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Abstract: In this study, nutrients release/adsorption from/by raw poultry manure-derived biochar
produced at a pyrolysis temperature of 600 ◦C (RPM-B) was assessed under static and dynamic
conditions. Batch sequential leaching experiments of RPM-B for a total contact time of 10 days showed
that both phosphorus and potassium were slowly released but with higher amounts compared to
various other animal- and lignocellulosic-derived biochars. The cumulated released P and K amounts
were assessed to 93.6 and 17.1 mg g−1, which represent about 95% and 43% of their original contents
in the RPM-B, respectively. The column combined leaching/adsorption experiments showed that
amending an alkaline sandy agricultural soil with two doses of RPM-B (at 5% and 8% w:w) resulted
in an efficient retention of NO3-N and NH4-N, and on the contrary, important leached amounts of
PO4-P, K+, Mg2+, and Ca2+ but with relatively slow kinetic release rates for a long period. Even
after 40 days of dynamic leaching, these latter nutrients continued to be released with kinetic rates
lower than 10 mg kg−1 d−1. Thus, compared to synthetic fertilizers, RPM-B valorization as organic
amendment for poor semiarid soils could be considered as an attractive, eco-friendly, and sustainable
waste recycling option.

Keywords: poultry manure biochar; nutrients; sequential extraction; leaching; adsorption

1. Introduction

Animal biomasses including raw poultry manure (RPM) are organic wastes that
are globally produced in large amounts from farming activities [1,2]. The absence of
systematic mastered valorization pathways of these wastes could represent a real threat to
the environment quality (bad odors and water resources quality deterioration) and could
lead to social instability in the zones surrounding the corresponding facilities [2,3]. At
the same time, RPM contains high concentrations of macro- and micronutrients, which
could promote its application, instead of synthetic fertilizers, as nutrient sources for the
cultivation of different crops [4–6]. However, RPM direct use has the drawbacks of nutrients
availability scaling down and important greenhouse gas (GHG) emissions [7,8].

The thermochemical conversion of animal biomasses, in general, and RPM, in particu-
lar, via pyrolysis process has been suggested as an attractive and sustainable technology
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since it permits their turning into three valuable by-products: biogas and bio-oil (bio-
fuels) for energy purposes and a solid carbonaceous residue named “biochar” [9]. This
animal-biomasses-derived-biochars could be valorized in environmental applications as
an effective adsorbent for pollutants contained in liquid and gaseous effluents [10] or in
agriculture as an eco-friendly fertilizer [5]. In the latter purpose, these biochars are assumed
to act as a soil conditioner and fertilizer by improving soil properties, nutrients availability,
and crop yields [4,5,11]. Besides, the application of these biochars in agriculture could
reduce emissions of carbon dioxide and methane gas for global warming mitigation [12].
However, the use of this type of biochars is mainly limited by [13]: i) some nutrients runoff
and leaching loss that could negatively impact water resources (surface and underground)
quality, ii) some other nutrients dissolution at lower concentrations as compared with
synthetic inorganic fertilizers, which could significantly reduce plants’ optimal growth and
crops production. Therefore, investigating nutrients dynamic (both leaching and adsorp-
tion) by agricultural soils amended with animal-biomasses-derived-biochars is a crucial
task in order to get a better appreciation of their possible impacts onto soils, water resources,
and plants’ growth [8]. Nutrients dynamic in biochars-amended-soils have been investi-
gated under controlled laboratory conditions in batch, column, and pots devices and also
in field trials [5,14–16]. Results indicated that nutrients dynamic is a very complex process
that depends on various parameters such as the physicochemical properties of the nutrient,
the biochar, and the agricultural soil as well as the used experimental conditions giving
the impression that outcomes of different studies look like contradictory [6,12,14,16,17].
For instance, Zolfi-Bavariani et al. [6] and Hadroug et al. [17] showed that more alkaline
biochars, that are produced at higher pyrolysis temperatures, released higher rates of
potassium. However, P and micronutrients become less available due mainly to its trap
into crystalline forms [18]. Moreover, Singh et al. [12] demonstrated that the adding of
wood- and poultry litter-based biochars produced at 550 ◦C decreased NH4-N leaching by
about 55% to 65% in an Alfisol. In contrast, no significant impact was reported for the same
biochars when produced at a temperature of 400 ◦C. However, all these four biochars have
significantly reduced NH4-N leaching in a Vertisol rich in smectite clay. On the other hand,
Bohara et al. [8] studied in column mode nutrients and heavy metals leaching by 10 pore
volumes of distilled water of an amended fined soil by mixtures of RPM and pinewood
biochar (PWB). They reported that adding PWB at doses of 2.5% and 5% to the control
column decreased the leached amounts of Al3+, Fe3+, and Zn2+, while it had no significant
effect on Ca2+, Mg2+, PO4-P, and K+. However, when the used dose was increased to
10%, the Ca2+ and Mg2+ leached amounts significantly increased due to the richness of the
biochar in these two elements. Moreover, the addition of 10% of PWB to the soil initially
amended with 10% of RPM significantly reduced the leached amounts of Mg2+, PO4-P, and
K+ by about 36%, 19%, and 32%, respectively. Finally, for PO4-P, both leaching increase
and decrease was reported when agricultural soils are amended with biochars despite the
existence of high contents of Ca2+ and Mg2+ that could bind with this element [19–21].

