors.

In order to better summarize the various methods, we searched the keywords “medical
image processing” or “deep learning” from Google Scholar and ArXiv to obtain the latest
literature. In addition, the top medical image processing conferences are also good places
for us to obtain materials, such as MICCAI (Medical Image Computing and Computer
Assisted Intervention), ISBI (International Symposium on Biomedical Imaging), and IPMI
(Information Processing in Medical Imaging). The papers we selected are mainly based on
deep learning methods. We guarantee that all the results of the papers are verified. Different
from the existing reviews [4–6], this survey reviews the recent progress, advantages, and
disadvantages in the field of medical image segmentation from the perspective of deep
learning. It compares and summarizes related methods, and identifies the challenges
for successful methods of deep learning to medical imaging segmentation task in the
future work. In this paper, we conduct a comprehensive review of medical imaging DL
technology in recent years, mainly focusing on the latest methods published in the past
three years and the classic methods in the past. First, it focuses on the application of deep
learning technology in medical image segmentation in the past three years. A more in-
depth study is carried on its network structure and methods. At the same time, its strengths
and weaknesses are analyzed. Second, some state-of-the-art segmentation methods are
summarized according to the characteristics of different organs and tissues. Third, we
shared many evaluation metrics and data sets of medical image segmentation for readers
to evaluate and train the network. The structure of the article is as follows: Section 2
examines what is medical image segmentation. In Section 3, we explained the concept of
deep learning and the application of deep learning. Sections 4 and 5 are the main body
of the reviewed literature. Section 4 introduces the three network structures, FCN (fully
convolutional network), U-Net and GAN (generative adversarial network) based on deep
learning medical image segmentation. Section 5 introduces the segmentation methods of
different organs and tissues. Section 6 is the sharing of evaluation metrics and data sets,
which are derived from the influential medical image analysis challenges. The summary
and outlook of the article are in Section 7.

2. Medical Image Segmentation
2.1. Problem Definition

Image segmentation based on medical imaging is the use of computer image pro-
cessing technology to analyze and process 2D or 3D images to achieve segmentation,
extraction, three-dimensional reconstruction [7] and three-dimensional display of human
organs, soft tissues and diseased bodies. It divides the image into several regions based
on the similarity or difference between regions. Doctors can perform qualitative or even
quantitative analysis of lesions and other regions of interest through this method, thereby
greatly improving the accuracy and reliability of medical diagnosis. Currently, the main
variety, tissues and organs of the image cells are used as object.

Generally, medical image segmentation can be described by a set theory model: given
a medical image I and a set of similarity constraints Ci (i = 1, 2, . . . ), the segmentation of I
is to obtain a division of it, namely:

N
∪

x=1
Rx = I, Rx ∩ Ry = ∅, ∀x 6= y, x, y ∈ [1, N] (1)
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where Rx satisfies both sets of all pixels in communication similarity constraint
Ci (i = 1,2, . . . ), i.e., the image areas. The same is true for Ry. x, y are used to distin-
guish the different regions. N is a positive integer not less than 2, indicating the number of
regions after division. The process of medical image segmentation can be divided into the
following stages:

1. Obtain medical imaging data set, generally including training set, validation set, and
test set. When using machine learning for image processing, the data set is often
divided into three parts. Among them, the training set is used to train the network
model, the verification set is used to adjust the hyperparameters of the model, and
the test set is used to verify the final effect of the model.

2. Preprocess and expand the image, generally including standardization of input image,
perform random rotation and random scaling on the input image to increase the size
of the data set.

3. Use appropriate medical image segmentation method to segment the medical image,
and output the segmented images.

4. Estimation performance evaluation. In order to verify the effectiveness of medical
image segmentation, effective performance indicators need to be set to be verified.
This is an integral part of the process.

2.2. Image Segmentation

Image segmentation is a classic problem in computer vision research and has become a
hotspot in the field of image understanding. The so-called image segmentation refers to the
division of an image into several disjointed areas according to features such as grayscale, color,
spatial texture, and geometric shapes. So that these features show consistency or similarity
in the same area, but between different areas shows a clear difference. Image segmentation
is divided into semantic segmentation, instance segmentation and panoramic segmentation
according to the different coarse and fine granularity of segmentation. Segmentation of
medical images is regarded as a semantic segmentation task. At present, there are more and
more research branches of image segmentation, such as satellite image segmentation, medical
image segmentation, autonomous driving [8,9], etc. With the large increase in the proposed
network structure, the image segmentation method is improved step by step to obtain more
and more accurate segmentation results. However, for different segmentation examples, there
is no universal segmentation algorithm that is suitable for all images.

Traditional image segmentation methods can no longer be compared with the segmen-
tation methods based on deep learning in effect, but the ideas are still worth
learning [10–12]. Like the proposed threshold-based segmentation method [13], region-
based image segmentation method [14], and edge detection-based segmentation
method [15]. These methods use the knowledge of digital image processing and math-
ematics to segment the image. The calculation is simple and the segmentation speed is
fast, but the accuracy of the segmentation cannot be guaranteed in terms of details. At
present, methods based on deep learning have made remarkable achievements in the
field of image segmentation. Their segmentation accuracy has surpassed traditional seg-
mentation methods. The fully convolutional network was the first to successfully use
deep learning for image semantic segmentation. This was the pioneering work of using
convolutional neural networks for image segmentation. The authors proposed the concept
of full convolutional networks. Then there are outstanding segmentation networks such
as U-Net, Mask R-CNN [16], RefineNet [17], and DeconvNet [18], which have a strong
advantage in processing fine edges.

3. Deep Learning
3.1. Overview of Deep Learning Network

Deep learning is a research trend in the rise of machine learning and artificial intelli-
gence. It uses deep neural networks to simulate the learning process of the human brain
and extract features from large-scale data (sound, text, images, etc.) in an unsupervised
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manner [19]. A neural network is composed of many neurons. Each neuron can be re-
garded as a small information-processing unit. The neurons are connected to each other in
a certain way to form the entire deep neural network. The emergence of neural networks
makes end-to-end image processing possible. When the hidden layers of the network
develop to multiple layers, it is called deep learning. In order to solve the difficult problem
of deep network training, layer-by-layer initialization and batching are required, which
makes deep learning the protagonist of the era and the research boom.

In the field of computer vision, deep learning is mainly used in data dimensionality
reduction, handwritten number recognition, pattern recognition and other fields. Such as
image recognition, image repair, image segmentation, object tracking, scene analysis, etc.,
showing very high effectiveness [20].

3.2. Convolutional Neural Networks

The convolutional neural network (CNN) [21] is a classic model produced by the
combination of deep learning and image-processing technology. As one of the most
representative neural networks in the field of deep learning technology, it has made
many breakthroughs in the field of image analysis and processing. In the standard image
annotation set ImageNet, which is commonly used in academia, many achievements have
been made based on convolutional neural networks, including image feature extraction and
classification, pattern recognition, etc. The convolutional neural network is a deep model
with supervised learning. The basic idea is to share the weights of feature mapping in
different positions of the previous layer network, and to reduce the number of parameters
by using spatial relative relationships to improve training performance.

From the proposal of the convolutional neural network to the current wide application,
it has roughly experienced the stage of theoretical budding, experimental development,
large-scale application and in-depth research. The proposal of receptive fields and neu-
rocognitive machines in human visual information is an important theory in the embryonic
stage of theory. In 1962, Hubel et al. [22] showed through biological research that the
transmission of visual information in the brain from the retina is accomplished through
multilevel receptive field excitation. This is the first proposed the concept of receptive
field. In 1980, Fukushima [23] proposed a neurocognitive machine based on the concept of
receptive fields. It is regarded as the first implementation network of convolutional neural
networks. In 1998, Lécun et al. [24] proposed LeNet5 using a gradient-based backpropa-
gation algorithm for supervised training of the network, which entered the experimental
development stage. The academic circle’s attention to convolutional neural networks also
began with the proposal of the LeNet5 network and successfully applied to handwriting
recognition. After the LeNet5 network, the convolutional neural network has been in the
experimental development stage. It was not until the introduction of the AlexNet network
in 2012 that the position of convolutional neural networks in deep learning applications
was established. The AlexNet proposed by Krizhevsky et al. [25] was the most successful at
image classification of the training set of ImageNet, making convolutional neural networks
become the key research object in computer vision, and this research continues to deepen.