It is important to underline that most of the studies on nutrients dynamic from
animal-biomasses-derived-biochars were carried out in tropical and subtropical climates
or acidic agricultural soils while there is a substantial lack of investigations in arid and
semiarid regions with poor sandy soils [4,5,22,23]. Furthermore, there is an apparent lack
of studies dealing with change over long time periods of simultaneous nutrients release
and adsorption following the application of these biochars in sandy alkaline and poor soils.
Accordingly, the ultimate goal of the current study is to get a better quantification of the
major nutrients’ loss/adsorption from/by a semiarid and alkaline sandy soil amended
with various doses of a RPM-derived biochar (RPM-B). The specific objectives of this study
are: (i) to assess RPM-B ability in releasing potassium and phosphorus in batch mode
through five sequential extractions for a total duration of 10 days and (ii) to accurately
evaluate and to better understand the effect of RPM-B doses on both major nutrients release
and adsorption from/by an alkaline amended agricultural soil under dynamic conditions
(column tests).
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2. Materials and Methods
2.1. Biochar Preparation and Characterization

The used raw poultry manure in this study was gathered from a poultry farm in the
city of Mornag (south of Tunis, Tunisia). This biomass was first dried in open air for 10 days
then manually ground. Only the fraction with particles size comprised between 80 µm and
1 mm was selected and used in this study. The thermal conversion of RPM into biochar
was carried out through slow pyrolysis by using a laboratory furnace (Lenton, UK). The
used heating rate and final temperature were fixed at 5 ◦C min−1 and 600 ◦C, respectively.
An in-depth physicochemical characterization of this biochar was carried out according
with Hadroug et al. [17].

2.2. Soil Preparation and Characterization

The agricultural soil used in this study was sampled from the top layer (0–25 cm) of
a local farmland located in the city of Menzel Bouzelfa (North East of Tunisia). The soil
sample was air-dried for 10 days and then sieved with a mechanical sieve shaker (Retch,
Haan, Germany). Only the fraction with particle size less than 2 mm was used in this study.
The physicochemical characterization of this soil has concerned mainly the determination
of its: (i) pH and electrical conductivity (EC) for a soil/water mass ratio of 1:10, (ii) particle
size distribution, (iii) crystallinity through X-ray diffraction (XRD) analyses by Bruker D8
Advance powder diffractometer, and (iv) mineral composition by an X-ray fluorescence
(XRF) (S8 Tiger Series 2 apparatus). For the XRF analysis, 150 mg of the soil were grinded
into a fine powder then blended with 200 mg of boric acid. The sample was then pressed
under a hydraulic pellet press then introduced into the analytical apparatus for analysis.

2.3. Static Nutrient Release Experiments

The main goal of static assays (batch mode) was to determine the efficiency and kinetic
release of PO4-P and K+ from the RPM-B. A slow release process is an important agronomic
property since it will allow crops to take maximum advantage of these nutrients and reduce
groundwater pollution risks. For this reason, five successive leaching experiments using
the same biochar were carried out for a total duration of 10 days. Each experiment consists
in shaking this biochar with distilled water for 2 days at a dosage of 10 g L−1 and 400 rpm
using an IKA RT 15 Power IKAMAG multi-position magnetic stirrer. At the end of each
experiment, the biochar sample was recovered using a vacuum pumping system with
0.45-µm paper filters, and then dried for 16 h at 40 ◦C. The dried sample was reused again
for the subsequent leaching procedure. The concentrations of PO4-P and K+ in the liquid
leaching samples were analyzed by an inductively coupled plasma spectrometry (ICP)
(Agilent Tech 5100 ICP OES).

For each leaching experiment “i”, the released amount of PO4-P per gram of biochar
“qP,i (mg g−1)” or K+ “qK,i (mg g−1)” were determined as follows:

qP,i =
CP,i

D
(1)

qK,i =
CK,i

D
, (2)

where CP, i, and CK,i are PO4-P or K+ concentration at the leaching step “i”.
Besides, the kinetic release of PO4-P (SP,i) and K+ (SK,i) (mg g−1 d−1) for a given

leaching experiment “i”, are given by:

SP,i =
qP,i

t
(3)

SK,i =
qK,i

t
, (4)

where “t” is the contact time or the leaching experiment duration.
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Finally, the cumulated leached percentages of P (YP,j) or K (YK,j) after “j” leaching
experiments are calculated as follows:

YP,j =
∑

i=j
i=1 qP,i

MP,b
(5)

YK,j =
∑

i=j
i=1 qK,i

MK,b
, (6)

where MP,b and Mk,b, (mg g−1) are the P and K contents in the used biochar, respectively.
During this work, all batch nutrient release experiments were carried out in triplicate

and data reported in this study are an average of these three independent parallel sample
solutions.

2.4. Dynamic Nutrient Release Experiments

The nutrients leaching dynamics from RPM-B-amended soils was carried out using
laboratory column experiments. It consists of plexiglass columns with a total height
of 50 cm and internal diameter of 6.1 cm (Figure 1). Three leaching experiments were
conducted by filling the columns with a total mass of 1400 g of hand mixed agricultural soil
with RPM-derived-biochar at doses of 0% (blank test), 5%, and 8%, respectively. The soil,
having a bulk density of 1.37 g cm−3, and the RPM-B-amended soil were packed into the
column with small increments in order to ensure a homogenous compaction level. At both
sides of the column, two glass particle layers were placed in order to guarantee a uniform
flow in the column and an easy water drainage [24].
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Figure 1. Schematic representation of the used laboratory column for leaching assays.

In this work, the dynamic behavior of the compounds (NO3-N, PO4-P, K+, Na+,
NH4-N, Ca2+, and Mg2+) was followed for a total duration of 40 days. It has concerned
both their leaching potential from the soil/soil-amended biochars (phase 1) and their
adsorption capacities by these same porous media (phase 2). Hence, phase 1 consists in the
leaching of the RPM-amended-soil through a daily feeding with 400 mL (about one pore
volume) of distilled water in gravity flow mode for 22 days. The second phase corresponds
to nutrients adsorption assessment and begins on day 23 through the columns feeding
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for twice (days 23 and 24) with 400 mL of synthetic solution containing 65.7 mg L−1 of
Na+, 50.4 mg L−1 of K+, and 40 mg L−1 of PO4-P, NO3-N, and NH4-N. This solution was
prepared from the following analytical-grade reagents KH2PO4, NaNO3, and NH4Cl. From
the 25th to the 40th day, the columns were again daily fed with 400 mL of distilled water.
The daily collected liquid samples at the columns’ outlet were determined for pH, EC, and
nutrients concentrations according to the protocols given in Section 3.3.2. The cumulated
experimental collected amounts at the outlet of the column (MX) of a given nutrient “X”
was determined using the trapeze method according to the following formula [25,26]:

MX =

Vtot∫
V=0

CX dV =
i=n

∑
i=1

(
CX,i + CX,i+1

2

)
(Vi+1 − Vi), (7)

where Vtot is the total leached volume collected at the outlet of the column, CX,i and C X, i + 1
is the measured concentration of the nutrient “X” at the day “i” and “i + 1”, respectively. Vi
and Vi+1 are the collected volumes at the outlet of the column at the same dates.

The collected samples at the outlet of the columns were filtered through 0.45 µm paper
filters before analysis by ion chromatography (Metrohm, Herisau, Switzerland) for the
determination of their anions and cations’ concentrations.

2.5. Statistical Analysis

Data from batch and laboratory column experiments were analyzed using STATISTICA
8.0 software (StatSoft, Tulsa, OK, USA). ANOVA with Duncan’s multiple range test were
applied for mean separation at p ≤ 0.05.

3. Results and Discussions
3.1. Biochar and Agricultural Soil Characterization

The RPM-B consists of a fine and homogenous porous media with an average diameter
of 0.31 mm, a low BET surface area (5.3 m2 g−1), a high pH of zero-point-charge (pHZPC)
(11.5), a moderate C (21.2%), and low N (0.6%) contents [17]. The K and P contents of the
RPM-B were assessed to 6.6% and 4.3%, respectively. They are in the range of the values
reported in the literature for RPM-derived biochars. However, compared to lignocellulosic
materials, RPM-B appears to be exceptionally rich in nutrients (Table 1). For instance, K
and “P” contents in the used RPM-B are, respectively, 3.2 and “5.3”, 6.4 and “33.2”, and
5.0 and “33.2” times higher than the ones reported for exhausted grape marc [27], wood
chips residues [28], and pine sawdust [29]. This an important advantage for its valorization
in agriculture as a biofertilizer since it can bring sufficient amounts of these two essential
macronutrients for an optimal crop development.

On the other hand, the used soil is a sandy alkaline with a pH of 8.1. It has relatively
low electric conductivity and moderate rich organic matter with values of 146 µS cm−1

and 3.0%. Relatively similar values were reported for a Sassafras loam soil [33]. Its mineral
composition indicates that it is mainly composed by silicone dioxide, calcite, and alumina
with percentage values of 96.2%, 1.4%, and 1.3%, respectively. This result was confirmed
with the XRD analyses (Figure 2) showing the presence of several peaks related to SiO2 at
2θ = 21◦, 26.6◦, 36.6◦, 39.4◦, 42.6◦, 50.2◦, 54.8◦, 60◦, and 81.5◦. Microcline (KAlSi3O8) was
identified with a single peak at 2θ = 64◦. Besides, the carbonates represented by dolomite
was observed by a diffraction peak at 2θ = 68.6◦. Finally, sulfates represented by the gypsum
was observed at 2θ = 75.9◦. It is important to underline that the macronutrient contents in
the experimental soil are relatively low. Indeed, K2O, P2O5, MgO, and CaCO3 were assessed
to be only about 0.03%, 0.15%, 0.06%, and 1.42%, respectively, which indicates the need of
a supplementary external source of nutrients to sustain crops growth (Table 2). Therefore,
the RPM-B with its high contents of nutrients (especially K and P) could contribute to the
soil enrichment with these elements.
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Table 1. Mineral composition of RPM-B (mg g−1) in comparison with other biochars derived from poultry manure/litter
and lignocellulosic biomasses.

Raw Feedstock Pyrolysis Conditions N P K Ca Mg Na Al Reference

Poultry manure
T = 600 ◦C;

G = 5 ◦C min−1;
t = 3 h

0.6 43.2 66.2 100.4 7.1 28.7 23.2 Current study

Poultry litter
T = 600 ◦C;

G = 20 ◦C min−1;
t = 2.2 h

1.2 30.5 91.5 94.0 24.2 – – [30]

Poultry litter
T = 600 ◦C;

G = -◦C min−1;
t = -

4.0 15.4 58.8 35.9 15.7 – – [31]

Poultry manure
T = 500 ◦C;

G = 20 ◦C min−1;
t = 6 h

3.8 29.5 54.8 43.7 13.6 – – [32]

Poultry manure
T = 400 ◦C;

G= -;
t = 8 h

26.3 27.0 72.0 49.1 13.5 15.2 4.8 [33]

Exhausted grape marc
T = 600 ◦C;

G = 5 ◦C min−1;
t = 1 h

1.7 8.2 20.1 18.0 2.9 0.4 0.3 [27]

Residues of wood chips
T = 620 ◦C;

G = -◦C min−1;
t = -

– 1.3 10.4 42.2 2.9 0.7 – [28]

Pine sawdust
T = 550 ◦C;

G = 7 ◦C min−1;
t = 2 h

– 1.3 13.3 2.1 5.2 – 58.2 [29]

(T: pyrolysis temperature; G: heating gradient; t: residence time).