3.2.1. 2D CNN

CNN consists of an input layer, an output layer, and several hidden layers. Each layer in
the hidden layer performs a specific operation, such as convolution, pooling, and activation.
The input layer is connected to the input image, and the number of neurons in this layer is
the pixel of the input image. The middle convolutional layer performs feature extraction on
the input data through a convolution operation to obtain a feature map. The result of the
convolution operation depends on the setting of the parameters in the convolution kernel.
The pooling layer behind the convolutional layer filters and selects feature maps, simplifying
the computational complexity of the entire network. Through the fully connected layer, all
neurons in the previous layer are fully connected. The obtained output value is sent to the
classifier, which gives the classification result. The general convolutional neural network is
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2D CNN. Its input image is 2D and the convolution kernel is a 2D convolution kernel, such
as ResNet [26], VGG (Visual Geometry Group) [27], etc. Suppose the input image size is H
×W with three channels, RGB. The convolution kernel of size (c, h, w) slides on the spatial
dimension of the input image, where c, h, w denote the number of channels, the height and
the width of the convolution kernel, respectively. The value of the image and the value of
(h, w) is entered on each channel to perform a convolution operation to obtain a value. The
process of 2D CNN convolution is shown in Figure 1.
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Figure 1. Two-dimensional convolutional neural network (2D CNN) convolution.

3.2.2. 3D CNN

Most images in medical images are usually 3D, such as CT and MRI. Although the
CT image we usually see is a 2D image, it is just a slice of it. Therefore, if you want to
segment some diseased tissues, you must use a 3D convolution kernel. For example, the
convolution kernel used by the segmentation network 3D U-Net is 3D. It changed the 2D
convolution kernel in the U-Net network to a 3D convolution kernel, which is suitable
for 3D medical image segmentation [28]. 3D CNN can extract a more powerful volume
representation on the three axes of X, Y, and Z. The use of three-dimensional information in
segmentation makes full use of the advantages of spatial information. The 3D convolution
kernel has one more depth than the 2D convolution kernel, which means the number of
2D slices of medical images. Given a 3D image C × N × H ×W where C, N, H and W
represent the number of channels, the number of slice layers, the height and width of the
convolution kernel. Like the 2D convolution operation, a value is obtained by sliding the
window on the height, width, and number of layers on each channel. The process of 3D
CNN convolution is shown in Figure 2.
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3.2.3. Basic Deep Learning Architectures for Segmentation

The segmentation network is also changed in the common CNN structure. The first
segmentation network was to change the last two fully connected layers for the classifica-
tion network to convolutional layer. The bone of the medical image segmentation network
is based on the deep structure like VGG and ResNet as well as the encoder-decoder struc-
ture. LeNet and AlexNet are early network models. The two network structures are
relatively similar and belong to shallow networks. AlexNet has many more parameters
than LeNet network. Its idea of adding a pooling layer after the convolutional layer is
still popular now. An improvement of VGG over AlexNet is to deepen the number of
network layers. It used several consecutive 3 × 3 convolution kernels to replace the larger
convolution kernel in AlexNet. Under the condition of ensuring the same receptive field,
the depth of the network and the effect of feature extraction are advanced. The structure
of VGG is simple and neat. The entire network uses the same size convolution kernel
and maximum pooling size, verifying that performance can be improved by continuously
deepening the network structure. All the networks mentioned above obtain better training
effects by increasing the number of network layers. But this can also cause problems, such
as overfitting and vanishing gradients. In response to these problems, GoogleNet [29]
improved from another perspective, dividing the evacuation network structure into mod-
ules. The inception structure is proposed to increase depth and width of the network
while reducing parameter of the network. Inception uses multiple convolution kernels of
different sizes and adds pooling. Then the result of convolution and pooled are together
in series. The depth of the entire network reached 22 layers. The CNN network has de-
veloped from the seven layers of AlexNet to the 19 layers of VGG, followed by 22 layers
of GoogleNet. When the depth reaches a certain number of layers, the further increase
cannot improve the performance of classification, but will cause the network to converge
slowly. In order to train a deeper network with good results, He et al. [26] proposed a new
152-layer network structure—ResNet. ResNet solves this problem by using shortcut, which
is composed of many residual blocks. Each module consists of a number of consecutive
layers and a shortcut. This shortcut connects the input and output of the module together,
adding them before ReLU (rectified linear unit) activation. The resulting output is then
send to the ReLU activation function to generate the output of this block. Besides, there are
network structural units like squeeze-and-excitation blocks, which improve the expressive
ability of the network model from the perspective of the new network model, the channel
relationship, to design [30].

Combining the front-end-based CNN encoder and the back-end-based decoder to-
gether, this is the encoder-decoder architecture. It is also the basic structure of a semantic
segmentation network. The structure of the encoder in the segmentation task is similar,
and most of them are CNNs for classification tasks. It extracts image features from the
input image, and compacts the features by encoding to produce the low-resolution feature
map. The decoder maps the low-resolution discriminative feature map learned by the
encoder to the high-resolution pixel space to realize the category labeling of each pixel.
SegNet [31] is a classic encoding-decoding structure. Its encoder and decoder correspond
one-to-one, both have the same spatial size and number of channels. The innovation
of semantic segmentation network mainly comes from the continuous optimization of
the encoder and decoder structure and the improvement of its efficiency. In particu-
lar, the effect and complexity of the decoder are very large for the result of the entire
segmentation network.

3.3. Application of Deep Learning in Image Segmentation

Deep learning has been driving the development of the image field, including image
classification and image segmentation. Image segmentation is different from image classifi-
cation. Image classification only shows which class or classes the entire image belongs to,
while image segmentation needs to identify the information of each pixel in the image.
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The study of the fully convolutional network [32] for semantic segmentation was the
first article that applied deep learning to image segmentation and achieved outstanding
results. After that, many models of image segmentation have borrowed from FCN. This
network is inspired by the VGG network structure. FCN does not require the size of the
input image. It is a novel point that all layers are fully convolutional. However, the result
obtained after FCN segmentation is still not fine enough, relatively blurry and smooth.
It is not sensitive to details in the image. Later, Ronneberger et al. [33] proposed U-Net
for the lack of training images in biomedical images. This network has two advantages:
first, the output result can locate the position of the target category. Second, the input
training data are patches, which is equivalent to data augmentation and solves the problem
about a small number of biomedical images. SegNet [31] builds an encoder-decoder
symmetric structure based on the semantic segmentation task of FCN to achieve end-to-
end pixel-level image segmentation. Zhao et al. [34] proposed the pyramid scene parsing
network (PSPNet). Through the pyramid pool module and the proposed pyramid scene
parsing network, it aggregates the ability to mine global context information based on the
context information of different regions. Another important segmentation model is Mask
R-CNN. Faster R-CNN [35] is a popular target detection framework, and Mask R-CNN
extends it to an instance segmentation framework. These are used for image segmentation
very classic network model. Furthermore, there are other methods of construction, such
as those done by RNN (recurrent neural network), and the more meaningful weakly-
supervised methods.

4. Medical Image Segmentation Based on Deep Learning

When performing image segmentation operations, convolutional neural networks
have excellent feature extraction capabilities and good feature expression capabilities. It
do not require manual extraction of image features or excessive preprocessing of images.
Therefore, CNN has been used in medical image segmentation in recent years. It has
achieved great success in the field and auxiliary diagnosis. This section summarizes the
existing classic research results and divides the existing deep-learning-based medical
image segmentation methods into three categories: FCN, U-Net, and GAN. Each category
is separately introduced. The advantages and disadvantages of each method are compared.

4.1. Fully Convolutional Neural Networks

FCN is the pioneering work of the most successful and advanced deep learning
technology for semantic segmentation. In this section, the advantages and limitations of
FCN networks are introduced. The variants of FCN and its applications are presented.

4.1.1. FCN

For general classification CNN networks, such as VGG and ResNet, some fully con-
nected layers are added at the end of the network. The category probability information
can be obtained after the softmax layer, but this probability information is one-dimensional.
That is, only the category of the entire image can be identified, not the category of each pixel.
So, this fully connected method is not suitable for image segmentation. Long et al. [32]
proposed the fully convolutional network in response to the above problems. In the usual
CNN structure, the first five layers are convolutional layers. The sixth and seventh layers
are fully connected layers with a length of 4096 (one-dimensional vector). The eighth
layer is a fully connected layer with a length of 1000, corresponding to the probability of
1000 categories. FCN changes the three layers from layer 5 to 7 into convolution layers
whose convolution kernel sizes are 7× 7, 1× 1, and 1× 1, so as to obtain a two-dimensional
feature map of each pixel. Then it is followed by a softmax layer to obtain the classification
information of each pixel. The segmentation problem is solved. The fully convolutional
network can accept input images of any size. FCN uses the deconvolution layer to up-
sample the feature map of the last convolution layer and restore it to the same size of the
input image. Thus, a prediction can be generated for each pixel, while retaining the spatial
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information in the original input image. Finally, pixel-by-pixel classification is performed
on the upsampled feature map to complete the final image segmentation. According to
the magnification of upsampling, it is divided into FCN-32s, FCN-16s, and FCN-8s. The
network structure of FCN is shown in Figure 3.
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4.1.2. DeepLab v1

However, the shortcomings of FCN are also very prominent. First, the results of its
upsampling are relatively fuzzy and insensitive to the details of the image, resulting in the
segmentation results not being fine enough. Second, the idea of segmentation is essentially
to classify each pixel without full consideration. The relationship between pixels and pixels
lacks spatial consistency.