3.2. Static Biochar Leaching Experiments

The leaching experiments of K and P from RPM-B were carried out with the same
biochar for five cycles with a total duration of 10 days under the experimental conditions
given in Section 2.3. Results (Figure 3a,b) showed that the release kinetic of potassium
significantly decreases when increasing the number of successive leaching assays. As such,
K release kinetic during the first assay was evaluated to 19.2 mg g−1 day−1. It decreases by
78.0%, 79.2%, and 87.8% for the second, third, and fourth leaching assay, respectively, and
reaches about 0.6 mg g−1 d−1 in the last leaching experiment. For phosphorus, the variation
was less obvious and there was an apparent lower mobility than K in terms of release
in the aqueous solution (Figure 3b). Indeed, the PO4-P release kinetic observed during
the first leaching test was measured at only 0.7 mg g−1 d−1. This rate increased during
the second assay, then attained a plateau with an average kinetic value of 0.8 mg g−1 d−1.
Afterwards, this kinetic decrease to 0.6 mg g−1 d−1 at the last leaching assay. The low
release rates of PO4-P, compared to K+, is mainly imputed to the fact that the pyrolysis
process most probably converted a non-negligible portion of the RPM-contained P into
crystalline metal phosphates such as tricalcium phosphate, hydroxyapatite, calcium or
iron-phosphate-precipitates, and whitlockite [14,18,33–35]. Based on solid-state 31P nuclear
magnetic resonance (NMR) techniques, Li et al. [36] demonstrated that the P species
in RPM-derived biochars at pyrolysis temperatures higher than 450 ◦C include mainly
hydroxyapatite and oxyapatite, which are much less available than the forms existing
in the raw animal biomasses [11]. On the contrary, the pyrolysis process has converted
potassium into a more water-soluble form through dissociation mechanisms [37]. For this
reason, the biochar-borne potassium RPM-B was more easily leached by distilled water.
Accordingly, the leached K percentage (calculated by Equation (6)) increased significantly
with the increase in the number of leaching assays. Indeed, it increased from about 58%
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at the first assay to more than 82% at the third cycle and reached 94% at the fifth one.
However, the maximal leached percentage of P (see Equation (5)) observed at the fifth
cycle was only 17.1% of its total content in the biochar. Liang et al. [35] showed that after
10 leaching days, P release from their RPM-derived biochar at a temperature of 450 ◦C
reaches about 10.3% of the total P. This lower percentage could be attributed to their used
protocol, which is based on a nonsequential extraction mode. It is important to underline
that the actual K and P water-leachable amounts and rates are much important compared to
those reported for biochars derived from lignocellulosic biomasses or sludge. For instance,
Ibn Ferjani et al. [38] reported that for exhausted grape marc produced at a temperature
of 500 ◦C, the K and P leached percentages at the fifth (last) sequential extraction assay
were assessed to 83% and 18%, respectively. Furthermore, they showed that the P leached
percentage appear to significantly decrease with the increase in the pyrolysis temperature
due to its encapsulation in crystalline forms. Regarding sludge-derived biochars generated
at a temperature of 600 ◦C, K and P were likely to be more chemically retained than in
RPM-B since for a continuous contact time of 3 days, the corresponding release percentages
were only about 2.6% and 1.2%, respectively [39]. These outcomes could be mainly imputed
to the relatively lower nutrient content in these biomass-derived biochars compared to
RPM-B, which might significantly limit the nutrient diffusive flux from these solid matrices
to the water phase.

On the other hand, it is worth mentioning that even after 5 consecutive leaching tests
(10 days), K+ and PO4-P continue to be released with non-negligible rates (Figure 3a,b).
Gwenzi et al. [40] observed similar trend when studying the sequential release of NO3

−,
PO4

3−, and K+ from an artificially nutrients-doped-sawdust biochar for a duration of
68 days. They suggest the existence of three possible nutrients pools: i) a readily available
and water-soluble fraction, ii) a sparingly water-soluble fraction, and iii) an insoluble
fraction that is strongly adsorbed to the solid phase and its release occurs only through
microbial degradation. This slow release is an attractive property of the RPM-B since it
will permit, in real cases, a long-term supply of required nutrients for an optimal plant
development. Simultaneously, it will reduce pollution risks of surface and underground
water resources by these compounds.
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Table 2. Physicochemical properties of the used agricultural soil.

Physicochemical Properties Value

Sand (%) 93.9
Silt (%) 6.1

pH 8.1
Electrical conductivity (µS cm−1) 146.2

Organic matter (%) 3.0
Sodium oxide (Na2O) 0.101

Magnesium oxide (MgO) 0.056
Alumina (Al2O3) 1.297

Silicon dioxide (SiO2) 96.209
Phosphorus pentoxide (P2O5) 0.145

Sulfur trioxide (SO3) 0.034
Potassium oxide (K2O) 0.034

Calcite (CaCO3) 1.420
Titanium dioxide (TiO2) 0.134

Chromium oxide (Cr2O3) 0.001
Iron oxide (Fe2O3) 0.570
Zinc oxide (ZnO) 0.006

Strontium oxide (SrO) 0.012
Manganese oxide (Mn2O3) 0.012

3.3. Dynamic Leaching Experiments
3.3.1. Effect of Biochar Addition on Soil pH and EC

The effect of the soil amendment with 5% and 8% of RPM-B on its pH and EC was
measured in batch mode under the experimental conditions described in Section 2.2. Ex-
perimental results (Figure 4) showed that the addition of the alkaline RPM-derived biochar
significantly impacted soil pH. As such, the increase in the applied biochar dose has
resulted in a significant increase in pH values of amended soils. These values were deter-
mined to 8.1, 9.1, and 9.7 for the control soil and 5% and 8% of RPM-B doses, respectively.
However, this increase should be a short-term effect, and the native soil properties, in par-
ticular, the cation exchange capacity should be quite low and did not protect from rapid pH
fluctuations. This behavior is nevertheless due to the presence of elevated contents of bases
in RPM-B and highlight its liming effect when applied to acidic agricultural soils [5,14].
Indeed, Masud et al. [5] showed, similarly, that the liming effect of RPM-B adding to an
agricultural soil depend on the biochar used dose. For an incubation period of 2 months,
the soil’s pH increase was assessed to 0.3, 0.7, and 1.2 pH units for RPM-doses of 0.5%, 1%,
and 1.5%, respectively. A smaller increase was reported by Laird et al. [41] for a lignocellu-
losic biochar adding to a Midwestern agricultural soil at a dose of 2% (almost 1 unit after
an incubation period of 500 days). It is worth mentioning that significant elevation of soil
pH could limit some nutrients bioavailability such as P and other micronutrients [6,42]. At
the same time, pH values increase could significantly reduce the toxic aluminum element
availability [4] and positively affect fungal and bacterial distribution as well as organic
carbon fate for a better assimilation by plants [43]. On the other hand, RMP-B addition also
sensibly affected EC (1:10 w:v) of the mixed soils (Figure 4). Indeed, the original EC of the
agricultural soil (without amendment) increased significantly from 146 µS cm−1 to more
than 642 and 1029 µS cm−1 when amended with RPM-B doses of 5% and 8%, respectively.
This elevation could be mainly attributed to the dissolution of biochar-contained ashes,
which are dominated by exchangeable bases, phosphates precipitates, alkali and alkaline
metals carbonates, and organic and inorganic nitrogen compounds [44].
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Figure 3. Potassium (a) and phosphorus (b) successive leaching capacity from raw poultry manure (RPM) biochar. For each
element, mean release kinetics with the same lowercase letters are not significantly different at p ≤ 0.05.
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Figure 4. Mean pH and electrical conductivity (EC) values of agricultural soil, RPM-B, and RPM-B-amended-soil at 5% and
8% in batch mode. For each parameter, values with the same lowercase letters are not significantly different at p ≤ 0.05.

3.3.2. Column-Leaching Results
Variation of pH and EC

Figure 5a,b illustrates the pH and EC measurements at the outlet of the columns for
the three soil treatments. For all the assays, pH and EC values were the highest at the
beginning of the leaching process due to the existence, at this stage, of important diffusion
fluxes of leachable salts from the solid to the liquid phase. A quasi plateau was then
reached after about 20 days (Figure 5a,b). The second phase of the leaching experiment
(following the addition of the synthetic solution containing NO3-N, PO4-P, K+, Na+, and
NH4-N instead of distilled water at the 23rd and 24th days) was accompanied by a slight
increase in these two physical parameters right after the application (Figure 5a,b). Higher
the used biochar doses, more important the measured pH and EC values at the exit of the
column. For instance, increases of pH and EC values of more than 2.4 units and 170%,
respectively, was observed at the beginning of the experiments for an RPM-B dose of
8%. Such a behavior is frequently observed for amended soils with biochars produced
at relatively elevated pyrolysis temperatures (>400 ◦C), which generally dispose of high
contents of salts of alkali and alkaline elements (Na, K, Ca, and Mg) and calcite [6,22].
Therefore, the presence of these elements in RPM-B can be considered as a useful attribute
for soil pH buffering, however, it can contribute to the decrease in the availability of P and
some micronutrients such as Cu and Mn [6]. The impact onto the EC is very limited since
after only 5 leaching days, it decreased to less than 2.5 mS/cm. Therefore, its impact on
plants’ growth should be negligible.

Anions Dynamic Behavior

Released NO3-N amounts during the phase 1 (until day 22) significantly increased
with the rising of the biochar dose in amended soils (Figure 6a and Table 3). The cumulated
leached NO3-N amounts at the 22nd day were assessed to 93.1, 127.4, and 206.0 mg for the
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control soil and biochars doses of 5% and 8%, respectively. These observations prove that
RPM-B could be considered as a supplementary source of NO3-N ions, which is a bioavail-
able N form essential for plant growth. However, its initial release kinetic is exceptionally
high since the released NO3-N amounts after only 2 days represent about 94%, 78%, and
88% of the total leached mass during the entire phase 1 for soil treatments with 0%, 5%, and
8% biochar, respectively. A similar finding was reported by Teutsherova et al. [45] when
investigating in column mode NO3-N leaching from two amended soils by a lignocellulosic
biochar at doses of 1% and 2%.

Just after the addition of the synthetic solution rich in NO3-N during the second phase
(141.7 mg on the 23rd and 24th days), low to moderate peaks of NO3-N concentrations
were observed for all soil treatments at the outlet of the columns (data not shown). At
the end of this second phase (Figure 6b), the recovered NO3-N amounts were about
47.1%, 25.1%, and 29.0% lower than the artificially added NO3-N mass in the synthetic
solutions for the control soil and those amended with RPM-B at 5% and 8%, respectively.
These observations indicate that NO3-N ions were efficiently adsorbed by the added
RPM-derived biochar. NO3-N adsorption by the biochar-amended soils involves several
mechanisms including ligand exchange and complexation [46]. The importance of each one
of these mechanisms depends mainly on the physicochemical characteristics of the porous
media such as the specific surface area, the microporosity volume and the contained surface
functional groups [47–49]. This finding is in agreement with several other studies [21,50,51].
For instance, [21] studied the impact of a lignocellulosic biochar on leaching of nutrients
after the application of swine manure to a typical Midwestern agricultural soil in column
mode. The soil columns containing 0%, 0.5%, 1%, and 2% of biochar with and without
0.5% of dried swine manure were leached weekly with 200 mL of 0.001 M CaCl2 for
45 weeks. They reported that compared to the blank test (without manure), the NO3-N
leached amount decreased by about 11% for a biochar dose of 2%. Likewise, Yao et al. [50]
observed a net decrease in NO3-N leaching capacity by about 34% when an agricultural
soil was amended with 2% of a biochar generated from the pyrolysis of a mixture of peanut
hull and Brazilian pepperwood. In contrast, some other studies have oppositely showed
an increase in NO3-N leaching when biochars was applied as amendment [23,38]. For
instance, Ibn Ferjani et al. [38] found that amending an agricultural soil with 5% biochar
generated from exhausted grape marcs (EGM) increased NO3-N leaching by 43.5%. This
discrepancy might be partly attributed to the porous media physicochemical characteristics.
Indeed, nitrates adsorption was generally reported for biochars produced at pyrolysis
temperatures higher than 600 ◦C [50–52]. However, no significant NO3-N retention was
observed for biochars produced at lower temperatures [38,53,54].