In order to get a denser score map in FCN, the authors added padding to the first
convolutional layer, The padding size is equal to 100, which will bring a lot of noise.
Chen et al. [36] proposed DeepLab v1, which changed the pooling stride from the original 2
to 1 and the padding size from the original 100 to 1. In this way, the size of the pooled image
is not reduced and the score map result obtained is denser than that of FCN. DeepLab
v1 is rewritten based on the VGG-16 network, removing the last fully connected layer of
the VGG network and using full convolution instead because using too many pooling
layers will result in the feature layer size being too small. The features contained are too
sparse, which is not conducive to semantic segmentation. The authors removed the last
two pooling layers and added atrous convolution. Compared with traditional convolution,
the receptive field can be expanded without increasing the amount of calculation and the
density of features can be increased. Finally, DeepLab v1 uses conditional random field
(CRF) [37] to improve the accuracy of segmentation boundaries.

4.1.3. DeepLab v2

DeepLab v2 is an improvement based on DeepLab v1. DeepLab v2 [38] solved the
difficulty of segmentation caused by differences of the same object scale in the same
image. When the same thing has different sizes in the same image or different images, the
traditional method is to force the image to the same size by resizing. But this will cause
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some features to be distorted or disappear. The contribution of DeepLab v2 lies in the
more flexible use of atrous convolution, which proposed atrous spatial pyramid pooling
(ASPP). Inspired by spatial pyramid pooling (SPP), ASPP proposes a similar structure that
uses parallel convolutional sampling of holes at different sampling rates on a given input,
which is equivalent to capturing the context of images at multiple scales. In DeepLab v2,
authors switched to the more complex and expressive ResNet-101 network. The continuous
pooling and downsampling of deep convolutional neural network (DCNN) cause the
resolution to decrease. DeepLab v2 removes downsampling in the last few maximum
pooling layers. It instead uses atrous convolution to calculate feature maps with a higher
sampling density. They also removed the fully connected layer in the network and replaced
it with a fully convolutional layer, using a conditional random field to improve accuracy
of the segmentation boundary. In addition, DeepLab v2 uses a fully connected CRF. The
local features of classification are optimized by using underlying detailed information. The
deep neural network has a high accuracy rate for classification, which means that it has
obvious advantages in high-level semantics. However, pixel-level classification belongs to
low-level semantic information, so it appears very vague in local details. Therefore, the
author hopes to optimize the detailed information through CRF.

4.1.4. DeepLab v3 and DeepLab v3+

DeepLab v3 [39] continued to use the ResNet-101 network. Aiming at the problem
of multiscale target segmentation, a cascaded or parallel atrous convolution module is
designed. It adopted multiple atrous rates to capture multiscale context. In addition, the
authors added the previously proposed ASPP module. This module detects convolutional
features on multiple scales and uses image-level features to encode the global context to
further improve performance. Finally, DeepLab v3 began to remove CRF. The experimental
results showed that the model has a significant improvement over the previous DeepLab
version. However, DeepLab v3 also has some shortcomings. For example, the zooming
effect of output image is not good and there is too little information. DeepLab v3+ [40]
extended DeepLab v3. It added a simple and effective decoder module to refine the
segmentation results, especially the segmentation results along target boundary. In order to
improve the effect of the output image, DeepLab v3+ used a feature map of the middle layer
to enlarge the output image. The Xception model is used in the semantic segmentation
task. The depthwise separable convolution is used in ASPP and the decoding module to
improve the running speed and robustness of the encoder-decoder network.

4.1.5. SegNet

SegNet [31] builds an encoder-decoder symmetric structure based on the semantic
segmentation task of FCN to achieve end-to-end pixel-level image segmentation. The
network is mainly composed of two parts: the encoder and the decoder. The encoder is
a network model that continues to use VGG16, mainly for analyzing object information.
The decoder corresponds the parsed information into the final image form, that is, each
pixel is represented by the color or label corresponding to its object information. The
novelty lies in the way that the decoder upsamples its input feature map with lower
resolution. FCN uses a deconvolution operation to upsample. The difference of SegNet
is that decoder uses a larger pooling index (position) transmitted from the encoder to
nonlinearly upsample its input, so that upsampling does not require learning and a sparse
features map is generated. Then, a trainable convolution kernel is used for convolution
operation to generate a dense feature map. When feature maps are restored to original
resolution, they are sent to the softmax classifier for pixel-level classification. This helps
maintain integrity of high-frequency information, improves edge characterization, and
reduces training parameters, but, when depooling low-resolution feature maps, it will also
ignore adjacent information.
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4.1.6. Other FCN Structures

Zhou et al. [41] used FCN in a 2.5D approach for the segmentation of 19 organs in
3D CT images. This technology uses a three-dimensional volume two-dimensional slice
for pixel-to-label training, and designs a separate FCN (three FCNs in total) for each two-
dimensional profile. Finally, the segmentation result of each pixel is merged with results
of other FCNs to obtain final segmentation output. The accuracy of this technology on
large organs such as the liver is higher than that of small organs such as the pancreas.
Christ et al. [42] proposed superimposing a series of FCNs. Each model using context
features extracted from the prediction map of the previous model can improve accuracy of
segmentation. This method is called cascaded FCN (CFCN). Zhou et al. [43] proposed the
application of focal loss on FCN to reduce number of false positives in medical images due
to imbalance in the ratio of background and foreground pixels.

4.2. U-Net
4.2.1. 2D U-Net

Based on FCN, Ronneberger et al. [33] designed a U-Net network for biomedical
images, which was widely used in medical image segmentation after it was proposed.
Due to its excellent performance, U-Net and its variants have been widely used in various
sub-fields of computer vision (CV). This approach was presented at the 2015 MICCAI
conference and has been cited more than 4000 times. So far, U-Net has had many variants.
There are many new design methods of convolutional neural network. But many of them
still cited the core idea of U-Net, adding new modules or integrating other design concepts.

U-Net network is composed of U channel and skip-connection. The U channel
is similar to the encoder-decoder structure of SegNet. The encoder has four submod-
ules, each of which contains two convolutional layers. After each submodule, there is a
max pool to realize downsampling. The decoder contains four submodules. The reso-
lution is increased successively by upsampling. Then it gives predictions for each pixel.
The network structure is shown in Figure 4. The input is 572 × 572, and the output is
388 × 388. The output is smaller than the input mainly because of the need for segmenta-
tion in the medical field, which is more accurate. It can be seen from the figure that this
network has no fully connected layer, only convolution and downsampling. The network
also uses a skip connection to connect the upsampling result to the output of submodule
with the same resolution in the encoder as the input of next submodule in the decoder.
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The reason why U-Net is suitable for medical image segmentation is that its structure
can simultaneously combine low-level and high-level information. The low-level information
helps to improve accuracy. The high-level information helps to extract complex features.

4.2.2. 3D U-Net

The improvement of U-Net has become a research hotspot in medical image segmen-
tation. Many variants have been developed on this basis. Çiçek et al. [44] proposed a 3D
U-Net model. This model aims to make the U-Net structure have richer spatial information.
Its network structure is shown in Figure 5. The network structure is similar to U-Net, with
one encoding path and one decoding path. Each path has four resolution levels. Each
layer in the encoding path contains two 3 × 3 convolutions, followed by a ReLU layer. It
uses a maximum pooling layer to reduce dimensionality. In the decoding path, each layer
contains a 2 × 2 × 2 deconvolution layer with a stride of 2, followed by two 3 × 3 × 3
convolution layers. Each convolution is followed by a ReLU layer. Through a shortcut, the
layer with same resolution in encoding path is passed to the decoding path, providing it
with original high-resolution features. The network realizes 3D image segmentation by
inputting a continuous 2D slice sequence of 3D images. This network can not only train on
a sparsely labeled data set and predict other unlabeled places on this data set, but also train
on multiple sparsely labeled data set and then predict new data. Compared with U-Net
input, the input is a stereo image (132 × 132 × 116) and it has three channels. The output
image size is 44 × 44 × 28. 3D U-Net retains the excellent original features of FCN and
U-Net. Its advent is of great help to volumetric images.
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4.2.3. V-Net

Milletari et al. [45] proposed a 3D deformation structure V-Net of the U-Net network
structure. Its network structure is shown in Figure 6. The V-Net structure uses the Dice
coefficient loss function instead of traditional cross-entropy loss function. It uses a 3D
convolution kernel to convolve image and reduces the channel dimension through a
1 × 1 × 1 convolution kernel. On the left side of the network is a gradually compressed
path, which is divided into many stages. Each stage contains one to three convolutional
layers. In order to make each stage learn a parameter function, the input and output of each
stage are added to obtain learning of residual function. The size of the convolution kernel
used in each stage of the convolution operation is 5 × 5 × 5. The convolution operation
is used to extract features of data, while, at the same time, at the end of each “stage”,
through the appropriate step size, the resolution of the data is reduced. On the right side of
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the network is a gradually decompressed path. It extract features and expand the spatial
support of lower resolution feature maps to collect and combine necessary information to
output dual-channel volume segmentation. The final output size of network is consistent
with the original input size.
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4.2.4. Other U-Net Structures

Res-UNet (Weighted Res-UNet) [46] and H-DenseUNet (hybrid densely connected
UNet) [47] are inspired by residual connections and dense connections, respectively. Each
submodule of U-Net is replaced with a residual connection and dense connection. Res-
UNet is used for image segmentation about retinal blood vessels. In the segmentation
of retinal vessels, we often encounter problems of missing small blood vessels and poor
segmentation of optic disc. The structure of retinal blood vessels is similar to the bifurcation
structure of trees. When blood vessels are too thin to detect, this structure is difficult to
maintain. For these challenges, Xiao et al. proposed a weighted Res-UNet. Based on the
original U-Net model, a weighted attention mechanism is added. This allows the model to
learn more for distinguish characteristics of blood vessels and nonvascular pixels, and to
better maintain retinal vessel tree structure. H-DenseUNet is used to segment liver and
liver tumor from the contrast-enhanced CT volumes. The network takes each 3D input and
transforms the 3D volume into 2D adjacent slices through the transformation processing
function F proposed in the article. Then these 2D slices are sent to 2D DenseUNet to extract
the intraslice features. The original 3D input and predicted result after 2D DenseUNet
conversion are concat sent to 3D network for extracting interslice features. Finally, the
two features are fused and result is predicted through the HFF layer. Ibtehaz et al. [48]
proposed MultiResUNet that based on probable scopes for improvement to analyze the
U-Net model architecture. The authors proposed a MultiRes block to replace sequence of
two convolutional layers. In addition to introduction of the MultiRes block, the common
shortcut connection is replaced with proposed Res path. Finally, the authors conducted
experiments on public medical image data sets of different modes. The results showed
that MultiResUNet has a high accuracy rate. Since the organs or tissues to be segmented
in medical images vary in shape and size, this aspect is one of the difficulties to be solved
by medical images. Oktay et al. [49] introduced the attention mechanism in U-Net and
proposed Attention UNet. Before splicing features at each resolution of encoder with
corresponding features in the decoder, they used an attention module to readjust the
encoder’s output characteristics. In U-Net, the encoder consists of several convolutional
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layers and pooling layers. Since they are all local operations, only local information can
be seen. Therefore, long-distance information needs to be extracted by stacking multiple
layers. This method is relatively inefficient, with a large amount of parameters and a
large amount of calculation. Wang et al. [50] proposed a new U-Net model based on self-
attention, called nonlocal U-Nets. A new up/down sampling method is proposed: global
aggregation block, which combines self-attention and up/down sampling. It considers
the full image information while up/down sampling, so as to obtain a more accurate
segmentation image while reducing parameters.

4.3. Generative Adversarial Network

A new method of training generative models to generate adversarial networks has
recently been introduced. Goodfellow et al. [51] proposed an adversarial method in 2014
to learn a deep generative model, GAN. Its structure is shown in the Figure 7 and consists
of two parts. The first part is the generation network, which receives a random noise z
(random number) and generates an image through this noise. The second part is to fight
against the network, which is used to judge whether an image is “real”. Its input parameter
is x (an image), and output D (x) represents the probability that x is a real image. Simply
put, it is through training to make two networks compete with each other. Generation
network generates fake data, and the adversarial network uses a discriminator to determine
authenticity. Finally, it is hoped that data generated by the generator can be fake.
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4.3.1. First GAN for Segmentation

Combining the requirements of semantic segmentation and characteristics of GAN,
Luc et al. [52] trained a convolutional semantic segmentation network and an adversar-
ial network. This paper was the first time that GAN ideas were applied to semantic
segmentation. The loss function of this network is:

`(θs, θa) =
n=1

∑
N

`mce(s(xn), yn)− λ[`bce(a(xn, yn), 1) + `bce(a(xn, s(xn)), 0)] (2)

Among them, θs and θa represent parameters of the segmentation model and adversar-
ial model respectively. N is the size of data set. xn are training images and corresponding
label maps yn. a(x, y) is the scalar probability of the ground truth label map y being x
predicted by adversarial model. So, s(·) is a label map produced by the segmentation
model. `bce and `mce are binary and multiclass cross-entropy losses, respectively. Segmentor
is a traditional CNN-based segmentation network. Segmentor is a traditional CNN-based
segmentation network, which attempts to generate a segmentation map that is close to
ground truth so that it looks more realistic. The adversarial network is the discriminator in
GAN. The training process is classic game idea, which mutually improves the network’s
ability to improve segmentation accuracy and discrimination ability.
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4.3.2. Segmentation Adversarial Network (SegAN)

Xue et al. [53] proposed the U-Net structure as the generator of GAN, called seg-
mentation adversarial network (SegAN). For medical image segmentation, U-Net cannot
effectively solve the problem of unbalanced pixel categories in the image. Based on the
above problem, authors designed a new segmentation network based on the ideas of GAN,
and proposed a multiscale L1 loss to optimize the segmentation network. Its network struc-
ture is divided into two parts: segmentor network S and critic network C. In the min-max
game, the segmenter and critic network are trained alternately and finally a model with
good performance is obtained. The training goal of S is to minimize the multiscale L1 loss
we proposed, while the training goal of C is to maximize the loss function. Segmentor
network S is a common U-Net structure. We use the convolutional layer with kernel size
4 × 4 and stride 2 for downsampling, and perform upsampling by image resize layer with
a factor of 2 and convolutional layer with kernel size 3 × 3 stride 1. The critic network is
fed with two inputs: original images masked by ground truth label maps, and original
images masked by predicted label maps from S. The experiment is on the BRATS (brain
tumor segmentation) brain tumor segmentation data set is more effective and stable for
segmentation task. Compared with single-scale loss function, the multiscale loss function
multiscale L1 loss proposed by the authors optimizes the entire segmentation network.

4.3.3. Structure Correcting Adversarial Network (SCAN)

Chest X-ray (CXR) is the most common X-ray used to diagnose various cardiopul-
monary abnormalities in daily clinical practice. Due to the low cost and low dose radiation
of CXR, it accounts for more than 55% of the total number of medical images. Therefore, it
is important to develop computer-aided detection methods that support chest X-rays to
support clinicians. Dai et al. [54] proposed a structure correction confrontation network
(SCAN) to segment the lung field and heart in CXR images. This network adopted idea
that Luc et al. first used GAN for image segmentation. The difference is that both the
segmentation network and discriminant network use a fully convolutional network. For
the first time, the fully convolutional network is used for segmentation and critic. The
segmentation network is a fully convolutional network. Under the strict constraints of a
very limited training data set of 247 images, FCNs are applied to grayscale CXR images.
The FCN here departs from the usual VGG architecture, and can train the network without
transferring learning from existing models. The critic network imposes structural regularity
from human physiology on the convolutional segmentation network. During the training
process, the critic network learned to distinguish ground truth organ annotations from
a mask synthesized by the segmentation network. Through this confrontation process,
the critic network learns higher-order structures and instructs the segmentation model to
achieve realistic segmentation results. In addition, SCAN simplified the downsampling
module based on the particularity of CXR images.