As for NO3-N variation during the first experimental phase, the measured concen-
trations of PO4-P at the outlet of the column were proportional to biochar dose in the soil
(data not shown), and consequently, the released amounts from the used porous media
(Figure 7a and Table 3). Indeed, the total released PO4-P at the end of this first phase were
assessed to 2082.8 and 1563.9 mg in soils treated with biochar at 8% and 5%, respectively,
which are about 24- and 18-fold higher than the leached amount from the un-amended soil
(Table 3).
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Figure 5. Variation of pH (a) and EC (b) in control soil (blank) and soil treated with 5% and 8% RPM biochar.



Sustainability 2021, 13, 1212 13 of 26
Sustainability 2021, 13, x FOR PEER REVIEW 14 of 28 
 

 
(a) 

 
(b) 

Figure 6. Cumulated NO3-N collected at the outlet of the columns containing nonamended and RPM biochar-amended 
agricultural soil during phase 1 (a) and phase 2 (b). 

0

100

200

300

1 6 11 16 21

C
um

ula
te

d 
N

O
3

-N
 m

as
s 

(m
g)

Time, phase 1 (day)

Blank

RPM-B-5%

RPM-B-8%

(a)

0

100

200

300

23 25 27 29 31 33 35 37 39

C
um

ula
te

d 
N

O
3-

N
  m

as
s 

(m
g)

Time, phase 2 (day)

Blank
RPM-B-5%
RPM-B-8%
Added mass

(b)

Figure 6. Cumulated NO3-N collected at the outlet of the columns containing nonamended and RPM biochar-amended
agricultural soil during phase 1 (a) and phase 2 (b).
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Table 3. Release kinetics of anionic nutrients from nonamended and amended agricultural soil with RPM biochars at 5%
and 8%.

Assay Parameter PO4-P NO3-N

Phase 1

Blank
RM-b (mg) 87.8 a 93.1 a

ARR (mg g−1 d−1) 0.0028 0.0029

RPM-B-5%
RM (mg) 1563.9 b 127.4 ab

RM/RM-b ratio 17.8 1.4
ARR (mg g−1 d−1) 0.0494 0.0040

RPM-B-8%

RM (mg) 2082.9 b 206.0 b
RM/RM-b ratio 23.7 2.2

ARR (mg g−1 d−1) 0.0657 0.0065
AM (mg) 98.1 141.7

Phase 2

Blank
RM (mg) 79.9 a 75.0 a

RM/AM ratio 0.8 0.5
FRR (mg g−1 d−1) 0.0015 0.0005

RPM-B-5%
RM (mg) 327.6 b 106.2 b

RM/AM ratio 3.3 0.7
FRR (mg g−1 d−1) 0.0063 0.0003

RPM-B-8%
RM (mg) 402.7 c 100.6 b

RM/AM ratio 4.1 0.7
FRR (mg g−1 d−1) 0.0097 0.0003

(RM: released mass; b: blank assay; AM: added mass from synthetic solutions; ARR: average release rate; FRR: final release rate). For each
anion at each phase, RM values followed by the same lowercase letters are not significantly different at p ≤ 0.05).

Outcomes of the second experimental phase (PO4-P retention assessment) showed
that the agricultural soil exhibited a relatively low retention of PO4-P since 81.5% of the
added PO4-P was recovered (leached) at the outlet of the column at the end of the assay
(40 days). However, no PO4-P retention was ever recorded following biochar addition at
5% and 8% because the released amounts at the end of the second phase were about 3.3 and
4.1 times higher than the artificially added PO4-P amount (Figure 7b). Similar observations
have been reported by several authors [38,50,51,55]. For instance, Troy et al. [55] found
that compared to control, the leaching for 30 weeks of an amended tillage soil with a pig
manure biochar at a dose of 18 t ha−1 resulted in an increase in the dissolved phosphorus
amounts by a factor higher than 3. They attributed this effect to the higher P contents
of the used biochar. Similarly, El-Bassi et al. [56] showed that compared to a blank test,
amending an agricultural soil with EGM biochars at doses of 1% and 5% increased the
PO4-P release by about 4% and 27%, respectively. At contrary, Laird et al. [21] reported that
adding a lignocellulosic biochar at a dose of 2% to an agricultural soil containing 0.5% of
swine manure reduced the total dissolved phosphorus leached amount by about 69%. This
results inconsistency might be due to the physicochemical characteristics of the soil and
especially the biochars. Indeed, PO4-P adsorption is generally favored for biochars that
dispose of low PO4-P water extractable fraction [51,55] and are rich in hydroxyl functional
groups [57,58] and mineral salts such as Mg and Ca [59,60], which is not the case of our
used RPM-B [17]. Finally, the increase in pH of the mixture soil/biochar (see Section Anions
Dynamic Behavior) could promote alkaline metals oxides formation, which, in turn, might
reduce the development of insoluble phosphates precipitates [61].

It is important to underline that, compared to batch tests (Section 3.2), PO4-P ions
were released during the phase 1 at very slow rates with average kinetics of 0.0028, 0.0494,
and 0.0657 mg g−1 d−1 for the blank and the biochar-amended soil treatments with 5% and
8%, respectively. Even after 22 days of daily leaching, the agricultural soil amended with
biochar at doses of 5% and 8% continued in releasing PO4-P ions at non-negligible rates
of 0.0249 and 0.0338 mg g−1 d−1, respectively. These kinetic release rates were calculated
to be 0.0063 and 0.0097 mg g−1 d−1 at the end of phase 2 (Table 3). This long-term PO4-P
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release at slow rates is a very attractive property in agriculture since it ensures an adequate
supply to crops and reduces the pollution risks of water resources.
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Figure 7. Cumulated PO4-P collected at the outlet of the columns containing nonamended and RPM
biochar-amended agricultural soil during phase 1 (a) and phase 2 (b).