4.3.4. Projective Adversarial Network (PAN)

Three-dimensional medical image segmentation has always been a problem to be
solved. Khosravan et al. [55] proposed a new segmentation network PAN to capture 3D
semantics in an efficient and computationally efficient way. PAN integrates high-level
3D information through 2D projection, without relying on 3D images or enhancing the
complexity of segmentation. The network backbone is a segmentor and two adversarial
networks. The segmentor contains 10 convolution layers in the encoder and 10 convolution
layers in the decoder. The input of segmentor is a two-dimensional grayscale image. The
output is a pixel-level probability map. The goal of designing adversarial networks is to
compensate for missing global relations and correct the high-order inconsistencies caused
by the loss of a single pixel. An adversarial signal is generated by these networks and
applies it to the segmentor as part of the overall loss function. The adversarial network
is only used in the training phase to improve performance of the segmentor without
increasing its complexity. The first adversarial network captures continuity of high-level
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spatial labels. The second adversarial network uses a 2D projection learning strategy to
enhance 3D semantics. It is also equivalent to adding a high-dimensional constraint through
GAN, but not as direct as 3D U-Net. PAN can be applied to any 3D object segmentation
problem, and is not specific to a single application.

4.3.5. Distributed Asynchronized Discriminator GAN (AsynDGAN)

GAN can not only improve performance of medical image segmentation, but also
contribute to data processing of medical image segmentation. The privacy of medical data
is a very important issue, which leads to very few medical data sets. However, training
a successful deep learning algorithm for medical image segmentation requires sufficient
data. Data enhancement can alleviate this problem slightly. We can use GAN-based data
enhancement as a data expansion method for medical image segmentation. In CVPR 2020,
Chang et al. [56] proposes a data privacy-preserving and communication efficient dis-
tributed GAN learning framework named distributed asynchronized discriminator GAN
(AsynDGAN). AsynDGAN is composed of a central generator and multiple distributed
discriminators located in different medical entities. The central generator accepts the input
of a specific task and generates a composite image to fool the discriminator. The central
generator is an encoder decoder network, which includes two convolutional layers with
stride of 2 for downsampling, nine residual blocks and two transposed convolutions. The
discriminator learns to distinguish the real image from the synthetic image generated by
the central generator. AsynDGAN does not need to share data, protect data security, and
achieve a distributed GAN learning framework for efficient communication. It realizes the
use of a distributed discriminator to train a central generator. The generated data can be
used for segmentation model training, which improves segmentation accuracy.

4.3.6. Other GAN Structures

Zhao et al. [57] proposed Deep-supGAN to map the 3D MR data of the head to its CT
image to facilitate segmentation of craniomaxillofacial bony structure. In order to obtain
better conversion results, they proposed a deep-supervision discriminator, which uses the
feature representation extracted by the pretrained VGG-16 model to distinguish between
real and synthetic CT images. It provides gradient updates to the generator. The first
block in the structure is used to generate high-quality CT images from MRI. The second
block is used to segment bone structures from MRI and generated CT images. In the
case of segmenting 3D multimodal medical images, such as the PAN mentioned earlier
there are often very few label examples used for training, resulting in insufficient model
training. Using the application of antagonistic learning in semisupervised segmentation,
Arnab et al. [58] proposed to use generative adversarial learning for a few-shot 3D mul-
timodal medical image segmentation. Based on the advantages about the combination
of adversarial learning and semisupervised segmentation, a new method of generating
adversarial networks is used to train segmentation models with labeled and unlabeled
images. Compared with the advanced segmentation network trained in a fully supervised
manner, the performance of this network is greatly improved. It is worth studying to train
an effective segmentation model using unannotated images. Zhang et al. [59] proposed a
new deep adversarial network (DAN) for medical image segmentation, with the goal of
obtaining good segmentation results on both annotated and unannotated images. The net-
work includes a segmentation network and an evaluation network, which can effectively
use unannotated image data to obtain better segmentation results. Some papers have also
successfully applied adversarial learning to medical image segmentation. Yang et al. [60]
proposed GANs that use U-Net as a generator to segment the liver in three-dimensional
CT image of the abdomen.

In addition to segmentation, the application of generative adversarial networks in
medical images also plays an important role in image enhancement. In the training of med-
ical image segmentation model, the model is overfitted due to the insufficient data set. This
problem is very common in medical image analysis. A solution to insufficient training data
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set is data augmentation. The GAN-based data enhancement technology for segmentation
tasks is widely used in different medical images. Conditional GANs (cGAN) [61] and Cy-
cleGANs [62] have been used in various ways to synthesize certain types of medical images.
Bayramoglu et al. [63] used cGANs to stain unstained hyperspectral lung histopathological
images to make them look like H&E (Hematoxylin & Eosin Histology) stained versions.
Dar et al. [64] proposed a new method of multicontrast MRI synthesis based on condi-
tional generative adversarial networks. Wolterink et al. [65] used CycleGAN to convert 2D
MR images into CT images. No matching image pairs are required, and training brings
better results.

5. The Segmentation Method for Various Human Organ Area

The human body has multiple organs and tissues. Different parts have their specifici-
ties. For example, the segmentation area for diagnosing brain tumors and lung nodules is
relatively large, while retinal blood images require segmentation of blood vessels. The latter
requires higher segmentation accuracy. Researchers extract ideas from these messages and
design segmentation algorithms for different organs to improve accuracy of segmentation.
The best way to segment different organs will be introduced below. Through reading the
literature, we summarized the segmentation methods of brain, eyes, chest, abdomen, heart
and other parts besides, and drew Tables 1–6.

5.1. Brain

The analysis of brain-related diseases generally requires MRI. Brain imaging anal-
ysis is widely used to study brain diseases such as Alzheimer’s disease [66], epilepsy,
schizophrenia, multiple sclerosis, cancer, and neurodegenerative diseases. Myronenko
et al. [67] proposed a deep learning network 3D MRI brain tumor segmentation based on
asymmetric FCN and combined with residual learning. It won the first place in the 2018
challenge. Nie et al. [68] obtained T1, T2 and diffusion weighted modal neural images of
11 healthy infants. The authors conducted network optimization by integrating contextual
semantic information and fusing features of different scales, and segmented multimodal
brain MRI images using 3D FCN. Wang et al. [69] proposed a CRF-based edge-sensing FCN,
which achieved more accurate edge segmentation by adding edge information into the loss
function. The accuracy of the model was up to 87.31%, far higher than that of FCN-8S and
other basic semantic segmentation networks. Borne et al. [70] selected 62 healthy brain
images from different heterogeneous databases as the training set, and segmented them
using 3D U-Net. The result was 85% correct. Casamitjana et al. [71] proposed the cascaded
V-Net segmentation of brain tumor, dividing the brain tumor segmentation problem into
two simpler tasks, the segmentation of entire tumor and the division of different tumor
regions. There are a lot of segmentations using GAN. For example, Moeskops et al. [72]
used adversarial training to improve the segmentation performance of brain MRI in fully
convolutional and a network structure with dilated convolutions. Rezaei et al. [73] used
cGAN to train a semantic segmentation convolutional neural network, which has a superior
ability for brain tumor segmentation. Focusing on the segmentation task of MRI brain
tumors, Giacomello et al. [74] proposed SegAN-CAT, a deep learning architecture based
on a generative adversarial network. They apply a trained model to different modalities
through transfer learning. SegAN-CAT is different from SegAN in that the loss function is
extended, a dice loss term is added. The input of the discriminator network is composed
of MRI image stitching and segmentation. By training several brain tumor segmentation
models on the BRATS 2015 and BRATS 2019 data sets for testing, SegAN-CAT has better
performance than SegAN.
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Table 1. Segmentation CNN-based methods for the brain.

Reference Object Modalities Network Type Data Set

Myronenko et al. [67] Brain MRI FCN BRATS2018
Nie et al. [68] Brain MRI 3D FCN Infant brain images

Wang et al. [69] Brain MRI FCN ANDI data set and NITRC data set
Borne et al. [70] Brain MRI 3D U-Net 62 healthy brain images

Casamitjana et al. [71] Brain MRI V-Net BRATS2017
Moeskops et al. [72] Brain MRI GAN MRBrainS13

Rezaei et al. [73] Brain MRI cGAN BRATS 2017
Giacomello et al. [74] Brain MRI SegAN-CAT BRATS2015, BRATS2019

Table 2. Segmentation CNN-based methods for the eye.

Reference Object Modalities Network Type Data Set

Leopold et al. [75] Eye Funduscopy PixelBNN DRIVE, STARE, CHASEDB1
Zhang et al. [76] Eye Funduscopy U-Net DRIVE, STARE, CHASEDB1
Jaemin et al. [77] Eye Funduscopy GAN DRIVE, STARE

Edupuganti et al. [78] Eye Funduscopy FCN Drishti-GS data set
Shankaranarayana et al. [79] Eye Funduscopy FCN RIM-ONE

Xiao et al. [46] Eye Funduscopy Res-UNet DRIVE

5.2. Eye

Retinal blood image segmentation is a challenging subject in the research of retinal
pathology. The problem of missing small and weak blood vessels or oversegmentation
has not been solved. Methods based on deep learning are even better than human experts
in retinal vessel segmentation. Leopold et al. [75] proposed a fast architecture for retinal
vessel segmentation, a fully-residual autoencoder batch normalization network (PixelBNN).
It is based on U-Net, PixelCNN. It also uses skip connections and batch normalization
within FCN. Finally, the model is trained, tested and cross-tested on the DRIVE (Digital
Retinal Images for Vessel Extraction), STARE (STructured Analysis of the Retina) and
CHASEDB1(Child Heart Health Study in England) retinal blood vessel segmentation data
sets. The test time and performance are relatively good. Zhang et al. [76] used U-Net with
residual connection to detect vessels, and introduced an edge-sensing mechanism to add
additional labels to the boundary area to improve accuracy. They conducted experiments on
STARE, CHASEDB1 and DRIVE. Jaemin et al. [77] proposed a method that uses generative
adversarial training to generate precise segmentation of retinal blood vessels. This method
proposes that the segmented blood vessels are clear and sharp, with fewer false positives.
It finally achieved the most advanced performance on the two public data sets DRIVE and
STARE. In Section 4, we introduced Res-UNet, which can also be used for retinal vessel
segmentation. It focuses on the target ROI (region of interest) and discards irrelevant noise
to solve great influence of noise on vessel’ shape. For optic disc and cup segmentation,
which is one of the important parameters for glaucoma screening. Edupuganti et al. [78]
used FCN to segment optic disc and cupped area in fundus images to assist the diagnosis
of glaucoma. Using the concept of residual learning, Shankaranarayana et al. [79] proposed
an improved architecture based on FCNs. They used adversarial training to improve the
segmentation results.

5.3. Chest

Because chest X-ray examination is quick and easy, it is the most common medical
image in medicine. Chest X-rays use very small doses of radiation to produce images of the
chest. In chest X-rays, we can realize the segmentation of the lung area [80]. It can be used
to help diagnose and monitor various lung diseases, such as pneumonia and lung cancer.
The SCAN mentioned in Section 4 is used for lung fields and the heart segmentation in
chest X-ray. The proposed framework was extensively evaluated on the JSRT (Japanese
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Society of Radiological Technology) and Montgomery data sets, and it was proved that
this method can perform high-precision and realistic segmentation of lung fields and heart
in CXR images. Novikov et al. [81] made some modifications to U-Net for overfitting the
model and the number of parameters, and proposed an all-convolutional modification of
the original U-Net. By replacing the pool with strided convolutions to solve simplification
problem of convolutional networks, the parameters are reduced by about ten times, while
maintaining accuracy and achieving better results. The models are trained and tested on
the JSRT database, and the performance exceeds expert observations of the lungs and heart.
In CT and MRI image studies of the chest, Anthimopoulos et al. [82] used FCN with atrous
convolution structure and multiscale feature fusion to segment lung parenchyma, healthy
tissue, micronodules and honeycomb structures in lung CT images. Finally, it was verified
on 172 high-resolution CT images collected from multiple medical institutions. A fully
convolutional network was used to construct multiple shared representations between CT
and MRI. Jue et al. [83] developed a learning method derived from cross-modality, using
MR information derived from CT for hallucination MRI to improve CT segmentation.

Table 3. Segmentation CNN-based methods for the chest.

Reference Object Modalities Network Type Data Set

Dai et al. [54] Chest CXR SCAN JSRT, Montgomery
Novikov et al. [81] Chest CXR U-Net JSRT

Anthimopoulos et al. [82] Chest CT FCN A data set of 172 sparsely annotated CT scans
Jue et al. [83] Chest CT, MRI U-Net, dense-FCN TCIA, NSCLC

Table 4. Segmentation CNN-based methods for the abdomen.

Reference Object Modalities Network Type Data Set

Christ et al. [84] Liver CT, MRI FCN 3DIRCADb and other
Han et al. [85] Liver CT DCNN LiTS

Oktay et al. [49] Pancreas CT Attention U-Net TCIA
Yang et al. [60] Liver CT DI2IN-AN 1000 CT volumes
Huo et al. [86] Spleen MRI SSNet 60 clinically acquired abdominal MRI scans

Table 5. Segmentation CNN-based methods in cardiology.

Reference Object Modalities Network Type Data Set

Tran et al. [87] Left and right ventricles MRI FCN SCD, LVSC, RVSC
Xu et al. [88] The whole heart CT CFUN MM-WHS2017

Dong et al. [89] Left ventricles 3D echocardiography VoxelAtlasGAN 60 subjects on 3D
echocardiography

Zhang et al. [90] Cardiac MRI LU-Net ACDC Stacom 2017
Ye et al. [91] The whole heart CT 3D U-Net MICCAI 2017 whole-heart
Xia et al. [92] Left atrium MRI 3D U-Net LASC2018

5.4. Abdomen

In CT and MRI abdomen images, we can segment the liver, spleen, kidney and
other organs. Christ et al. [84] proposed cascaded fully convolutional neural networks
(CFCNs) to automatically segment liver and lesions in CT or MRI abdomen images. This
network is composed of two FCNs cascaded. The first FCN segments the liver ROI area
used as the input of the second FCN. The second FCN is only for lesions within the liver
ROIs in the first FCN. The experiment was implemented on an abdominal CT data set
comprising 100 hepatic tumor volumes and 3DIRCADb data set. Han et al. [85] developed
a deep convolutional neural network method, which belongs to the category of “fully
convolutional neural networks”. The DCNN model takes a bunch of adjacent slices as
input and generates a segmentation map corresponding to the central slice, so it works in
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2.5D. Oktay et al. [49] extended U-Net model to an attention U-Net model for pancreas
segmentation, which presented an attention gate. They have 120 CT images as the training
set and 30 images as the test set. It is 2% to 3% higher than other models in the dice score
indicator. It is essential in many clinical applications of liver segmentation in 3D medical
images. GAN is also used more in the segmentation of organs about the abdomen. Yang
et al. [60] proposed a segmentation of liver method that using an adversarial image to image
network (DI2IN-AN). The generator generates segmentation predictions. The discriminator
classifies predictions and ground truth during the training process. When segmenting the
spleen on an MRI image, the size and shape of the spleen cause vast false positive and
false negative labeling. Huo et al. [86] proposed the splenomegaly segmentation network
(SSNet) for this. The cGAN framework is introduced into SSNet. In order to reduce false
negatives and false positives, the generator uses a global convolutional network (GCN),
and Markovian discriminator (PatchGAN) is used to replace the general generator.

5.5. Cardiology

The heart is an important organ in our body. However, various heart diseases also se-
riously threaten the lives of many people. It is necessary to realize automatic segmentation
of the heart region to solve practical problems in the field of cardiac medical treatment. For
the first time, Tran et al. [87] applied a fully convolutional neural network architecture to
pixel classification for cardiac magnetic resonance imaging. The proposed FCN architecture
achieves the most advanced semantic segmentation in short-axis cardiac MRI. The authors
conducted experiments to segment the left and right ventricles on the SCD (Sunnybrook
cardiac data), LVSC (Left ventricle segmentation challenge), and RVSC (Right Ventricle
Segmentation Challenge) data sets. Xu et al. [88] combined Faster R-CNN with fast detec-
tion capabilities and 3D U-Net with powerful segmentation capabilities, and proposed a
CFUN to obtain the results of the whole heart segmentation. The authors selected 60 heart
CT images from the MM-WHS2017 challenge, which contains 20 training volumes and
40 test volumes. Dong et al. [89] proposed VoxelAtlasGAN based on the cGAN framework
and used V-Net atlas-based segmentation in the generator. This is the first time that cGAN
has been used for 3D left ventricle segmentation on echocardiography. Zhang et al. [90]
proposed an improved U-Net named LU-Net, in order to solve the problem of U-Net’s
low accuracy in cardiac ventricular segmentation. LU-Net has been improved in three
aspects: the effectiveness of extracting original image features, the degree of pixel location
information loss, and the traditional U-Net segmentation accuracy. In order to obtain a finer
whole-heart segmentation, Ye et al. [91] proposed a new deep-supervised 3D U-Net, which
is applied to the original network in multiple depths to better extract context information.
Xia et al. [92] proposed a fully automated two-stage segmentation framework that included
the first 3D U-Net for roughly locating the atrial center from downsampled images. The
second 3D U-Net for accurately segmenting the atrial catheters in the original images at
full resolution. The current state-of-the-art for cardiac image segmentation based on deep
learning is summarized in this review [93].