Cations Dynamic Behavior

Cations dynamic during the leaching of the three soil columns seems to depend mainly
on the targeted element and its content in the followed porous media as well. Indeed,
at the end of the phase 1, except for NH4-N, all the released cations amounts increased
with the increase in the RPM-B dose in the soil (Figures 8a–12a and Table 4). The utmost
released amounts were observed for potassium, which is the most contained element in
the RPM-B (Table 1). This finding confirms the batch results (Section 3.2) assuming that
compared to PO4-P, the K+ ions exist in more easily leachable forms. At the end of this
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first phase, the released amounts of K+, Na+, Mg2+, and Ca2+ for soils amended with
RPM-B doses of 5% and “8%” were 17.1, 7.7, 4.2, and 2.1, and “24.3”, “9.6”, “5.3”, and “2.4”
times higher than those measured for the unamended control, respectively (Table 4). This
outcome suggests that RPM-B could be considered as an important source of bioavailable
cationic nutrients (especially K+, Mg2+, and Ca2+) that are essential for plants’ growth.
Depending on the crop requirements, this biochar could partly or totally replace chemical
fertilizers, especially those rich in K, Mg, and Ca [62,63]. Similarly, based on laboratory
column assays, [8] reported that the leaching with 10 pore volumes of distilled water of an
amended very fined sandy soil by a mixture of RPM (5%) and a pinewood biochar (5%)
significantly increases the K+, Mg2+, and Ca2+ release from 26.1, 19.0, and 9.9 mg kg−1 (blank
test) by factors of about 87, 8, and 13, respectively. These factors become equal to 166, 7, and
27 when the RPM and the biochar dosages were doubled.
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Figure 8. Cumulated K+ collected at the outlet of the columns containing nonamended and RPM
biochar-amended agricultural soil during phase 1 (a) and phase 2 (b).
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Figure 9. Cumulated Na+ collected at the outlet of the columns containing nonamended and RPM biochar-amended
agricultural soil during phase 1 (a) and phase 2 (b).
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Figure 10. Cumulated Mg2+ collected at the outlet of the columns containing nonamended and RPM biochar-amended
agricultural soil during phase 1 (a) and phase 2 (b).
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Figure 11. Cumulated Ca2+ collected at the outlet of the columns containing nonamended and RPM biochar-amended
agricultural soil during phase 1 (a) and phase 2 (b).
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Figure 12. Cumulated NH4-N mass collected at the outlet of the columns containing nonamended and RPM biochar-
amended agricultural soil during phase 1 (a) and phase 2 (b).
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Table 4. Release kinetics of cationic nutrients from nonamended and amended agricultural soil with RPM biochar at 5%
and 8%.

Assay Parameter K+ Na+ Mg2+ Ca2+ NH4-N

Phase 1

Blank
RM-b (mg) 141.4 a 129.1 a 65.8 a 378.2 a 48.6 c

ARR (mg g−1 d−1) 0.0045 0.0041 0.0021 0.0119 0.0015

RPM-B-5%
RM (mg) 2418.5 b 990 b 275.2 b 772.4 b 37.1 b

RM/RM-b ratio 17.089 7.671 4.182 2.042 0.792
ARR (mg g−1 d−1) 0.076 0.0313 0.0087 0.0244 0.0012

RPM-B-8%
RM (mg) 3431.6 c 1240.8 c 349.9 c 904.2 c 33.6 a

RM/RM-b ratio 24.262 9.613 5.317 2.391 0.692
ARR (mg g−1 d−1) 0.108 0.0392 0.0110 0.0285 0.0011

Phase 2

AM (mg) 50.45 65.68 * * 51.43

Blank
RM (mg) 114 a 332.7 c 39.9 a 198 a 41.8 c

RM/AM ratio 2.259 5.065 * * 0.813
FRR (mg g−1 d−1) 0.0011 0.0059 0.0008 0.0046 0.0007

RPM-B-5%
RM (mg) 482.9 b 244.6 b 211.4 b 316.5 c 2.4 a

RM/AM ratio 9.572 3.723 * * 0.047
FRR (mg g−1 d−1) 0.0081 0.0058 0.0069 0.0109 **

RPM-B-8%
RM (mg) 731.5 c 214.4 a 259.5 c 204.9 b 6.2 b

RM/AM ratio 14.498 3.264 * * 0.121
FRR (mg g−1 d−1) 0.0087 0.0040 0.0075 0.0033 **

(RM: released mass; b: blank assay; AM: added mass from synthetic solutions; ARR: average release rate; FRR: final release rate; *: nutrient
not added in the synthetic solution; **: no release at the end of the assay). For each cation at each phase, RM values followed by the same
lowercase letters are not significantly different at p ≤ 0.05).

Concerning the second phase of the leaching assays, it could be clearly noticed that
the dynamics of the studied cations after synthetic solution addition depended mainly
on the targeted nutrient (Figures 8b–12b). Indeed, outcomes showed that the released
amounts of K+ and Mg2+ has significantly increased with biochar amendment rate and
time indicating that these two elements were not adsorbed for the three soil treatments
(Figures 8b and 10b). For instance, K+ was likely to be continuously released from the RPM-
B. At the end of this second phase, the released amounts of K+ by the amended agricultural
soil at doses of 5% and 8% were 9.6 and 14.5 times greater than the added K mass in
the synthetic solution (Table 4). A similar trend was observed by Laird et al. [21] when
investigating nutrients behavior in column mode of an agricultural soil amended with
various lignocellulosic biochar doses (between 0% and 2.5%) in presence and in absence
of a fixed swine manure dose of 0.5%. They showed that K+ and Ca2+ released amounts
increased with the increase in the biochar dose. The greatest increases were evaluated to be
about 33% and 12% for K+ and Ca2+, respectively, for a biochar dose of 2.5%. Moreover, in a
field study with a total monitoring duration of more than 1.6 years, Major et al. [23] showed
that adding a local lignocellulosic biochar to a tropical acid soil at a dose of 20 t ha−1 has
increased Ca2+, Mg2+, and K+ leaching at a depth of 0.6 m by about 164%, 110%, and 9%,
respectively compared to the unamended soil. However, leaching capacities at 1.2 m was
reduced for these elements by about 14%, 22%, and 31%, respectively. This behavior was
imputed to a possible combination of nutrients retention and plants’ uptake.

Regarding Na+, the released amounts from all soil treatments were higher than the
added mass in the synthetic solutions (Figure 9b). However, compared to the release
trend in phase 1 (Figure 9a), the blank test in phase 2 released more Na+ compared to
biochar-amended soils. This outcome suggests that the Na+ liberated by the agricultural
soil might be partially fixed by the RPM-B. Sodium adsorption by the RPM-B could occur
through cation exchange process with other leached cations such as K+ and Mg2+ whose
released masses significantly increased compared to the blank assay (Figures 8b and 10b).

Concerning NH4-N, for both leaching phases, the released amounts by biochar-
amended agricultural soils were lower than control (Figure 12a,b). This result suggests
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that the released NH4-N ions by the soil were efficiently retained by the RPM-B. This
trend is obvious on Figure 12b where the released amount of ammonium by the RPM-
B-amended soil at 8% was about eightfold lower than its added mass in the synthetic
solutions (Table 4). Various previous studies have indicated that NH4-N adsorption is
significantly promoted for biochars having developed porous structure, negative surface
charges, and high specific surface areas and C/N ratios [32,51,64,65], which is the case
of our RPM-derived biochar [17]. Similar observations were reported for biochars de-
rived from various feedstock such as RPM [32], sewage sludge [39], and lignocellulosic
biomasses [51]. For instance, Tian et al. [32] indicated that NH4-N adsorption efficiency
from a storm water increases from 1.7% to 91.7% when an RPM biochar at a dose of 10%
was added to a sandy filter. However, based on column tests, Bohara et al. [8] showed that
amending a very fine sandy loam soil with pinewood biochar at doses varying between
2.5% and 10% did not significantly affect the release of NH4-N. An increased leaching of N
was even reported for some other biochars [21,66]. This behavior could be imputed to the
biochars properties and especially their original high N contents, which depend mainly on
the feedstock type and pyrolysis production temperature. In our case, due to the relatively
high used pyrolysis temperature, the N content (0.06%) is low compared to various biochars
including those derived from RPM (Table 1), which has probably limited its dissolution
and leaching. As a consequence, due to the low released N components amounts from the
RPM-B-amended soil, cosupplying this essential macroelement by synthetic fertilizers to
similar sandy agricultural soils is highly recommended in order to ensure soil chemical
properties and enzymatic activity potential improvement for higher cultivated plants’
yields [1,65]. Opportunely, RPM-B exhibits important adsorption capacities of nitrogen
bioavailable forms, namely, NH4-N and NO3-N, which will limit their loss by lixiviation
or volatilization [67]. It would be very beneficial if these adsorbed elements will be slowly
released from biochar-amended soils into the rhizosphere for optimal plant growth and yield.

It is worth mentioning that as for PO4-P, cationic nutrients were also slowly released
from the leached porous media. For instance, for the assay with the agricultural soil
amended with 5% of RPM-B, the average release rates during phase 1 (from the 1st to
the 22nd day) were assessed to only 0.0763, 0.0087, and 0.0244 mg g−1 d−1 for K+, Mg2+,
and Ca2+, respectively (Table 4). At the end of this phase, these rates were evaluated to
be 0.0232, 0.0031, and 0.0084 mg g−1 d−1, respectively. These rates should be significantly
decreased in cultivated real sites with important unsaturated zones depths due to nutri-
ents’ assimilation by plants and adsorption onto soil particles [23]. Therefore, compared
to fast-release synthetic fertilizers, the current slow-release RPM-B amended soil should
present lower nutrients loss, and hence lower negative impacts on groundwater quality [40].
Similar trends were reported for raw biochars derived from animal wastes [21], lignocel-
lulosic biomasses [15,38], a sawdust-derived biochar artificially doped with N, P, and K
elements [40], and a 10% straw-wheat-shells-derived biochar/struvite composite [68]. For
instance, Gwenzi et al. [40] showed that nutrients-doped sawdust-biochars released NO3

−,
PO4

3−, and K+ at lower rates and amounts compared to synthetic fertilizers. Indeed, after
15 sequential extractions, their cumulated released amounts of these three nutrients from
the doped biochars were at most approximately the half of those of the synthetic fertilizer.

Finally, it is important to underline also that the majority of anions and cations nutri-
ents (PO4-P, K+, Mg2+, and Ca2+) were released from RPM-B at amounts and rates higher
than those derived from lignocellulosic biomasses [38,55]. Therefore, mixing lignocellulosic
biomasses with animal wastes before the pyrolysis process could promote biochars produc-
tion with higher nutrient contents. These biochars will offer non-negligible supplementary
PO4-P and other essential macroelements such as K+, Ca2+, and Mg2+. However, the trans-
port of these elements in the underground compartments and the related environmental
risks should be accurately assessed.
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4. Conclusions

The main objective of this research study was to assess the capacity of a biochar
generated from poultry manure to release/adsorb nutrients under both static and dynamic
conditions. Outcomes suggest that this biochar could be considered as a promising and
attractive soil conditioner. Indeed, besides its high capability to supply agricultural soils
with essential nutrients (especially, K+, Mg2+, Ca2+, and PO4-P), their release occurs over
extended periods with very slow rates. This is particularly important for both optimal crop
development and reduced environmental pollution risks by these elements. On the other
hand, RPM-B exhibited, respectively, important and moderate adsorption capacities for
NH4-N and NO3-N, which could be very interesting if synthetic nitrogen fertilizers have to
be applied. Biochar valorization in agriculture is a pathway for a sustainable management
of abundant RPM wastes and the reduction in synthetic fertilizer use, which is more
profitable for farmers. However, further investigations regarding the long-term impacts of
RPM-B and also biochars generated from mixture of RPM and lignocellulosic biomasses
on soil properties, crop yields, and underground water resources possible contamination
would be of great interest.
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