5.6. Other Organs and Lesion Segmentation

CNN-based semantic segmentation networks also have important applications in
other biomedical image segmentation fields [94,95]. Liu et al. [96] used SegNet structure
as the core network to segment muscles, cartilages and bones from 100 groups of labeled
knee MRI images in the MICCAI Challenge data set, so as to provide rapid and accurate
segmentation methods of cartilage and other tissues for clinical osteoarthritis research. In
addition, SegNet is also used for cell segmentation under the microscope. Tran et al. [97]
used the SegNet structure to segment red blood cells and white blood cells in microscopic
blood smear images. Sekuboyina et al. [98] improved GAN for the structure of the spine
and proposed a butterfly shape GAN model, Btrfly Net. Similarly, Han et al. [99] pro-
posed the application of Spine-GAN to multiple tasks and multiple targets bone marrow
segmentation. V-Net combines MRI images using different equipment to achieve an end-
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to-end prostate segmentation process. The network outputs segmentation results while
calculating the prostate volume for subsequent clinical analysis. Rundo et al. [30] pro-
posed to merge the squeeze-and-excitation (SE) blocks into U-Net as a new convolutional
neural network, USE-Net. The introduction of this structure is expected to enhance the
representation ability by modeling the channel dependence of convolutional features. The
author conducted experiments on multiple heterogeneous MRI data sets of prostate. The
experiments show that the model enhances the segmentation performance and improves
the generalization ability. Kohl et al. [100] proposed a fully convolutional network to
detect aggressive prostate cancer. Different from the general FCN, the author first used an
adversarial network to distinguish between expert annotations and generated annotations
to train FCNs for semantic segmentation. Finally, MRI images of 152 patients were used to
segment aggressive prostate cancer. A good score was achieved in the detection sensitivity
and the dice score of aggressive prostate cancer. Taha et al. [101] proposed a convolutional
neural network called Kid-Net for segmenting kidney vessels, namely arteries, veins and
the collecting system. This segmentation can help doctors make medical decisions before
surgical incisions. At the same time, high-resolution segmentation is achieved by reducing
false positives in imbalanced data. Izadi et al. [102] proposed a new method to segment
skin lesions by using a generative adversarial network. The input image is divided into
two types: lesion and background. Mirikharaji et al. [103] won the first place in the ISBI
2017 skin segmentation challenge and proposed an end-to-end trainable fully convolu-
tional network framework. Wang et al. [104] modified the proposed contour segmentation
deep learning model by adopting an adversarial training strategy, and proposed the basal
membrane segmentation method for the diagnosis of cervical cancer.

Table 6. Other segmentation CNN-based methods.

Reference Object Modalities Network Type Data Set

Liu et al. [96] Musculoskeletal MRI SegNet MICCAI Challenge data set
Tran et al. [97] Cell Microscopic SegNet ALL-IDB1 database

Sekuboyina et al. [98] Spines CT Btrfly Net 302 CT scans
Han et al. [99] Spines MRI Spine-GAN 253 multicenter clinical patients

Milletari et al. [45] Prostate MRI V-Net PROMISE2012
Rundo et al. [30] Prostate MRI USE-Net three T2-weighted MRI data sets
kohl et al. [100] Prostate MRI FCN MRI images of 152 patients
Taha et al. [101] Kidney CT Kid-Net 236 subjects
Izadi et al. [102] Skin Dermoscopy GAN DermoFit

Mirikharaji et al. [103] Skin Dermoscopy FCN ISBI 2017
Wang et al. [104] Basal membrane Histopathology GAN IPMCH

6. Segmentation Evaluation Metrics and Data Sets
6.1. Evaluation Metrics

Evaluating the quality of an algorithm requires a correct objective indicator. In medical
segmentation algorithms, doctors’ hand-drawn annotations are usually used as the gold
standard (ground truth, GT for short). Other results of the algorithm segmentation are the
prediction results (Rseg, SEG for short). The segmentation evaluation of medical images is
divided into pixel-based and overlap-based methods.

Dice index: The dice coefficient is a function for evaluating similarity. It is usually used
to calculate the similarity or overlap between two samples. It is also the most frequently
used. Its value range is 0 to 1. The closer the value is to 1, the better the segmentation effect.
Given two sets A and B, the metrics is defined as:

Dice(A, B) = 2
|A ∩ B|
|A|+ |B| (3)
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Jaccard index: Jaccard index is similar to the dice coefficient. Given two sets A and B,
the metrics are defined as:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| (4)

Segmentation accuracy (SA): The area of accurate segmentation accounts for the
percentage of the real area in the GT image. Among them, Rs represents the reference area
of the segmented image manually drawn by the expert. Ts represents the real area of the
image obtained by the algorithm segmentation. |Rs − Ts| indicates the number of pixels
that are incorrectly segmented.

SA =

(
1− |Rs − Ts|

Rs

)
× 100% (5)

Oversegmentation rate: The ratio of pixels that are divided into the reference area of
the GT image is calculated as follows:

OR =
Os

Rs + Os
(6)

The pixels in Os appear in the actual segmented image, but do not appear in the
theoretical segmented image Rs. Rs represents the reference area of the segmented image
manually drawn by the expert.

Undersegmentation rate: The ratio of the segmentation result to the missing pixels in
GT image. Calculated as follows:

UR =
Us

Rs + Os
(7)

The pixels in Us appear in the theoretical segmented image Rs, but do not appear in
the actual segmented image. Rs, Os have the same meaning as above.

Hausdorff distance: This describes a measure of the degree of similarity between two
sets of points, that is, the distance between the two boundaries of ground truth and the
segmentation result input to the network. Sensitive to the divided boundary.

H =

(
max
i∈seg

(
min
j∈gt

(d(i, j))
)

, max
j∈gt

(
min
i∈seg

(d(i, j))
))

(8)

where, i and j are points belonging to different sets. d represents the distance between i and j.

6.2. Data Sets for Medical Image Segmentation

For any model segmentation based on deep learning, it is crucial to collect enough data
into the data set. The quality of the segmentation algorithm depends on the high-quality
image data provided by the experts and the corresponding label-standardized data set,
which enables fair comparison between systems. This section will introduce some public
data sets frequently used in the field of medical image segmentation.

Medical segmentation decathlon (MSD): Simpson et al. [105] created a large, open
source, hand-annotated medical image data set of various anatomical parts. This data set
can objectively evaluate general segmentation methods through comprehensive bench-
marks, and make the access to medical image data public. The data set has a total of
2633 three-dimensional medical images, involving real clinical applications of multiple
anatomical structures, multiple models, and multiple sources (or institutions). It is divided
into ten categories:

1. Task01_BrainTumour: There are a total of 750, and the labels are divided into two
categories: Glioma (necrotic/active tumor), edema. It is an MRI scan obtained in
routine clinical practice.
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2. Task02_Heart: There are a total of 30, and the label is the left atrium. These data come
from the Left Atrial Segmentation Challenge (LASC). Images were obtained on a 1.5T
Achieva scanner with voxel resolution 1.25 × 1.25 × 2.7 mm3.

3. Task03_Liver: There are 201 sheets in total, with labels divided into liver and tumors.
The type of imaging is CT. The images were provided with an in-plane resolution of
0.5 to 1.0 mm, and slice thickness of 0.45 to 6.0 mm.

4. Task04_Hippocampus: There are a total of 394, and the labels are hippocampus, head
and body. The type of imaging is MRI. The data set consisted of MRI acquired in 90
healthy adults and 105 adults with a nonaffective psychotic disorder.

5. Task05_Prostate: There are a total of 48, and the labels are: Prostate central gland,
peripheral zone. The type of imaging is MRI. The prostate data set consisted of 48
multiparametric MRI studies provided by Radboud University (The Netherlands)
reported in a previous segmentation study.

6. Task06_Lung: There are a total of 96, and the label is lung tumor. The type of imaging
is CT. The lung data set was comprised of patients with non-small-cell lung cancer
from Stanford University. The tumor region was denoted by an expert thoracic
radiologist on a representative CT cross section using OsiriX.

7. Task07_Pancreas: There are a total of 420, with labels divided into pancreas and
pancreatic mass (cyst or tumor). The type of imaging is CT. The pancreas data set
consisted of patients whose pancreatic masses were removed.

8. Task08_HepaticVessel: There are a total of 443, and the labels is liver vessels. The type
of imaging is CT. This second liver data set consisted of patients with various primary
and metastatic liver tumors.

9. Task09_Spleen: There are a total of 61, and the label is the spleen. The type of imaging
is CT. The spleen data set comprised of patients undergoing chemotherapy treatment
for liver metastases at Memorial Sloan Kettering Cancer Center.

10. Task10_Colon: There are a total of 190, and the label is colon cancer. The type of
imaging is CT.

Segmentation in Chest Radiographs (SCR): All chest radiographs are taken from the
JSRT database. The SCR database was created to simplify the comparative study of lung
field, heart and clavicle segmentation in standard posterior chest radiographs [106]. All
data in the database are manually segmented to provide reference standards. The image is
scanned from film to 2048 × 2048 pixels, with a spatial resolution of 0.175 mm/pixel and a
gray scale of 12 bits. Each of the 154 images have a lung nodule, and the other 93 images
have no lung nodules.

Brain tumor segmentation (BRATS): This data set is a brain tumor segmentation
competition data set, which is combined with the MICCAI conference [107]. In order to
evaluate the best brain tumor segmentation methods and compare different methods, it
has been held every year since 2012. For this reason, the data set is published. There are
five types of labels: healthy brain tissue, necrotic area, edema area, tumor enhancement
and nonenhancement area. New training sets are added every year.

Digital database for screening mammography (DDSM): DDSM [108] is a resource
used by the mammography image analysis research community and is widely used by
researchers. The database contains approximately 2500 studies. Each study includes two
images of each breast, as well as some relevant patient information and image information.

Ischemic stroke lesion segmentation (ISLES): This provides MRI scans containing a
large number of accurate stroke samples and related clinical parameters. This challenge is
organized to evaluate stroke pathology and clinical outcome prediction in accurate MRI
scan images.

Liver tumor segmentation (LiTS): These data and segmentations are provided by
different clinical sites around the world for the segmentation of liver and liver tumors. The
training data set contains 130 CT scans, and the test data set contains 70 CT scans [109].

Prostate MR image segmentation (PROMISE12): This data set is used for prostate
segmentation. These data include patients with benign diseases (such as benign prostatic
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hyperplasia) and prostate cancer. These cases include a transversal T2-weighted MR image
of the prostate.

Lung image database consortium image collection (LIDC-IDRI): The data set is
composed of chest medical image files (such as CT, X-ray) and corresponding diagnosis
result lesion labels. The purpose is to study early cancer detection in high-risk populations.
A total of 1018 research examples are included. For the images in each example, four
experienced thoracic radiologists performed a two-stage diagnosis and annotation [110].

Open Access Series of Imaging Studies (OASIS): This is a project aimed at enabling
the scientific community to provide brain MRI data sets free of charge. A third generation
has been released. OASIS-3 is a retrospective compilation of more than 1000 participants’
data collected from several ongoing projects through WUSTL Knight ADRC over the past
30 years. OASIS-3 is a longitudinal neuroimaging, clinical, cognitive, and biomarker data
set for normal aging and Alzheimer’s disease. Participants included 609 cognitively normal
adults and 489 people at various stages of cognitive decline, ages 42 to 95 [111].

Digital retinal images for vessel extraction (DRIVE): This data set is used to compare
the segmentation of blood vessels in retinal images. The photos in the DRIVE database
came from a diabetic retinopathy screening project in the Netherlands, and 40 photos were
randomly selected. Among them, 33 cases had no signs of diabetic retinopathy and seven
cases had signs of mild early diabetic retinopathy. Each image is captured with 768 × 584
pixels with 8 bits per color plane. The field of view of each image is circular with a diameter
of approximately 540 pixels. Figure 8 is a sample of the DRIVE data set and its ground
truth [112].
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Mammographic Image Analysis Society (MIAS): MIAS is a breast cancer X-ray image
database created by a British research organization in 1995. Each pixel has a grayscale of
8 bits. The MIAS database contains left and right breast images of 161 patients, with a total of
322 images, including 208 healthy images, 63 benign breast cancer and 51 malignant breast
cancer images. The boundary of the lesion area has also been calibrated by experts [113].

Sunnybrook cardiac data (SCD): It also known as the 2009 cardiac MR left ventricle
segmentation challenge data, and consists of 45 cine-MRI images from a mixed of patients
and pathologies: healthy, hypertrophy, heart failure with infarction and heart failure
without infarction [114].

In addition to the several data sets commonly used for medical image segmentation
described above, there are also many competition data sets that verify the superiority of
the algorithm provided by the famous medical image challenge competition.

Grand Challenges in Biomedical Image Analysis: It was designed to help people
solve global health and development issues. It covers all challenges in the field of medical
image analysis, including medical image processing. This is also the biggest challenge in
the field of medical image processing, and many excellent algorithms have been born.
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Liver Tumor Segmentation Challenge: The purpose of this competition is to en-
courage researchers to study liver lesion segmentation methods. The data and slices of
the challenge competition are provided by different clinical sites around the world. The
training data set contains 130 CT scans, and the test data set contains 70 CT scans.

2019 Kidney and Kidney Tumor Segmentation Challenge (KiTS19): The KiTS19
challenge is the semantic segmentation of kidneys and kidney tumors in contrast-enhanced
CT scans. The data set consisted of 300 patients with preoperative arterial-phase abdominal
CTs annotated by experts. Two-hundred and ten (70%) of these were released as a training
set and the remaining 90 (30%) were held out as a test set. Table 7 is the medical image data
sets for segmentation.

Table 7. Medical image data sets for segmentation.

Data Set Modalities Objects URL

MSD MRI, CT Various http://medicaldecathlon.com/
BRATS MRI Brain https://www.med.upenn.edu/sbia/brats2018/data.html
DDSM Mammography Breast http://www.eng.usf.edu/cvprg/Mammography/Database.html
ISLES MRI Brain http://www.isles-challenge.org/
LiTS CT Liver https://competitions.codalab.org/competitions/17094

PROMISE12 MRI Prostate https://promise12.grand-challenge.org/
LIDC-IDRI CT Lung https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

OASIS MRI, PET Brain https://www.oasis-brains.org/
DRIVE Funduscopy Eye https://drive.grand-challenge.org/
STARE Funduscopy Eye http://homes.esat.kuleuven.be/~mblaschk/projects/retina/

CHASEDB1 Funduscopy Eye https://blogs.kingston.ac.uk/retinal/chasedb1/
MIAS X-ray Breast https://www.repository.cam.ac.uk/handle/1810/250394?show=full
SCD MRI Cardiac http://www.cardiacatlas.org/studies/

SKI10 MRI Knee http://www.ski10.org/
HVSMR2018 CMR Heart http://segchd.csail.mit.edu/

7. Conclusions and Future Directions

Although research into medical image segmentation has made great progress, the
effect of segmentation still cannot meet the needs of practical applications. The main reason
is that the current medical image segmentation research still has the following difficulties
and challenges:

1. Medical image segmentation is a cross-disciplinary field between these two disciplines
span. Clinical medical pathology conditions are complex and diverse. However,
artificial intelligence scientists do not understand clinical needs. Clinicians do not
understand the specific technology of artificial intelligence. As a result, artificial
intelligence cannot well meet the specific clinical needs. In order to promote the
application of artificial intelligence in the medical field, extensive cooperation between
clinicians and machine learning scientists should be strengthened. This cooperation
will solve the problem that machine learning researchers cannot obtain medical data.
It can also help machine learning researchers develop deep learning algorithms more
in line with clinical needs and apply them to computer-aided diagnosis equipment,
thereby improving diagnosis efficiency and accuracy.

2. Medical images are different from natural images. There are differences between
different medical images. This difference also affects the adaptability of the deep
learning model during segmentation. The noise and artifacts of medical images are
also a major problem in data preprocessing.

3. Limitations of existing medical image data sets. The existing medical image data sets
are small in scale. The training of deep learning algorithms requires a large amount
of data set support, which leads to the problem of overfitting in the training process
of deep learning models. One way to solve the insufficient amount of training data
is data enhancement, such as geometric transformation, color space enhancement.
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http://www.cardiacatlas.org/studies/
http://www.ski10.org/
http://segchd.csail.mit.edu/
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GAN uses original data to synthesize new data. Another method is based on a meta-
learning model to study medical image segmentation under small sample conditions.

4. The deep learning model has its own flaws. It mainly focuses on three aspects: net-
work structure design, 3D data segmentation model design and loss function design.
The design of the network structure is worth exploring. The effect of modifying the
network structure is significant and can be easily migrated to other tasks. 3D medical
data can more accurately capture the geometric information of the target, which may
be lost when the 3D data is sliced slice by slice. Therefore, a researchable direction is
the design of 3D convolution models to process 3D medical image data. The design
of loss function has always been a difficult point in deep learning research.

For medical image segmentation, deep learning has performed very well. More and more
new methods are used to continuously improve the accuracy and robustness of segmentation.
Diagnosing various diseases through artificial intelligence realizes the idea of sustainable
medical treatment. It becomes a powerful tool for clinicians. But it is still an open problem, so
we can expect a series of innovations and research results in the next few years.
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